科目名		担当教員	<u>- </u>	学年	単位	開講時数	種別		
プログラミング (Computer Progra	amming)	齋藤保 (非常勤)		2	2	通年 2 時間	必修		
授業の概要	多数のデータを の理解だけでな	的確に分類,処理,整理する く,プログラムの構造やアル	ためのプログラミンク ·ゴリズムについても	ブ言語を 講義す	学習する.	る。また	単に文法		
授業の進め方	各項目に対する	説明と基本的な例題を通じて	実習を行う. また理解	を深め	るための	の演習課題	見も行う.		
到達目標	4. 配列変数を理	!解できる ↑,分岐命令が理解できる	星できる						
学校教育目標との 関係		合的実践的技術者として、数学 に関する知識をもち、工学的					的な技術		
		講義の内容	}						
項目		目標					時間		
ガイダンス		Java について					2		
プログラミングの		Eclipse の起動,プロジェクト パッケージの作成,クラスフ プログラムの実行					2		
プログラミングの	ログラミングの基礎 (2) 変数の型、変数の定義、変数への値の代入								
プログラミングの	基礎 (3)	クラスメソッド					4		
プログラミングの	基礎 (4)	条件判断文					6		
プログラミングの	基礎 (5)	繰り返し文					6		
プログラミングの	基礎 (6)	配列変数の定義,配列の利用					4		
プログラミングの	応用 (1)	クラスの宣言					2		
プログラミングの	応用 (2)	クラス型変数の定義,フィー	ルドへのアクセス				4		
プログラミングの	応用 (3)	インスタンスメソッド,オー	バーライド				8		
プログラミングの	応用 (4)	ファイル入力					4		
アプレットの基礎		アプレットの作成,起動					2		
アプレットの応用	(1)	アプレットのレイアウト					4		
アプレットの応用	(2)	イベント処理					6		
							計 60		
学業成績の評価方 法	実習を中心とし ト・授業態度・	た授業を展開するため,評価 出席状況(4割)	は以下の通りとする.	定期詞	は験(6	割),課題	・レポー		
関連科目 教科書・副読本	教科書: 「やさ	しい Java 第6版 高橋 原	森奈 (ソフトバンクク	リエイ	ティブ)				
	評価 (ルーブリック)								
型達目標 理想的な	到達レベルの目安 (優)		・・・/ ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)		
1 アプレ	ットを使ったプロングを理解してい	コークラス、メソッドを理解	基礎的な文法を理解	足して 来る	基礎的	な文法を巧	里解して		
2									
3									
4									
5									
3									

			平成 30 年度 生産システム		T	1		
科目名			担当教員		学年	単位	開講時数	種別
基礎材料 (Fundam gineering	nentals of	Materials En-	松澤和夫 (常勤)		2	1	後期 2 時間	必修
授業の概	要	構造材料として 解するための詞	て用いられる,金属材料の基本 素養を身につける。	は、特に結晶や状態図	などを引	さび、各	種材料の特	寺性を理
授業の進	め方	講義を中心とて	する。					
到達目標		1. 二元平衡状 2. Fe-C 系状態	態図を理解できる ※図を理解できる					
学校教育 関係	目標との	D (基礎力) 総 と基礎的な理話	合的実践的技術者として、数 論に関する知識をもち、工学的	学・自然科学・自らの 内諸問題にそれらを応	D専門と 用する	する分 能力を育	野の基本的 育成する。	りな技術
			講義の内容	容				
項目			目標					時間
ガイダン	/ ス		年間講義概要・機械材料の分	分類を把握				2
結晶構造	î		金属の代表的な結晶構造を理	里解				2
金属の塑	性変形	応力ひずみ線図と塑性変形機構を理解						2
塑性変形	タにおける	結晶の現象	金属材料の変形機構について について理解	て、すべり、転位、双晶	晶変形、	粒界す	べりなど	2
加工硬化	2と再結晶		加工硬化並びに回復・再結晶	晶、ホールペッチの関	係式に~	ついて理	[解	2
状態図の	基礎		固溶体、金属間化合物,純金	全属の凝固を理解				2
全率固溶	F体型状態	図	状態図の基本的な意味を全率	図固溶体型状態図によ	り理解			4
共晶型状	態図		共晶状態図について理解					4
純鉄の同	素変態		Fe-C 系状態図の基礎となる	純鉄の同素変態につい	て理解			2
炭素鋼の)状態図と	組織	Fe-C 系状態図と組織につい	て理解				4
炭素鋼の	熱処理		冷却速度と相変化の関係, (義について理解	CCT 曲線などについて	て理解,	鋼の焼	入れの定	4
								計 30
学業成績 法	の評価方	定期試験 (80 %	%), ノート (15%), 参加状況	卍 (5 %)				
関連科目								
教科書・	副読本	教科書: 「基礎	楚機械材料学」松澤和夫 (日本					
			評価 (ルーブ!	ノック)				
到達目標	理想的な	想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不						(不可)
1	について よる状態 きる。	を作る共晶状態 て、組成と温度 態の変化を説明	に 態図について、組成と温 で 度による状態の変化を訪 明できる。	∐いて、組成と温度は	こよる		における、 よる状態の きない。	
2	変化を記に、冷却	e-C 系状態図について、 A 成と温度による組織の E 化を説明できる。さら 上、冷却速度の影響を説 日できる。						黒解でき

科目名			担当	ム上学コース シラハス め旨	学年	単位	開講時数	種別
基礎加工	 学		坂本誠 (常勤)	水 矣	2	1	前期	必修
(Fundame	entals of	Machining)	- ДАТИД (ПТЭД)				2 時間	2019
授業の概要	要	本授業では、こ の塑性加工を即	これまで実習で体験した鋳え り扱い,それらの方法や	造,鍛造に加え,さらに「 加工原理を整理して理解	晶広く, させる.	ものづ	くりの手	去として
授業の進	め方	講義を中心とし	、 授業中の試問により理	解を深めさせる.				
到達目標		1. 鋳造につい 2. 塑性加工に 3. 鋳造や塑性	て原理,特徴,用いる工具 ついて原理,特徴,用いる 加工について使い分けや製	,専門用語を説明できる 工具,専門用語を説明て 品例について説明できる	 きる.			
学校教育 関係	目標との		合的実践的技術者として、 論に関する知識をもち、エ					的な技術
	'		講義の	内容				
項目			目標					時間
1. ガイ:	ダンス		講義概要の説明					2
2. 鋳造	の概要		鋳造の原理および鋳物の 学ぶ.	作り方を理解する. また	:,鋳型	の種類	について	2
3. 鋳型	の構造と	鋳物の欠陥	鋳型の各部の名称およびる よびその検査方法を学ぶ。	その効果について理解する	る. また	と,鋳物	の欠陥お	2
4. 鋳造			ロストワックス法やダイス			•		4
5. 鋳物	の設計と	製造工程	鋳物を設計するための諸治		解する.			2
6. 塑性	加工の概	要	塑性加工の原理,特徴,種					2
7. 鍛造		鍛造の原理および特徴を理解する.						
8. 圧延			圧延の原理および特徴を理	理解する.				2
9. 押出	しと引抜	き	押出しと引抜きの原理お。	•				4
10. プ	レス加工		プレス加工である曲げ,する.	せん断,深絞りについて	原理お	よび特	徴を理解	6
11. 転	造		転造の原理を理解し、製造	告される製品について学	Š.			1
12. ま	とめ		鋳造および塑性加工の位置	置づけについて理解する				1
								計 30
学業成績(法	の評価方	2回の定期試験	の得点から判定する.なお	6, 定期試験の成績不良者	行には補	i講と単位	位認定試験	食を課す。
関連科目		生産加工学・料	青密加工					
教科書・	副読本	教科書: 「基礎	整 機械工作」基礎機械工作	作編集委員会編 (産業図	事)			
	'		評価 (ルー	ブリック)				
到達目標	理想的な	到達レベルの目安 (優	(野準的な到達レベルの目安 (野	き) ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)
1	用いるエ)いて原理,特符 「具,専門用語を 各種鋳造法につ 目できる	説 用いる工具, 専門用語を		引いる		ついて原理 L具, 専門 ない	
2	徴, 用いを説明で	について原理, る工具, 専門用 き, 各種塑性加 いても説明でき	語 徴, 用いる工具, 専門用 工 を説明できる	特 塑性加工について原 語 特徴を説明できるだいる工具や専門用記いて説明できない	ぶ,用	徴,用い	Ľについて いる工具, [‡] できない	
3	製品例とて説明で	塑性加工についてとその理由についてとその理由について製品例とその理由について製品例を挙げることがです。各種方法のけについて説明できる はについて説明で						

科目名						学年	単位	開講時数	種別
\	製図 ical Desig	gn and Draft-	上島	号光浩 (常勤)・伊藤敦 (常	勤)	2	2	通年 2 時間	必修
ing)	 1	IAM I D _ TO HE D _ AM A I AMA	Meri I		I Nation - William 1.11. 3- 11	15.40			
授業の概		磨く。		の基本知識と、基本的な機				アリング・	センスを
授業の進				宁う。理解を深めるための					
到達目標		1. 機械製図の 2. 部品図およ 3. 2 次元 CAD	基本 び組 D を F	知識を理解することができ 立図の製図方法、規格表の 用いた設計手法を習得する	きる。 D読み方を習得するこ ことができる。	とがて	きる		
学校教育 関係	目標との	E (応用力・実)	践力)	総合的実践的技術者とし	て、専門知識を応用し	問題を	解決する	る能力を育	が成する。
				講義の内容	\$				
項目			目標	票					時間
ガイダン	ス (機械製	製図導入教育)	機材	成製図の目的を理解する					2
機械製図			1	図の一般規則について理解					2
		田識と利用		D システムの種類と特徴、		理解す	-る		2
機械製図	•	*	1	▶図形を正確に製図する (, ,				4
機械製図			1	成製図の寸法記入法を理解		>			2
機械製図	`	,	1	は的な図形の寸法を正確に	,	AD)			4
機械製図				成製図の表現方法を理解す					2
機械製図	`							$\frac{4}{4}$	
機械要素			1	ジの種類と特徴および図示 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					4
機械要素	の製図美	省 I	ホル	レトとナットを正確に製図	する (手書き,CAD)				4 = 1.00
機械設計	の甘琳		+ 2124						計 30
機械製図		辯 ∕	1	成試計の子順を埋解する 法公差とはめあいに関して	理解する				$\frac{2}{4}$
機械製図			1	k公差とはめいあいを含む		ろ (毛書	書き CAI))	6
機械要素	,	<i>'</i>		と軸継ぎ手の基礎知識と製		`	g C ,O111	<i>J</i>)	$\frac{\sigma}{2}$
機械要素			1	と軸継ぎ手について正確に					6
機械要素			1	車について基礎知識と製図		,			4
機械要素				車について正確に製図する					6
					, ,				計 30
									計 60
学業成績(法	の評価方	課題の製図、流場合には評価に	演習に大き	問題、夏休みの宿題、授業 きく影響する。なお、製図	への参加状況から決策 、演習問題、宿題と参	官する。 参加状治	課題は 兄の比率	提出期限 は 6 : 4	に遅れた
関連科目				学 I・3 次元 CAD 設計製図			•		0
教科書・				図(検定教科書)」 (実教出					
				評価 (ルーブリ	ック)				
到達目標		到達レベルの目安 (優		標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目録	岁(可)	未到達	レベルの目安	(不可)
1	機械製図分に理解	図の基本知識を 翼している。		機械製図の基本知識をほ ぼ理解している。	機械製図の基本知識 し理解している。	を少		図の基本タ 里解してレ	
2	部品図は書きで観	とフルに活用し、 および組立図を 製図することが	を手がで	規格表を一部活用して、部 品図および組立図を手書 きで製図することができ る。	書きで製図することきる。	がで	書きでいきない。		ことがで
3	2次元 CAD を用いた設計 2次元 CAD を用いた設計 2次元 CAD を用いて図面 2次元 CAD を用いて図面 手法を用いて図面を描くことができる。 手法を習得していきる。								

正学実験実習			十成 30 年長 生産ノベアムエチュース フラバス						
(Experiments and Practice of 動・野瀬薄樹 (非常動)・舷井 相談 4 時間 居田宮田でで言う。	科目名		担当教員	学年	単位	開講時数	種別		
安華の進め方 各クラス 4 班に分かれ、ローテーションにより、実習を行う。 1 年間ですべての実習を体験する。	工学実験実習 (Experiments and Engineering)	d Practice of	勤)・野瀬寿樹 (非常勤)・廣井徹麿 (非常勤)・松井	2	4	通年 4 時間	必修		
到達目標 1. 工作機械である旋盤、フライス盤の加工法の基本操作を習得でき、加工品の測定を行うことができる。	授業の概要) 実習を基礎に、機械系コースで必要な機械加工、材		び電気	に関する	実験実習		
できる。 2. NC プログラム作成の基礎を学び、複雑な輪郭切削の NC プログラムを作成することができる。 3. 各種材料試験及び金属の熱処理と硬さの関係を理解することができる。 4. 基本的な電気回路を理解することができる。 (E (応用力・実践力) 総合的実践的技術者として、専門知識を応用し問題を解決する能力を育成する。関係 講義の内容 項目 「自標 時間	授業の進め方	各クラス4班は	こ分かれ、ローテーションにより、実習を行う。 1 年	間です	べての	実習を体験	険する。		
関係	到達目標	できる。 2. NC プログラ 3. 各種材料試	ラム作成の基礎を学び、複雑な輪郭切削の NC プロ 験及び金属の熱処理と硬さの関係を理解することが	グラムを	を作成っ				
項目 目標 前期テーマ説明、安全作業、レポート指導 機械加工 I 旋盤作業 軸対称部品の外径、内径切削と計測 1: 機械加工 II マシニングセンタ等に使用されるNCプログラム作成基礎 1: 中間ガイダンス レポート指導 金属材料の材料試験と機械的性質を知る 1: 電気 基本的な回路製作と計測 1: 作業総括 レポート指導 1: がイダンス 後期テーマ説明、安全作業、レポート指導 1: がイダンス たまる 2 を値が 2 を値が 2 を値が 3 を値が 3 を値が 4 を値が 5 を値が 5 をの評価点の平均によって行う。正当な理由による 2 をの那価点の平均によって行う。正当な理由による 2 をの那価点の平均によって行う。正当な理由による 2 をの那価点の平均によって行う。正当な理由による 2 をの評価点の平均によって行う。正当な理由による 2 を 2 を 3 を 3 を 4 を 4 を 5 を 5 を 5 を 5 を 5 を 6 を 5 を 6 を 6 を 6	学校教育目標との 関係	E (応用力・実施	践力) 総合的実践的技術者として、専門知識を応用し	問題を角	解決する	る能力を育	成する。		
がイダンス			講義の内容						
機械加工 I	項目		目標				時間		
機械加工 II マシニングセンタ等に使用されるNCプログラム作成基礎 1: 中間ガイダンス	ガイダンス	ダンス 前期テーマ説明、安全作業、レポート指導							
中間ガイダンス レポート指導 金属材料の材料試験と機械的性質を知る 12 基本的な回路製作と計測 15 位業総括 と 世界の 15 を 15 を 16 を 17 を 18 を 18 を 18 を 19 を 19 を 19 を 19 を 19	機械加工 I	加工I 旋盤作業 軸対称部品の外径、内径切削と計測							
大学 大学 大学 大学 大学 大学 大学 大学	機械加工II		マシニングセンタ等に使用されるNCプログラム作成基礎 12						
電気 基本的な回路製作と計測 15 計 66 がイダンス 後期テーマ説明、安全作業、レポート指導 計 66 がイダンス 機械加工 I フライス盤による溝加工、ねじの切削と計測 15 セニングセンタによる複雑な輪郭切削 15 セニングセンタによる複雑な輪郭切削 15 セニングセンタによる複雑な輪郭切削 15 セニングセンタによる複雑な輪郭切削 15 セニングセンタによる複雑な輪郭切削 15 セニングセンタによる各種計測 15 セニングセンタによる各種計測 15 を軽析料 15 を軽析料 15 を軽析料 15 を軽析 15 を移動 15 をの評価点の平均によって行う。正当な理由による欠席の場合、補習を行う。 関連科目 基礎材料学・基礎加工学・機械設計製図 教科書・副読本 その他: 作業手順書はその都度、配布する。 1 冊のファイルにまとめるのがよい。配付資料にはメ	中間ガイダンス		レポート指導				4		
作業総括 レポート指導 計 66 がイダンス 後期テーマ説明、安全作業、レポート指導 機械加工 I フライス盤による溝加工、ねじの切削と計測 15 機械加工 II マシニングセンタによる複雑な輪郭切削 15 中間ガイダンス レポート指導 4 各種材料試験材料の熱処理と硬さ測定・組織観察実習 15 電気 オシロスコープによる各種計測 15 に業総括 レポート指導 15 に オシロスコープによる各種計測 15 に 計 16 に 計 12 に まる を で が まから で で で で で で で で で で で で で で で で で で で	材料		金属材料の材料試験と機械的性質を知る				12		
計60	電気		基本的な回路製作と計測				12		
ガイダンス 後期テーマ説明、安全作業、レポート指導 4 機械加工 II フライス盤による溝加工、ねじの切削と計測 15 中間ガイダンス レポート指導 4 材料 各種材料試験材料の熱処理と硬さ測定・組織観察実習 15 電気 オシロスコープによる各種計測 15 作業総括 レポート指導 15 学業成績の評価方法 レポート(50%) 出席状況(20%) 実習態度(30%) から決定する。評価は各分野の実習をとの評価点の平均によって行う。正当な理由による欠席の場合、補習を行う。 計120 関連科目 基礎材料学・基礎加工学・機械設計製図 教科書・副読本 その他: 作業手順書はその都度、配布する。1冊のファイルにまとめるのがよい。配付資料にはメ	作業総括		レポート指導				4		
機械加工 II マシニングセンタによる複雑な輪郭切削 15 マシニングセンタによる複雑な輪郭切削 15 マシニングセンタによる複雑な輪郭切削 15 マシニングセンタによる複雑な輪郭切削 15 を種材料試験材料の熱処理と硬さ測定・組織観察実習 15 電気 オシロスコープによる各種計測 15 で業総括 レポート指導 16 で業総括 上がポート指導 16 でまた 2 でまた 2 でまた 2 でまた 2 でまた 3 である。評価は各分野の実習で法 2 でまた 2 で評価点の平均によって行う。正当な理由による欠席の場合、補習を行う。 関連科目 基礎材料学・基礎加工学・機械設計製図 教科書・副読本 その他: 作業手順書はその都度、配布する。 1 冊のファイルにまとめるのがよい。配付資料にはメ							計 60		
機械加工 II マシニングセンタによる複雑な輪郭切削 15 中間ガイダンス レポート指導 各種材料試験材料の熱処理と硬さ測定・組織観察実習 15 電気 オシロスコープによる各種計測 15 作業総括 レポート指導 計60 計 120 学業成績の評価方 レポート(50%)出席状況(20%)実習態度(30%)から決定する。評価は各分野の実習ことの評価点の平均によって行う。正当な理由による欠席の場合、補習を行う。 関連科目 基礎材料学・基礎加工学・機械設計製図 教科書・副読本 その他: 作業手順書はその都度、配布する。 1 冊のファイルにまとめるのがよい。配付資料にはメ	ガイダンス		後期テーマ説明、安全作業、レポート指導				4		
中間ガイダンス	機械加工 I		フライス盤による溝加工、ねじの切削と計測				12		
材料	機械加工II		マシニングセンタによる複雑な輪郭切削				12		
電気 オシロスコープによる各種計測 15 作業総括 レポート指導 計 60 計 120 計	中間ガイダンス		レポート指導				4		
作業総括 レポート指導 計 60 計 120 学業成績の評価方 との評価点の平均によって行う。正当な理由による欠席の場合、補習を行う。 関連科目 基礎材料学・基礎加工学・機械設計製図 教科書・副読本 その他: 作業手順書はその都度、配布する。 1 冊のファイルにまとめるのがよい。配付資料にはメ	材料		各種材料試験材料の熱処理と硬さ測定・組織観察制	图			12		
計 60 計 120 学業成績の評価方 との評価点の平均によって行う。正当な理由による欠席の場合、補習を行う。 関連科目 基礎材料学・基礎加工学・機械設計製図 教科書・副読本 その他: 作業手順書はその都度、配布する。 1 冊のファイルにまとめるのがよい。配付資料にはメ	電気		オシロスコープによる各種計測				12		
計 120	作業総括		レポート指導				4		
学業成績の評価方 法 レポート (50%) 出席状況 (20%) 実習態度 (30%) から決定する。評価は各分野の実習る との評価点の平均によって行う。正当な理由による欠席の場合、補習を行う。 関連科目 基礎材料学・基礎加工学・機械設計製図 教科書・副読本 その他: 作業手順書はその都度、配布する。 1 冊のファイルにまとめるのがよい。配付資料にはメ							計 60		
法 との評価点の平均によって行う。正当な理由による欠席の場合、補習を行う。 関連科目 基礎材料学・基礎加工学・機械設計製図 教科書・副読本 その他: 作業手順書はその都度、配布する。 1 冊のファイルにまとめるのがよい。配付資料にはメ							計 120		
教科書・副読本 その他: 作業手順書はその都度、配布する。 1 冊のファイルにまとめるのがよい。配付資料にはメ	学業成績の評価方 法	レポート(5 (との評価点の ⁵	0 %)出席状況(2 0 %)実習態度(3 0 %)から河 平均によって行う。正当な理由による欠席の場合、	ま定する 補習を行	。 評価 _{テう。}	は各分野の	の実習ご		
	関連科目	基礎材料学・基	基礎加工学・機械設計製図						
	教科書・副読本			: めるの	がよい	。配付資	料にはメ		

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	旋盤・フライス盤を使って、寸法公差、表面性状などの入った図面から部品を正確に早く作ることができる。	て与えられた簡単な図面 から、部品を作ることが	旋盤・フライス盤において、各名称と機能を使って機械加工をすることができる。	旋盤・フライス盤を使って加工をすることができない。
2	えて、サブプログラムや	穴あけ加工や溝加工に加えて、サブプログラムや曲線加工の NC プログラムを作成することができる。	穴あけ加工や溝加工のような簡単な NC プログラムを作成することができる。	NCプログラムについて説 明できない。また NC プ ログラムを作成できない
3	金属材料の機械的性質を 求めることができ、鉄鋼 材料の組織と熱処理の関 係について概略を説明で きる。	説明できる。また金属組 織を研磨し、組織の区別	機械的性質の値を計算で 求められる。また金属材 料を研磨して組織観察で きる。	応力を計算できない。また金属を研磨することが 苦手で、組織用語がわか らない。
4	電源、抵抗、電流計、電圧 計を用いる簡単な電気回 路を自身で組み、電気的特 性の正しい測定ができる	簡単な直列、並列回路について電流、抵抗、電流の測定を正しく行える	電源、抵抗、電流計、電圧 計で構成される回路図の ある簡単な直列、並列回 路を正しく組むことがで きる	電源、抵抗、電流計、電圧 計で構成される回路図の ある簡単な直列、並列回 路を正しく組むことがで きない

科目名		担当教員		学年	単位	開講時数	種別			
海外インターンシ (Overseas Internsl		* 1	$\begin{bmatrix} 3 \cdot \\ 4 \cdot 5 \end{bmatrix}$							
授業の概要	る学生が、日系 3・4年次の夏	きる技術者の育成を目指して、 企業等の海外の事業所等にて 期休業中に実施されている「海れた学生が対象となる。	、平成 28 年度ものづ 企業見学等を行う。 [§] 毎外インターンシップ	でくり工 平成 26 アプロク	学科3年度よでラム」	年次に在第 り開始され に応募し、	磨してい れている 、選考の			
授業の進め方	明会、渡航説明	業探索、志望理由等を主とした 会、渡航前の事前研修を経て、 、工場見学、現地学生との交流 企業の現場での実習を行う。	8 月下旬より海外派	€遣。 瑪	脚の語	学スクー)	ルにおけ			
到達目標	2. 海外の職場で	星できる技術者の素養を身につ ごのコミニュケーションツール) アについての意識を持つこと	として、英語が活用	できる。	Þ					
学校教育目標との 関係	\	ーション力) 産業のグローバル ュニケーション力を備えた技行		におい	て自分	の考えをえ	表現でき			
		講義の内容								
項目		目標					時間			
海外インターンシ		海外インターンシップの説明会 容と応募申請、費用負担、選				の実施内	2			
海外インターンシ 成・面接	ップ申込書の作	1) 志望動機 (500 字程度)、2) せる。選考面接では、その内容 受入れ企業の選定理由を説明で	Fを明確に伝え、志望				2			
参加者説明会・渡	航前説明会	受入れ企業の概要、宿泊先、/ 加入等の説明を受け、渡航前の	ペスポート取得、通勤 D事前準備を行う。	や実習	時の服	装、保険	2			
事前研修		海外インターンシップ実施の流受入れ先企業・部署の概要、ヒの方法、現地で役立つ英会話、集中講義にて理解し、渡航前の時間以上で実施。	ごジネスマナー・異文 日本人技術者の海外記	:化コミ 赴任経賜	ュニケ 険談等に	ーション こついて、	14			
海外インターンシ		夏期休業中の8月下旬~9月口					60			
(1) 語学スクールで		現地語学スクールでの英語学 現地学生との交流会、受入企業 会等に参加し、現地でのコミニ 間以上で実施。	鬂事前訪問打合せ、現	地エン	ジニア	との交流				
(2) 受入企業での騒	識場見学・実習	受け入れ先の企業にて、ローカ プを行う。30 時間以上で実施。 まとめる。	カルスタッフの現場に なお、実施内容につ	入り、 ついては	インタ は、毎日	ーンシッ 、日報に				
海外インターンシ	ップ報告書	海外インターンシップ報告書を いように考慮のうえ完成させる	と作成する。内容には る。	:企業秘	密等を	記載しな	8			
海外インターンシ	ップ報告会	報告会に参加し、発表及び質疑	疑応答を行う。				2 計 90			
学業成績の評価方 法		インターンシップ派遣、報告 評価する。なお、学生の出退冀					合的にみ			
関連科目										
教科書・副読本	その他: 学校で ンターンシップ	用意する「海外インターンシップ たに従う。	ッププログラムのしま	3り」等	を活用	する。ま	た、各イ			
		評価(ルーブリン	ック)							
到達目標 理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)			
1										
2										
3										

応用物理	科目名		担当教員	学年	単位	開講時数	種別
2 時間 Physics 2 年次までに学習した物理学の諸概念、原理や法則をふまえていろいるな物理現象を数学的に理解する。					+		
する。 要求進め方 講義を中心として進める。理解を深めるために工業力学演習問題の解法も学習する。 到達目標	(Applied Physics))				2時間	
到達目標	授業の概要		習した物理学の諸概念, 原理や法則をふまえて	いろいろフ	な物理現	象を数学的	りに理解
2. 工業力学の問題に物理的思考方法を適用し、解答を導くことができる。 で検教育目標との	授業の進め方	講義を中心とし	て進める。理解を深めるために工業力学演習問	題の解法	も学習で	ける。	
学校教育目標との 関係 に	到達目標	1. 力学の物理5 2. 工業力学の問	見象を微分、積分、微分方程式などを用いてきる 問題に物理的思考方法を適用し、解答を導くこ。	らんと計算 とができる	するこ	とができる) o
関係 と 非確的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。	 学校教育目標との					野の基本的	内な技術
項目		\ /	に関する知識をもち、工学的諸問題にそれらを				3.2.4114
# 日の概要と授業の進め方を説明する。							
運動学と数学的準備							
質点の位置	· ·						2
質点の運動方程式 質点に力が働く場合の運動が程式を導く。				-			2
放物運動				表す。			4
摩擦力と抗力		,					2
対と運動について整理する。 1	放物運動		重力が働く場での運動について理解する。				2
粘性力と粘性抵抗	摩擦力と抗力		摩擦力がある場合の運動について理解する。				2
振動① 単振動の方程式を導きその解を求める。	演習		力と運動について整理する。				2
振動②	粘性力と粘性抵抗	Ĺ	粘性力が働く場合の運動について理解する。				2
物体の変形	振動①		単振動の方程式を導きその解を求める。				2
任事とエネルギー	振動②		減衰振動および強制振動の方程式を導く。				2
選動量保存の法則 選動量保存の法則について理解する。	物体の変形物体の弾性、たわみ、ねじれについて理解する。						2
計 30	仕事とエネルギー エネルギー保存の法則について理解する。					4	
回転運動と角運動量	運動量保存の法則	J	運動量保存の法則について理解する。				2
回転運動と角運動量							計 30
剛体のつり合い I 剛体のつりあい条件を導く。 2 間定軸まわりの剛体の回転 慣性モーメントと剛体の回転について理解する。 4 剛体の平面運動 開体の運動方程式を理解する。 2 演習 脚体運動について整理する。 2 波の性質 波の性質ついて理解する。 2 音波 音波の性質について理解する。 4 演習 波動・振動について整理する。 4 演習 波動・振動について整理する。 4 演習 波動・振動について整理する。 4 資業成績の評価方法 定期試験の得点を80%、授業への参加状況 (出欠状況、課題・授業態度)を20%として評価する。なぶ、成績不良者には追試を実施することがある。 計30 関連科目 物理 I・物理 II・物理 III・物理 III・物理 III・物理 III・物理学実験・工業力学教書・副読本 教科書・副読本 教科書:「詳解物理学」原 康夫 (東京教学社) 野価 (ループリック) 運動方程式を選解し、単純 分や微分方程式などを用いて計算することができる。 近畿方程式は理解しているが微分、積分を用いたで計算することができる。とま。 運動方程式は理解している計算法ができない。 2 工業力学の問題を物理学の知識で解け、解の意味 工業力学の問題に物理的の知識できない。 工業力学の問題を物理的の知識できない。 工業力学の問題を物理的の知識できない。	回転運動と角運動	量	力のモーメントと角運動量について理解する。				2
固定軸まわりの剛体の回転 慣性モーメントと剛体の回転について理解する。 2 1 1 2 2 2 2 2 2 2	剛体の運動の法則	j i	剛体の性質について理解する。				2
固定軸まわりの剛体の回転 慣性モーメントと剛体の回転について理解する。 2 1 1 2 2 2 2 2 2 2	剛体のつり合い	I	剛体のつりあい条件を導く。				2
 剛体の平面運動	固定軸まわりの剛	体の回転	慣性モーメントと剛体の回転について理解する	0			2
 	–		トラスについて理解する。				4
演習							$\frac{1}{2}$
波動方程式							9
渡動方程式							4
音波							2
波動・振動について整理する。							$\frac{2}{4}$
計 30 計 60 計 60							4
計 60 学業成績の評価方 定期試験の得点を80%、授業への参加状況(出欠状況、課題・授業態度)を20%として評価する。なお、成績不良者には追試を実施することがある。 関連科目 物理 I・物理 III・物理 III・物理学演習・物理学実験・工業力学 教科書・副読本 教科書:「詳解物理学」原 康夫(東京教学社) 評価 (ルーブリック) 理想的な到達レベルの目安(優) 標準的な到達レベルの目安(良) ぎりぎりの到達レベルの目安(可) 未到達レベルの目安(不可) 複雑な力学系を微分、積分や微分方程式などを用いてと計算することができる。 2 工業力学の問題を物理学			INDICAL CENTED SO				
学業成績の評価方法 定期試験の得点を80%、授業への参加状況(出欠状況、課題・授業態度)を20%として評価する。なお、成績不良者には追試を実施することがある。 関連科目 物理I・物理III・物理JII・物理学演習・物理学実験・工業力学 教科書・副読本 教科書:「詳解物理学」原康夫(東京教学社) 評価(ルーブリック) 到達目標 理想的な到達レベルの目安(優) 標準的な到達レベルの目安(良) ぎりぎりの到達レベルの目安(可) 未到達レベルの目安(不可) 1 複雑な力学系を微分、積分や微分方程式などを用いてと計算することができる。きる。 力学の物理現象を微分、積分、微分方程式などを用いて計算することができる。きる。 運動方程式を理解し、単純な基礎問題が解ける。 運動方程式は理解しているが微分、積分を用いたまができない。 2 工業力学の問題を物理学の知識を物理学の知識で解け、解の意味と表方法を適用し、解答と物理の相違を思考方法で分析できない。							
関連科目 物理 I・物理 II・物理 III・物理学演習・物理学実験・工業力学 教科書・副読本 教科書:「詳解物理学」原 康夫 (東京教学社) 可護目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) 1 複雑な力学系を微分、積分や微分方程式などを用いてと計算することができる。 力学の物理現象を微分、積分、微分方程式などを用いて計算することができる。で計算することができる。 運動方程式は理解しているが微分、積分を用いた計算法ができない。計算法ができない。計算法ができない。 2 工業力学の問題を物理学の知識で解け、解の意味 思考方法を適用し、解答 工業力学と物理の相違を 工業力学の問題を物理的 思考方法で分析できない。	 学業成績の評価方 法	定期試験の得点	『を80%、授業への参加状況(出欠状況、課題 『不良者には追試を実施することがある	・授業態	度)を2	0%とし	
教科書・副読本 教科書:「詳解物理学」原 康夫 (東京教学社) 評価 (ルーブリック)			***************************************	<u></u>			
評価 (ルーブリック)		1					
理想的な到達レベルの目安(優) 標準的な到達レベルの目安(良) ぎりぎりの到達レベルの目安(可) 未到達レベルの目安(不可) 複雑な力学系を微分、積 力学の物理現象を微分、積 分や微分方程式などを用いてと計算することができる。		教科書: 「	/				
1 複雑な力学系を微分、積 力学の物理現象を微分、積			評価 (ルーフリック)				
分や微分方程式などを用 分、微分方程式などを用い な基礎問題が解ける。 るが微分、積分を用いたいてと計算することができる。 さる。 工業力学の問題を物理学 工業力学の問題に物理的 工業力学と物理の相違を 工業力学の問題を物理的 の知識で解け、解の意味 思考方法を適用し、解答 把握し、物理学の知識を 思考方法で分析できない。	到達目標理想的な	3 (優 <u>)</u>	標準的な到達レベルの目安 (良) ぎりぎりの到達レベル	の目安 (可)	未到達	レベルの目安	(不可)
┃ ┃ の知識で解け、解の意味 思考方法を適用し、解答 把握し、物理学の知識を 思考方法で分析できない。	分や微いてと	分方程式などを、	用 分、 微分方程式などを用い な基礎問題が解り	さる。	るが微	分、積分を	を用いた┃
	の知識	で解け、解の意味	妹 思考方法を適用し、解答 把握し、物理学				

情報工学 (Information Processing)				平成 30 年度 生産システム	ユ字コース シフバス					
	科目名			担当教	員	学年	単位	開講時数	種別	
下ワークに関する知識、きらに機能的にプログラミングを作成する手法であるオブジェクト指向について学習する。			cessing)	齋藤保 (非常勤)		3	2		必修	
1. オブジェクト指向の考え方を理解できる	授業の概	既要	トワークに関す	「る知識,さらに機能的にプ						
2 基礎的なコンピュータアーキテクチャを理解できる 3 基礎的なネットワータの仕組みを理解できる 4 情報倫理を理解できる 4 情報倫理を理解できる 4 情報倫理を理解できる 4 情報倫理を理解できる 4 情報倫理を理解できる 4 情報倫理を理解できる 5 基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 5 講義の内容 5 講義の内容 6 表述シスト指向プログラミ 7 ブジェクト指向プログラミ 7 ブジェクト指向プログラミ 7 ブジェクト指向でログラミ 7 ブジェクト指向プログラミ 7 ブジェクト指向でログラミ 7 ブジェクト指向プログラミ 7 ブジェクト指向でログラミ 7 ブジェクト指向プログラミ 7 ブジェクト指向でログラミ 7 ブジェクト指向プログラミ 7 ブジェクト指向で見が表するオブジェクト指向によるプログラミング方法について理解する 7 ブジェクト指向プログラミ 7 ブジェクト指向で見が表するオブジェクト指向によるプログラミング方法について理解する 7 ブジェクト指向で見が表するオブジェクト指向によるプログラミング方法について理解する 7 ブジェクト指向プログラミングの指揮・ファールにファールに対して理解する 7 ブジェクト表が表述を使用できるが表述を使用できるが表述を使用できるが表述を使用である 7 で見が表述を使用である 7 で見が表述を使用できるが表述しているの情報となっ中で情報ともよります。 7 で見がまがまが表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が	授業の進	重め方	講義及び実習る	と行いながら授業を展開する	. また理解を深めるた	めの演 [.]	習課題も	ら行う。		
関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 i	到達目標		2. 基礎的なコ 3. 基礎的なネ	ンピュータアーキテクチャットワークの仕組みを理解	シ 理解できる					
1	学校教育 関係	育目標との	D (基礎力) 総 と基礎的な理論	論に関する知識をもち、工 学	的諸問題にそれらを応)専門と 用する[する分 能力を育	野の基本的 育成する。	的な技術	
1. ガイダンス 2. オブジェクト指向プログラミ				講義の阿]容					
2. オブジェクト指向プログラミングの活用 (1) オブジェクト指向プログラミングの活用 (1) オブジェクト指向プログラミングの活用 (1) 4. オブジェクト指向プログラミングの活用 (2) 実用的な問題に対するオブジェクト指向によるプログラミング方法について理解する 5. 計算機アーキテクチャ	項目								時間	
2グ 3. オブジェクト指向プログラミ カプセル化, 抽象化, 継承, 多様性の機能について理解する カプセル化, 抽象化, 継承, 多様性の機能について理解する カプセル化, 抽象化, 継承, 多様性の機能について理解する 20 4 オブジェクト指向プログラミング方法について理解する 20 5 計算機アーキテクチャ 計算機の歴史, ノイマン型計算機の基本構成および, 個々の機能について理解する 20 6. ソフトウェアの基礎 20 8の役割, アプリケーション, 様々なプログラミング言語の特徴について理解する 30 6 の役割, アプリケーション, 様々なプログラミング言語の特徴について理解する 4 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									2	
2 グの活用 (1) 4. オブジェクト指向プログラミ ア	ング			理解する					4	
	3. オフ ングの活	ブジェクト! 舌用 (1)	指向プログラミ	カプセル化,抽象化,継承,	多様性の機能についてヨ	里解する	Ś		6	
6. ソフトウェアの基礎	4. オフングの活	ブジェクト! 舌用 (2)	指向プログラミ		ジェクト指向によるプロ	コグラミ	ング方	法につい	20	
7. インターネットの概要 で理解する 8. インターネットにおける通信 ワーネットにおける通信 9. セキュリティと情報化社会 情報化社会の中で情報セキュリティの重要性等について理解する 学業成績の評価方 講義及び実習を中心とした授業を展開するため、評価は以下の通りとする. 定期試験 (6 割), 書館・レポート、授業態度、出席状況など (4 割) 関連科目 教科書: 「やさしい Java 第 5 版」高橋 麻奈 (ソフトバンククリエイティブ), その他: 必要に促じてプリントを配布する	5. 計算	算機アーキ	テクチャ	計算機の歴史, ノイマン型 理解する	計算機の基本構成および	び,個々	の機能	について	10	
8. インターネットにおける通信 TCP, HTTP,FTP などのプロトコルについて理解する 情報化社会の中で情報セキュリティの重要性等について理解する 情報化社会の中で情報セキュリティの重要性等について理解する 計 60 計 60 計 60 要業成績の評価方 講義及び実習を中心とした授業を展開するため、評価は以下の通りとする。定期試験(6割), ま 選 ・ レポート、授業態度、出席状況など(4割) 関連科目 教科書・副読本 教科書: 「やさしい Java 第 5 版」高橋 麻奈 (ソフトバンククリエイティブ)、その他: 必要に応じてプリントを配布する	6. ソフ	フトウェア	の基礎	OS の役割, アプリケーシ て理解する	ョン,様々なプログラミ	ング言	語の特	徴につい	4	
9. セキュリティと情報化社会 情報化社会の中で情報セキュリティの重要性等について理解する 計 6 計 6 学業成績の評価方 講義及び実習を中心とした授業を展開するため、評価は以下の通りとする。定期試験(6 割)、ま題・レポート、授業態度、出席状況など(4 割) 関連科目 教科書・副読本 教科書: 「やさしい Java 第 5 版」高橋 麻奈(ソフトバンククリエイティブ)、その他: 必要に成じてプリントを配布する 評価(ルーブリック)	7. イン	/ターネッ	トの概要	WAN,WWW,LAN などの	仕組みについて理解する	Ś			4	
計6	8. イン	/ターネッ	トにおける通信	. ,					4	
学業成績の評価方 講義及び実習を中心とした授業を展開するため、評価は以下の通りとする。定期試験(6 割)、該題・レポート、授業態度、出席状況など(4 割) 関連科目 教科書・副読本 教科書:「やさしい Java 第 5 版」高橋 麻奈 (ソフトバンククリエイティブ)、その他:必要に促じてプリントを配布する 到達目標 理想的な到達レベルの目安 (優) でプリントを配布する 評価 (ループリック) 1 オブジェクト指向を理解し、対ブジェクト指向を理解したプログラムを作成できる ログラムを作成できる ログラムを作成できる とっての特徴、基礎的なネットワークの特徴を理解し、基礎的なネットワークの仕組み、情報倫理も理解している コータの特徴を理解している カイマン型コンピュータの特徴を理解している ウト特徴を理解しているい特徴を理解しているいも理解している	9. セキ	Fユリティ	と情報化社会	情報化社会の中で情報セキ	ュリティの重要性等に、	ついてタ	里解する	,)	6	
関連科目 教科書・副読本 教科書: 「やさしい Java 第 5 版」高橋 麻奈 (ソフトバンククリエイティブ), その他: 必要に応じてプリントを配布する 麻奈 (ソフトバンククリエイティブ), その他: 必要に応じてプリントを配布する 到達目標 理想的な到達レベルの目安 (優) 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ざりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) 1 オブジェクト指向を理解し、おびラムを作成できる したプログラムを作成できる ログラムを作成できる さる プログラミングの基本的な文法を理解できているな文法を理解できているな文法を理解できているような文法を理解できているの特徴、基礎的なネットワークの仕組み、情報倫理も理解し、基礎的なネットワークの仕組みも理解しているも理解しているも理解しているも理解しているも理解しているも理解している。									計 60	
教科書:「やさしい Java 第 5 版」 高橋 麻奈 (ソフトバンククリエイティブ), その他: 必要に応じてプリントを配布する			講義及び実習を題・レポート,	を中心とした授業を展開する 授業態度,出席状況など	るため,評価は以下の通 (4割)	iりとす	る. 定	期試験(6	割), 課	
でアリントを配布する 評価 (ルーブリック) 評価 (ルーブリック) 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) オブジェクト指向を理解し、問題解決のためのプログラムを作成できる フログラムを作成できる フログラムを作成できる フログラムを作成できる フログラムを作成できる フログラムを作成できる フログラミングの基本的な文法を理解できているな文法を理解できている。 フィマン型コンピュータの特徴、基礎的なネットワークの仕組みも理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解していないも理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解している フィマン型コンピュータの特徴を理解していないも理解している フィマン型コンピュータの特徴を理解している フィママンピューターの特徴を関係する フィママンピューターの特徴を対象を対象を対象している フィママンピューターの特徴を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を	関連科目									
到達目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) 1 オブジェクト指向を理解し、問題解決のためのプログラムを作成できる オブジェクト指向を理解したプログラムを作成できる プログラミングの基本的な文法を理解できているな文法を理解できている。 プログラミングの基本的な文法を理解できている。 2 ノイマン型コンピュータの特徴、基礎的なネットワークの仕組み、情報倫理も理解している。 ノイマン型コンピュータの特徴を理解している。 ノイマン型コンピュータの特徴を理解している。 クト省の特徴を理解しているいます。 3 3	教科書・	・副読本		_	麻奈 (ソフトバンククリ	エイテ	゙ィブ),	その他:	必要に応	
1 オブジェクト指向を理解し、問題解決のためのプログラムを作成できる オブジェクト指向を理解し、プログラミングの基本的な文法を理解できているな文法を理解できているな文法を理解できている。 プログラミングの基本的な文法を理解できているな文法を理解できているな文法を理解できているな文法を理解できている。 2 ノイマン型コンピュータの特徴、基礎的なネットワークの仕組み、情報倫理も理解しているも理解している。 ノイマン型コンピュータの特徴を理解しているの特徴を理解しているいないなどの特徴を理解している。 フログラミングの基本的な文法を理解できているな文法を理解できているな文法を理解できている。		<u> </u>								
し、問題解決のためのプログラムを作成できる したプログラムを作成ではな文法を理解できているな文法を理解できているのグラムを作成できる な文法を理解できているいかにはないな文法を理解できているの特徴を理解しているの特徴を理解しているの特徴を理解しているの特徴を理解しているいるの特徴を理解している。	到達目標	理想的な	到達レベルの目安 (優	(良	ぎりぎりの到達レベルの目!	安 (可)	未到達	レベルの目安	(不可)	
の特徴、基礎的なネット ワークの仕組み、情報倫理 も理解している 3 の特徴を理解している の特徴を理解している の特徴を理解している の特徴を理解している	1	し、問題	夏解決のための	プしたプログラムを作成		いる	な文法	ラミングの を理解でき	の基本的 きていな	
		の特徴, ワークの	基礎的なネッ D仕組み, 情報倫	ト の特徴を理解し,基礎 理 なネットワークの仕組	的の特徴を理解してい					
4										
	4									

電気工学 (Electrical Engineering)			平成 30 年度 生産システム工学コース シラバス						
使果の概要	科目名		担当教員	学年	単位	開講時数	種別		
流に働く力・電磁誘導現象、静電現象・電界・コンデンサなどの静電気などについて講義する。後期は、交流の基地で交流の基本回路、なびに和田路について講義する。。後期は、安施の基本回路となびに和田路について講義する。。と、電流による磁外の発生、電磁誘導、および誘導起電力の理解し磁界中の電流に働く力が計算できる。こと、電流による磁外の発生、電磁誘導、および誘導起電力の理解し磁界中の電流に働く力が計算できる。ことで表さなインピーダンスと交流電力、力率が計算できる。正弦波交流の理解し、正弦波交流のペクトル表示およびインピーダンスと交流電力、力率が計算できる。正弦波交流の理解し、正弦波交流のペクトル表示およびインピーダンスと交流電力、力率が計算できる。正弦波交流の理解し、正弦波交流のペクトル表示と球はインピーダンスと交流電力、力率が計算できる。正弦波交流の理解し、正弦波交流のペクトル表示と球電車を開発を開発し、容量計算ができる。正弦波交流の理解し、正弦波交流のペクル表示と基礎の内容 「国目を開発を関係を関係を応用する能力を育成する。」 「電気の基礎知識を出たる知識をもち、工学的諸問題にそれらを応用する能力を育成する。」 「電気の基礎的知識を出て、数学・自然科学・自らの専門とする分野の基本的な技術を表して、数学・自然科学・自らの専門とする分野の基本的な技術を表して、数学・自然科学・自らの専門とする分野の基本的な技術を表して、数学・自然科学・自らの専門とする他力を育成する。 「電流・電圧の理解」に対して、変流が、電圧の理解、電流・電圧の理解。電流・電圧の理解。電流・電圧の理解、電流が作る磁界の理解。電流が作る磁界の理解。電流が作る磁界の理解。電流が作る磁界の理解。電流が作る磁界の理解。電流が作る磁界の理解。電磁誘導現象の理解。電磁誘導現象の理解。電流が作る磁界の理解。電流が作る磁界の理解。電流が作る磁界の理解を流が作る磁界の理解を流が作る磁界の理解を流が作る磁界の理解を流が作る磁界の理解を流が作る磁界の理解を流が作る磁界の理解を流が作る磁界の理解を流が作る磁界の理解を流が出た。これに、では、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは、な	電気工学 (Electrical Engine	eering)	深津拡也 (常勤)	3	1	前期 2 時間	必修		
到達目標 1. 電位、電圧、オームの法則、キルヒホッフの第 1 法則を理解し、直流回路の計算および電力と電力を言え。2. 電流による磁外の発生、電磁誘導、および誘導起電力の理解し磁界中の電流に働く力が計算できる。3. コンデンサと静電容量を理解し、容量計算ができる。正弦波交流の理解し、正弦波交流のペクトル表示およびインビーダンスと交流電力、力率が計算できる。 3. コンデンサと静電容量を理解し、容量計算ができる。正弦波交流の理解し、正弦波交流のペク学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術 関係 と基礎的な理論に関する知識をもち、工学の指問題にそれらを応用する能力を育成する。 講義の内容 目 目標 電気の基礎知識 電流・電圧の理解、直流と交流の違い、電圧計と電流計の使い方、電力の定義と周波数、 電流の記針の理解 電流と疑気 概式統括の配質 台成妖抗の計算の理解 電流の流れとオームの法則の理解、電圧降下の考え方、直流に固路網の計算 音流と経気 電流が作る磁界の理解 電流と磁気 電流が作る磁界の理解 電流と磁気 電流が作る磁界の理解 電流が作る磁界の理解 電磁誘導現象の理解 電電泳を破気ヒステリシス 電磁誘導現象の理解 静電現象の理解 静電現象の理解 静電現象の理解 整電保証を受流の基本回路 突流の基体の理解 交流の基本回路 交流の基本回路 突流の連絡の理解 交流の基本回路 突流の基本回路 突流の基本回路 突流の基本回路 突流の基本回路 突流の進れ回路 R-L-C 回路の理解 交流の基本回路 突流の声を即呼 交流の神解 交流の声を即呼 交流の声を回解 交流で声を呼呼を発音している。 日本に対している。 日本に対しないる。 日本に対している。 日本に対しないる。 日本に対している。 日本に対している。 日本に対しないる。 日本に対している。 日本に対しないる。 日本に対している。 日本に対している。 日本に対している。 日本に対している。 日本に対している。 日本に対している。 日本に対している。 日本に対している。 日本に対しないる。	授業の概要	流に働く力・電	『磁誘導現象、静電現象・電界・コンデンサなどの青	軍気な	スへの。 磁界の どにつ	応用力を見関係・磁製いて講義	身につけ 界中の電 する。後		
電力量の計算ができる。 2. 電流による磁界の発生、電磁誘導、および誘導起電力の理解し磁界中の電流に働く力が計算できる。 3. コンデンサと静電容量を理解し、容量計算ができる。正弦波交流の理解し、正弦波交流のペクトル表示およびインピーダンスと交流電力、力率が計算できる。 D (基礎力)総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 講義の内容 目標 電気の基礎知識 電流・電圧の理解、直流と交流の違い、電圧計と電流計の使い方、電力の定義と周波数、 抵抗の性質 直流回路網の計算 合成抵抗の計算の理解、電流とで流の違い。電圧計と電流計の使い方、電力の定義と周波数、 起抗率と導電率、抵抗の種類 合成抵抗の計算の理解。電流の流れとオームの法則の理解。電流が配路剤の計算・電流と磁気 電流が作る磁界の理解 確流と磁気 電流が作る磁界の理解 電電誘導現象 電磁誘導現象の理解 静電現象 コンデンサと静電容量 コンデンサと静電容量 コンデンサと静電容量 コンデンサと静電容量 コンデンサと静電容量 コンデンサと静電容量 コンデンサと静電容量 フンデンサと静電容量 アジニカンギンサと静電容量 コンデンサと静電容量の理解を交流の基礎のペクトル表示の変強の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を交流の基本回路の理解を次流電力 カネの理解 クオオードとトランジスタ グイオードの特性および LED の特性の理解、トランジスタの特製の理解 グイオードとトランジスタ グイオードの特性および LED の特性の理解、トランジスタの特製の理解 グスポードとトランジスタ グイオードの特性および LED の特性の理解、トランジスタの特製の理解 グスポードとトランジスタ グイオードの特性および LED の特性の理解、トランジスタの特製の理解 グスポードとトランジスタ グスオードの特性および LED の特性の理解、トランジスタの特製の理解 グスポードとトランジスタ グスオードの特性および LED の特性の理解、トランジスタの特製の理解 グスポートを対しています。 中間考査、期末3	授業の進め方	進め方教科書は	および配布プリントに従って授業を進める。理解を浴	深めるた	:めの演	習を適宜	実施する		
関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 講義の内容 項目 日標 電気の基礎知識 電流・電圧の理解、直流と交流の違い、電圧計と電流計の使い方、電力の 定義と周波数、	到達目標	電力量の計算が 2. 電流による きる。 3. コンデンサ	力量の計算ができる。 電流による磁界の発生、電磁誘導、および誘導起電力の理解し磁界中の電流に働く力が言 る。 コンデンサと静電容量を理解し、容量計算ができる。 正弦波交流の理解し、正弦波交流の						
国目	学校教育目標との 関係		倫に関する知識をもち、工学的諸問題にそれらを応				的な技術		
電気の基礎知識 電気・電圧の理解、直流と交流の違い、電圧計と電流計の使い方、電力の 定義と周波数、 抵抗の性質 直流回路網の計算 合成抵抗の計算の理解、電圧降下の考え方、 直流回路網の計算 電流と磁気 電流が作る磁界の理解 電磁誘導現象 静電現象 即電現象の理解 静電現象 コンデンサと静電容量 コンデンサと静電容量 コンデンサと静電容量 フンデンサと静電容量 交流の基礎 交流の基礎 交流の基礎 交流の基礎 交流の基本回路 整流作用と応用回路 R-L-C 回路 変流作用と応用回路 R-L-C 回路 交流電力 力率 ダイオードとトランジスタ 対イオードの特性および LED の特性の理解、トランジスタの特製の理解 が表えています。 と使い方。 対する は、電流と交流の違い、電圧計と電流計の使い方、電力の 電流と交流の選解 電流と交流の選別の理解 電流と交流の理解 で変にある。 変流のこれが、のである。 で変えるといる。									
電気抵抗の性質			1 171						
電気抵抗の性質 直流回路網の計算	電気の基礎知識			証流計の	使い方.	・電力の	2		
電流の流れとオームの法則の理解、電圧降下の考え方、 直流回路網の計算 消費電力と発生熱量の理解 電流と磁気 磁化曲線と磁気ヒステリシス 電磁誘導現象 静電現象の理解 静電現象の理解 力ンデンサと静電容量 つンデンサと静電容量 つンデンサと静電容量の理解 交流の基礎 交流の基礎 交流の基本回路 整流作用と応用回路 R-L-C回路 交流電力 力率 ダイオードとトランジスタ 学業成績の評価方 中間考査、期末考査(90%)および授業への取り組み姿勢、出席状況(10%)により評価する。法 関連科目	電気抵抗の性質		· - · · · · · · · · · · · · ·				1		
電力と電力量 電流と磁気 電流と磁気 磁化曲線と磁気ヒステリシス 電磁誘導現象 静電現象の理解 かっと前でを受流の基礎 交流の基礎 交流の基本回路 整流作用と応用回路 R-L-C 回路 安流電力 力率の理解 グ流電力 力率の理解 グネスオードとトランジスタ 学業成績の評価方 中間考査、期末考査(90%)および授業への取り組み姿勢、出席状況(10%)により評価する。法 関連科目	直流回路網の計算	•	合成抵抗の計算の理解.				1		
電力と電力量 電流と磁気 電流が作る磁界の理解 磁化曲線と磁気ヒステリシスの理解 電磁誘導現象 静電現象 コンデンサと静電容量 コンデンサと静電容量 コンデンサと静電容量の理解 交流の基礎 交流の基礎 交流の基本回路 整流作用と応用回路 R-L-C回路 交流電力 力率 ク交流電力 力率の理解 ダイオードとトランジスタ 学業成績の評価方 中間考査, 期末考査(90%)および授業への取り組み姿勢, 出席状況(10%)により評価する。法 関連科目			電流の流れとオームの法則の理解.電圧降下の考;	え方.			1		
電流と磁気 電流が作る磁界の理解 磁化曲線と磁気ヒステリシスの理解 電磁誘導現象 電磁誘導現象の理解 静電現象の理解 静電現象の理解 か電現象の理解 空流の基礎 交流の基礎の理解 交流の基本回路 交流の基本回路 整流作用と応用回路の理解 整流作用と応用回路 R-L-C 回路の理解 交流電力 カ率の理解 グイオードとトランジスタ ダイオードの特性および LED の特性の理解 トランジスタの特製の理解 がイオードとトランジスタ がオードの特性および LED の特性の理解 トランジスタの特製の理解 がイオードの特性および LED の特性の理解 トランジスタの特製の理解 がイオードの特性および LED の特性の理解 トランジスタの特製の理解 と使い方。 計3			直流回路網の計算				4		
磁化曲線と磁気ヒステリシス 磁化曲線と磁気ヒステリシスの理解 電磁誘導現象 静電現象の理解 力率 グ流の上でと下さいシスタ ダイオードとトランジスタ 学業成績の評価方 中間考査, 期末考査 (90 %) および授業への取り組み姿勢, 出席状況 (10 %) により評価する。法 関連科目	電力と電力量		消費電力と発生熱量の理解				1		
電磁誘導現象	電流と磁気		電流が作る磁界の理解				1		
静電現象	磁化曲線と磁気ヒ	ステリシス	磁化曲線と磁気ヒステリシスの理解				1		
コンデンサと静電容量	電磁誘導現象		電磁誘導現象の理解				1		
交流の基礎 交流の基礎の理解 交流の本中回路 交流の基本回路の理解 整流作用と応用回路 整流作用と応用回路の理解 R-L-C回路 R-L-C回路の理解 交流電力 交流電力の理解 力率 グネードの理解 ダイオードとトランジスタ ダイオードの特性および LED の特性の理解. トランジスタの特製の理解と使い方. 学業成績の評価方 中間考査、期末考査(90%)および授業への取り組み姿勢、出席状況(10%)により評価する。 関連科目	静電現象		静電現象の理解				1		
交流波のベクトル表示 交流波のベクトル表示の理解 交流の基本回路 交流の基本回路の理解 整流作用と応用回路 整流作用と応用回路の理解 R-L-C 回路 R-L-C 回路の理解 交流電力 交流電力の理解 力率 グイオードの特性および LED の特性の理解. トランジスタの特製の理解と使い方. 学業成績の評価方 中間考査, 期末考査(90%) および授業への取り組み姿勢, 出席状況(10%) により評価する。 関連科目	コンデンサと静電	容量	コンデンサと静電容量の理解				2		
交流の基本回路 交流の基本回路の理解 整流作用と応用回路 整流作用と応用回路の理解 R-L-C 回路 R-L-C 回路の理解 交流電力 交流電力の理解 力率 力率の理解 ダイオードの特性および LED の特性の理解. トランジスタの特製の理解と使い方. 計 30 学業成績の評価方法 中間考査、期末考査(90%)および授業への取り組み姿勢、出席状況(10%)により評価する。 関連科目	交流の基礎		交流の基礎の理解				2		
整流作用と応用回路 整流作用と応用回路の理解 R-L-C 回路 R-L-C 回路の理解 交流電力 交流電力の理解 力率 力率の理解 ダイオードの特性および LED の特性の理解. トランジスタの特製の理解と使い方. 計 30 学業成績の評価方法 中間考査、期末考査(90%)および授業への取り組み姿勢、出席状況(10%)により評価する。 関連科目 関連科目	交流波のベクトル	表示	交流波のベクトル表示の理解				2		
R-L-C 回路	交流の基本回路		交流の基本回路の理解				1		
交流電力 交流電力の理解 力率 力率の理解 ダイオードとトランジスタ ダイオードの特性および LED の特性の理解. トランジスタの特製の理解 と使い方. 学業成績の評価方法 中間考査, 期末考査(90%) および授業への取り組み姿勢, 出席状況(10%) により評価する。 関連科目		路					1		
カ率 カ率の理解 ダイオードとトランジスタ ダイオードの特性および LED の特性の理解. トランジスタの特製の理解 と使い方. 計 30 学業成績の評価方 中間考査, 期末考査 (90 %) および授業への取り組み姿勢, 出席状況 (10 %) により評価する。 関連科目	R-L-C 回路		R-L-C 回路の理解				2		
ダイオードとトランジスタ ダイオードの特性および LED の特性の理解. トランジスタの特製の理解 と使い方. 計 30 学業成績の評価方 中間考査, 期末考査 (90 %) および授業への取り組み姿勢, 出席状況 (10 %) により評価する。 関連科目	交流電力		· · · · · · · · · · · · · · · · · · ·				2		
と使い方. 計30 学業成績の評価方 中間考査, 期末考査 (90 %) および授業への取り組み姿勢, 出席状況 (10 %) により評価する。 法 関連科目							1		
学業成績の評価方 中間考査,期末考査(90 %)および授業への取り組み姿勢,出席状況(10 %)により評価する。 法 関連科目	ダイオードとトラ	と使い方.							
	学業成績の評価方 法	学業成績の評価方 中間考査、期末考査(90%)および授業への取り組み姿勢、出席状況(10%)により評価する。							
教科書・副読本 教科書: 「わかりやすい電気基礎」高橋 寛監修、増田 英二編著 (コロナ社)	関連科目								
	教科書・副読本	教科書: 「わか	いりやすい電気基礎」高橋 寛監修、増田 英二編	蒈 (コロ	ナ社)				

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	電位、電圧、オームの法則、 キルヒホッフの第1法則 を理解し、直流回路の計 算および電力と電力量の 応用問題ができる。		電位、電圧、オームの法則、 キルヒホッフの第1法則 を理解し、直流回路の計 算および電力と電力量の 説明ができる。	電位、電圧、オームの法則、 キルヒホッフの第1法則 を理解し、直流回路の計 算および電力と電力量の 説明ができない。
2	電磁誘導、および誘導起電力の応用問題ができる。 磁界中の電流に働く力の 応用問題ができる。	電磁誘導、および誘導起電力の基礎的な問題ができる。磁界中の電流に働く力の基礎的な問題ができる。	電磁誘導、および誘導起電力の説明ができる。磁 界中の電流に働く力の説明問題ができる。	電磁誘導、および誘導起電力の説明ができない。磁界中の電流に働く力の説明問題ができない。
3	静電容量の応用問題ができる。正弦波交流のベクトル表示およびインピーダンスと交流電力、力率の応用問題ができる。	静電容量の基礎的な問題ができる。 正弦波交流のベクトル表示およびインピーダンスと交流電力、力率の基礎的な問題ができる。	静電容量の説明ができる。 正弦波交流のベクトル表 示およびインピーダンス と交流電力、力率の説明 ができる。	静電容量の説明ができない。正弦波交流のベクトル表示およびインピーダンスと交流電力、力率の説明ができない。

科目名			平成 30 年度 生産システムコ 担当教員		学年	単位	開講時数	種別	
	<u> </u>		坂本誠 (常勤)	•	3	1	後期	必修	
(Materia			次个队(市到)		3	1	2時間	72.10	
授業の概		ミニウムやプラ ける広範囲な素	って、組成や各種熱処理におけ ラスチックなどの非金属材料に 素養を身につけることを目的と	ついての特性や機能的 する。	り特徴な	などを学	:び、材料; 	選択にお	
授業の進	め方	講義は教科書を	を中心とする。必要に応じて酢	布プリントやプロジ	ェクタ	を用いて	て理解を深	める。	
到達目標		2. 非鉄金属材料	行うための適切な材料選択や煮料の種類と特性を把握すること および複合材料の種類と特性を	こができる。					
学校教育 関係	目標との		合的実践的技術者として、数学 論に関する知識をもち、工学的					的な技術	
講義の内容									
項目			目標					時間	
鋼の熱処	L理		鋼の特性改善のための各種熱 性質との関連で理解	処理方法を、Fe-C 系	状態図	1、組織	と機械的	6	
構造用合金鋼の規格と用途と工具 構造用合金鋼および工具鋼の熱処理と各種合金鋼、工具鋼の JIS 規格とそ 材料 の用途の理解								2	
鉄鋼の防	方食とステ	ンレス鋼	鉄鋼の腐食と各種防食法。C と特性の理解	r 系及び Cr-Ni 系ステ	ンレス	鋼の組	織の違い	2	
高温にお	ける鉄鋼の	の性質と耐熱鋼	 高温酸化と高温における機械 類と特性の理解	的性質の変化と評価法	こならひ	に耐熱	材料の種	2	
鋼の表面	i 硬化	各種表面硬化法及び組織変化と機械的性質の関係						2	
鋳鉄の状	態図と組	織	鋳鉄の黒鉛形状、組織と機械	的性質の関係及び特性	生			2	
非鉄金属			アルミニウム合金の種類と特	性				3	
非鉄金属			チタニウム合金、マグネシウ	ム合金の種類と特性				2	
非鉄金属			ニッケル合金、銅合金の種類					3	
非金属材	†料と複合	材料	プラスチック、セラミックス の種類と特徴	の種類と特徴ならびに	成形法	および	複合材料	4	
新しい機	後械材料		新しい機械材料の種類と特徴	•				2	
>>/ >II/ > /-		I NII NII NII NII NII NII NII NII NII N)	計 30	
	の評価方	は補講と単位記	値する小テストと課題、および 忍定試験を課す。	授業への参加状況から	る評価で	する。な 	お、成績	个艮者に	
関連科目	-	基礎材料学・二	* * * * * * * * * * * * * * * * * * * *						
教科書・	副読本	教科書: 「基礎	整機械材料学」松澤和夫 (日本						
			評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	岁(可)	未到達	レベルの目安	(不可)	
1	構造用合金鋼、工具鋼の用 鉄鋼材料の組織と機械的 鉄鋼材料の各種熱処理、 鉄鋼材料の各種熱途よび、鉄鋼の腐食と各種 性質との関連を理解でき Fe-C 系状態図が理解でき Fe-C 系状態図が理解でき る。								
2	非鉄金属 途、特性 理解でき 択ができ	生ならびに特徴 き、適切な材料	用 き 途、特性ならびに特徴を 選 理解できる。	非鉄金属材料の種類 途を理解できる。			属材料の種 解できない		
3	種類、用 特徴を理	話および複合材料の 用途、特性ならびに 理解でき、適切な材 け微を理解できる。 非金属および複合材料の 種類、用途、特性ならびに 特徴を理解できる。 非金属および複合材料の 種類と用途を理解できる。 が。 ができる。							

科目名		担当教員	学年	単位	開講時数	種別
工業力学 (Engineering Med	chanics)	伊藤敦 (常勤)	3	2	通年 2 時間	必修
授業の概要	工業力学では ある。これらの 方を学ぶ。	4 力学(材料力学、流体力学、熱力学、機械力学)を)力学を学ぶ前に物理で学習した力学を基礎として,	学習す 機械工	る上で	基礎となる	る科目で めの考え
授業の進め方	講義および演習	習により講義内容を理解し、応用力を身に付ける。				
到達目標	1. 力の合成と 2. 静力学と動	分解,力やモーメントの釣合いが理解できる。 力学の基礎および応用について理解ができる。				
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				的な技術
		講義の内容				
項目		目標				時間
前期ガイダンス		年間および前期授業の目的と概要、進め方を説明で	する			2
工業力学の基礎 ()	序論)	力学の考え方と身近な応用例 工業系の力学を学ぶための準備 力学に表れる重要な物理量と単位				6
力と力のモーメン	, }	力の表し方 物体間に働く力 力のモーメント 力と力のモーメントのつりあい 様々な支持方法によるつりあい問題				6
中間試験		中間試験				2
分布した力		分布力と等価集中力 重力と重心 面に分布した力				6
運動学の基礎		点の平面運動 円運動 相対運動と拘束				6
前期授業のまとめ)	前期授業のまとめをする				2
後期ガイダンス		後期授業の目的と概要、進め方を説明する				2
質点の運動と運動	方程式	運動方程式 座標系と運動方程式 運動方程式の応用				6
運動量と仕事・エ	ニネルギー	運動量と力積 仕事・動力エネルギー 力学的エネルギー保存の法則				6
中間試験		中間試験				2
剛体の運動		剛体の運動の記述 慣性モーメントの計算 様々な剛体の運動				6
簡単な機械要素と	力学	機械における摩擦 簡単な機械要素 物体の拘束と反力 トラス、滑車				6
後期まとめ		後期授業のまとめをする				2 計 60
	定期試験 70 %	、課題提出状況 30 %として評価する。				
法 関連科目						
教科書・副読本		基礎ライブラリー 工業力学」 金原粲,他 (実教出版 シカ学」 金原粲,他 (実教出版),参考書: 「詳解工				
	その他:	7月丁」並亦来,他 (天秋山瓜), 多专官: "計胜上:	ベルザ」	八仕	纵付 (生	⊥ 丁 ℡/,

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	力の釣合いと分解,力やモーメントの釣合いに関する応用問題を解くことができる.	モーメントの釣合いを用	力やモーメントの釣合い	基礎的な力の合成と分解力やモーメントの釣合いを解くことができない.						
2	静力学と動力学に関する 応用問題を解くことがで きる.	静力学と動力学に関する 基礎的な応用問題を解く ことができる.	静力学と動力学の基礎的 な式を理解することがで きる.	静力学と動力学の基礎的な式を理解することができない。						

科目名			平成 30 年度 生産システムエ 担当教員		学年	単位	開講時数	種別
生産加工		ufacturing)	朝比奈奎一(非常勤)	•	3	1	前期2時間	必修
授業の棚		製品の生産にお	らいて中心となる切削加工およ 要を学び,それぞれの加工法の	び付加加工の一種でで 位置づけを理解する.	L ある溶 <u>持</u>	L 妾につい		さらに,
授業の進	 ≛め方							
到達目標	世	1. 切削加工に 2. 溶接につい 3. 研削加工の	ついて原理や加工機の構造を討 て原理や装置の構造を説明でき 原理および用いる砥石について	説明でき,加工条件やき,加工条件や で、加工条件や工具を で説明できる.	工具を選定で	選定で きる.	きる.	
学校教育 関係	育目標との		合的実践的技術者として、数学 論に関する知識をもち、工学的					的な技術
			講義の内容	3				
項目			目標					時間
1. ガイ	イダンス	講義概要の説明						2
2. ガフ	ス溶接		ガス溶接の原理と使用する装置や溶接棒について理解する.					
3. アー	-ク溶接		アーク溶接の原理と種類や溶接棒について理解する.					
4. 抵抗	亢溶接と溶	接の自動化	各種抵抗溶接について原理を マージアーク溶接やイナート	ガスアーク溶接等にて	ついて賞	芝ぶ.		2
	接部の欠陥		溶接部に生じる欠陥について	· · · · · · · · · · · · · · · · · · ·				2
	削加工の原	理	切削加工の切削機構について	•				2
7.被肖			被削性について理解し、切削	•			て学ぶ.	2
8. 工具			工具に用いられる材料につい	•		て学ぶ.		2
9. 旋盘			旋盤加工の種類や工具,加工					2
	フライス盤	加工	フライス盤加工の種類や工具					2
	ドール盤	Take I - Met. I - Met.	ボール盤における加工の種類	•				2
1 2. ガ り盤加コ		半削り盤・立削	形削り盤、平削り盤、立削り	盤の加工万法およひ工	.具につ	いて埋	解する.	2
	开削加工		研削加工について概要を理解	し、用いる砥石につい	って学る	» D		4
14.			これまで学んだ加工方法につ				-る.	2
·				,			•	計 30
学業成績 法	責の評価方	2回の定期試験	の得点から判定する。なお、タ	定期試験の成績不良者	には補	講と単位	立認定試験	食を課す。
関連科目	∃	基礎加工学・料	青密加工					
教科書・	・副読本	教科書: 「基礎	整 機械工作」基礎機械工作編	集委員会編 (産業図書	<u>‡)</u>			
		I	評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目野	로 (可)	未到達	レベルの目安	(不可)
1	加工機の加工条件がある。法に対して、対して、対して、対して、対して、対して、対して、対して、対して、対して、	Iについて原理 D構造を説明で活 件や工具を選を さらいて使理を でいてでで がについいて が明できる	明でき、加工機の構造を説明でき、加工機の構造を説明でき 加工機の構造を 選定で 加工条件や工具を選定で る ・種切削 きる !い分け					
2	機の構造条件やこ	ついて原理や加 造を説明でき,加 工具を選定でき 各種溶接につい け方を説明でき	工 機の構造を説明でき, 加工 る. 条件や工具を選定できる て	溶接について原理や 機の構造を説明でき			ついて原理 造を説明で	
3	いる砥を か説明 選定方法	工の原理および 石がどの様なもでき, さらにそ まおよび管理方 て説明できる	の いる砥石がどの様なもの の か説明できる	研削加工の原理につ 説明できる	いいて	研削加明できた。	工の原理 [、] ない	ついて説

		平成30年度 生産システム上学コース シフバス			,	
科目名		担当教員	学年	単位	開講時数	種別
管理システム工学 (Management S neering I)	ystems Engi-	松本正樹 (常勤)	3	2	通年 2 時間	必修
授業の概要	ムラ) 現象を的	昔は,目的を達成する手段の探索というシステム思⇒ 内確に把握しその原因を改善するという改善思考の同 √的アプローチの面からの管理システムについて論	5者の統	機場の3 活合によ	ム(ムリ ってなされ	・ムダ・ いる.こ
授業の進め方	教科書の記述の らないように	O内容を説明・理解させる上で、企業での実際例を』 Bめる	より多く	示し、	机上の理語	倫で終わ
到達目標	1. 科学的管理法・標準化概念という生産と経営の管理の基本概念を理解すること。 2. 企業の戦略における生産と経営の管理の位置づけを理解すること。 3. 製品に対する顧客の評価項目である品質、原価、納期を目標に、どのようにして合理的 管理を行うか理解すること。					りに生産
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術 関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						
		講義の内容				
項目		目標				時間
POM(生産と経営	の管理) 概論	ガイダンス・講義内容の説明				2
POM の対象となる	る生産システム	対象となる生産システムの理解				2
POM の発展と歴	史的事実	POM の歴史的背景の理解				
経営戦略		経営戦略の必要性とその実現するための管理技術の	の理解			4
POM における予	測	需要予測の目的と手法の理解				2
中間試験の解答・	解説	解答・解説				1
製品の設計と開発		製品の開発と設計の流れの理解				5
工程設計		工程計画と設計の流れの理解				
代替案に対する戦	略的割当て	資源の最適割り当ての手法の理解				4
生産能力計画と施	設立地計画	長期の生産能力計画と施設立地計画の理解				4
						計 30
ファシリティレイ	アウト	工場計画におけるレイアウト設計の理解				4
生産計画システム		中期生産計画と基準生産計画の理解				4
在庫計画		在庫の長所・短所および発注方式の理解				4
中間試験の解答・	解説	解答・解説				1
MRP		資材所要量計画とその計算方法の理解				5
スケジューリング	•	ショップフロアの計画と管理の理解				4
JIT		JIT 生産方式の理解				4
品質と TQM		品質とは何か、品質管理の考え方の理解				2
保全と信頼性		設備管理の理解				2
						計 30
						計 60
学業成績の評価方 法	年4回の定期	考査の成績と授業への参加状況によって評価する .				
関連科目	管理システム	工学 II				
教科書・副読本	教科書: 「PO	M 生産と経営の管理」吉本 一穂、伊呂原 隆 (日	本規格	協会)		

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	科学的管理法・標準化概念 が導入されてきた必然性 を理解し、経営戦略との 関連性を把握できること。		科学的管理法・標準化概 念の基本的概念を理解し ていること。	科学的管理法・標準化概 念の基本概念の理解が不 十分である。
2	企業の経営戦略を理解し、 それを実現させるための 管理技術の手法を適切に 適用できる。	企業の経営戦略を理解し、 それを実現させるための 管理技術の手法を理解し ている。	管理技術の手法を理解している。	管理技術の手法の基本的 考え方の理解が不十分で ある。
3	需要予測、線形計画法、スケジューリング、EOQ,MRPの数理的技法の目的を理解し、論理的なプロセスを経て正答を導いている。	法、スケジューリング、 EOQ,MRP の数理的技法 について、正答が導かれ	需要予測、線形計画法、スケジューリング、EOQ,MRPの数理的技法について、分析のプロセスの一部に論理的な不備があり、正答がきちんと導かれていない。	需要予測、線形計画法、スケジューリング、EOQ,MRPの数理的技法について、分析手法の基本的な考え方を誤認しており、学習効果が見られない。

	_	半成 30 年度 生産システムエ	-字コース シラハス				
科目名		担当教員		学年	単位	開講時数	種別
設計工学 I (Design Engineeri	ing I)	冷木宏昌 (常勤)		3	1	後期 2 時間	必修
授業の概要	製品生産を行う	上で重要な機械要素や材料強	度などの設計知識と記	计算手法	去を習得	身する.	
授業の進め方	講義を中心とし	て,理解を深めるための演習	問題を行う.				
到達目標	2. 代表的な機械	られる構造材料の特徴と用送要素の特徴と用送を説明でき 本的な設計計算ができる.	金を説明できる. きる.				
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術 関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。							りな技術
		講義の内容	<u> </u>				
項目		目標					時間
ガイダンス		Liet Series Liet Live Header					2
機械設計の基礎 材料の選定、材料力学の基礎、寸法公差・はめあい					4		
締結用機械要素 ねじ、ボルト・ナット、リベット継手、その他の締結要素 おいまり おいまり おいまり おいまり おいまり おいまり おいまり おいまり					6		
軸に関する機械要素 歯車 歯車 歯車, 歯車伝動						6	
^困 甲 圧力容器と管路	l .	^{圏単} ,圏単仏蛚 E力容器の強さ,管路の設計					6 4
その他の機械要素	l .	エカ谷命の強さ、自町の畝町 ばね、ブレーキ					2
(*) 图 *)	.	343, 7 P					計 30
学業成績の評価方 法	試験および講義	中の演習により評価する.詩	【験と演習の比率は 3:	: 2 とす	~る.		
関連科目	設計工学 II・3 き	欠元 CAD 設計製図 II					
教科書・副読本)設計 考え方・解き方」須藤 覧 (第 12 版) 」大西 清 (オー		, .			
		評価 (ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)
1 様々なれ 正しく3 明でき	構造材料の特性を 理解し,用途を訪 る	代表的な構造材料の特性 を正しく理解し,用途を 説明できる	代表的な構造材料の を概ね理解し,用途 明できる		性構造材料の特性を理解		
	な機械要素の特徴 を正しく説明でき	きる					
3 機械要調 計算が	素の基本的な設計 Eしくできる	計 資料を用いて機械要素の 基本的な設計計算が正し くできる	資料を用いて機械要 基本的な設計計算が できる	素の機ね		素の基本的 できない	的な設計

			平成 30 年度 生産システムエ字コ					
科目名			担当教員		学年	単位	開講時数	種別
3 次元 CAD i (3D-CAD b Drafting I)		型I Design and	鈴木宏昌 (常勤)・小坂利宏 (非常勤	助)	3	2	通年 2 時間	必修
授業の概要		機械の設計・顰を養う.	図の基本知識と3次元 CAD を利用	用した設計方法を	:学び、	エンジ	ニアリンク	ゲセンス
授業の進め方	ī	講義および理解	を深めるための問題演習や課題に	よる 3 次元 CAD) 実習を	:行う.		
到達目標		1. 3 次元 CAD 2. 3 次元 CAD	により図面の指示通りのモデルをで のモデルをアセンブリにより図面で	作成できる. の指示通りに組み	み立てる	らことか	ぶできる.	
学校教育目標 関係	との	E (応用力・実施	(表力)総合的実践的技術者として、東京	専門知識を応用し	問題を	解決する	る能力を育	成する。
			講義の内容					
項目			目標					時間
ガイダンス			授業の進め方について理解し、3 次 イル操作を理解する	元 CAD のインタ	'ーフェ	イスお	よびファ	2
3 次元 CAD	実習 [L	データムとスケッチ操作を理解す	る				4
3 次元 CAD	実習 2	2	押し出しツールによるモデリング)	方法を習得する				4
3 次元 CAD	実習:	3	回転ツールによるモデリング方法	を習得する				4
3 次元 CAD :			押し出しおよび回転ツールにより		J ⁱ			4
3 次元 CAD			穴ツールによるモデリング方法を					2
3次元 CAD 実習 6 ラウンド/面取り/ドラフト/シェルによるモデリング方法を習得する				2				
3 次元 CAD	3 次元 CAD 実習 7 パターン/ミラーによるモデリングを習得し、データム要素の作成方法を 習得する				成方法を	2		
3 次元 CAD			スイープ/ヘリカルスイープ/ブロ					2
3 次元 CAD	実習 🤋)	アセンブリの基本操作を理解し、	課題によりアセン	/ ブリを	:習得す	`る	4
								計 30
3 次元 CAD			課題によるモデリング演習 1					6
3 次元 CAD			課題によるモデリング演習 2					8
3 次元 CAD	実習 [13	課題によるモデリング演習3					14
まとめ								2
								計 30
W 111 15 1	·							計 60
学業成績の評 法	価方	課題 (70 %),	受業への参加状況 (10 %),試験 (20	0%) から決定す	る.			
関連科目		機械設計製図	3 次元 CAD 設計製図 II					
教科書・副説	市本	Createspace In	製図(検定教科書)」(実教出版),参 dependent Pub (Createspace Inde 配布したプリントは1冊のファイ	ependent Pub),	その化			
			評価 (ルーブリック))				
到達目標 理	想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良) ぎり	ぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
指		AD により図面) のモデルを正 ごきる	し 指示通りのモデルを概ね 指示	元 CAD により図 R通りのモデルを 作成できる	そこ		CAD により りのモデル	
L	く図面	AD のモデルを 面の指示通りに ることができる	狙 ね図面の指示通りに組み こそ	元 CAD のモデル こ図面の指示通 立てることがで	りに「	面の指着	CAD のモラ 示通りに約 ができない]み立て

科目名		担当教員	学年	単位	開講時数	種別
生産システム工学 (Experiments and Production Syste ing I)	d Practice of	松本正樹 (常勤)・鈴木宏昌 (常勤)・深津拡也 (常勤)・朝比奈奎一 (非常勤)・野瀬寿樹 (非常勤)・福 田博一 (非常勤)・廣井徹麿 (非常勤)	3	4	通年 4 時間	必修
授業の概要		工学コースで必要な機械工学に関する実験、電気・ 注産管理の実習を行う.	電子に	関する気	€験、CA	D/CA
授業の進め方	4班に分かれ、	ローテーションにより、実習を行う。1年間です	べての	実習を体	体験する.	
到達目標 1. 切削加工時の作用力を測定し、加工機械に必要な性能を理解する。また、はりの変形実験じて、加工機械に必要な剛性を理解する。 2. 具体的なモデルをCAD/CAMにより製作する。 3. 回路の電流、電圧からオームの法則およびキルヒホッフの第1法則を理解する。コンデン路の過渡現象を理解する。トランジスタ回路を理解する。 4. 生産工程の設計・管理方法を理解する。						
学校教育目標との E (応用力・実践力) 総合的実践的技術者として、専門知識を応用し問題を解決する能力を育成する。 関係						
		講義の内容				
項目		目標				時間
ガイダンス		前期テーマ説明、安全作業、レポート指導				4
機械加工実験		切削抵抗測定による切削機構の理解				12
CAD/CAM		2次元加工のCADデータ作成とMC加工				12
レポート指導		各分野のレポートの体裁、構成、図表作成				4
精密測定実験		各種寸法測定機の原理と使用方法を学ぶ				12
工程設計実験		コンベアラインを用いた工程設計				12
実習の総括		実習関連ビデオ視聴と意見発表				4 ≢1. co
ガイダンス		後期テーマ説明、安全作業、レポート指導				計60
CAD/CAM		る次元加工のCADデータ作成とMC加工				$\frac{4}{12}$
材料力学実験		各種はりのたわみ測定、座屈実験				12
ルポート指導		各分野のレポートの体裁、構成、図表作成				4
電気・電子実験		電気回路および電子回路の作成と実験				12
工程設計実験		コンベアラインを用いた工程設計				12
実習の総括		実習関連ビデオ視聴と意見発表				4
J C L		JCH DAVE - 7 14 DEVIS C 12/JUNE				計 60
						計 120
学業成績の評価方 法	レポート (5) 習ごとの評価。) %) 出席状況(20%)、実習態度(30%)、から 気の平均によって行う。正当な理由による欠席の場	う決定す	「る。評 習を行っ	価は、各	
_ <u>///</u> 関連科目		"公子"在2000年1月76年日18年日18年日18日 3月1日 20m	H / III	TI = 11	· •	
教科書・副読本	この他、数彩書					

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	加工機械に必要な性能・剛性を理解するために、実習で切削抵抗測定実験とはりの変形実験を検証・分析し、その結果からレポートで自分の考えが述べられている。	加工機械に必要な性能・剛性を理解するために、実習で切削抵抗測を検証を検証がある。その変形実験を検いが、そのに報告して報告して報告に論理性がやの考えに論理性がやる。	実習で切削抵抗測定実験とはりの変形実験を検証・分析し、その結果をレポートで報告しているが、分析のプロセスの一部自分の定的な不備があり、自分効果的な分析となっていない。	実習で切削抵抗測定実験 とはりの変形実験を検証・ 分析し、その結果をレポートで報告しているが、分析 手法の基本的な考え方を 誤っており、学習効果が 見られない。
2	2次元・3次元加工のCADデータを作成し実際にDデータを作成し実際にMC加工を行う実習を通じ、CAD/CAMと切削シミュレーションを理解し、その結果からレポートで自分の考えが述べられている。	2次元・3次元加工のC ADデータを行うM にMCM で が が が が に が と い と い と る り と の り と り と り と り と り と り と り と り と り	実習結果をレポートで報告しているが、CADモデルやMCの加工プログラムに不備があり、設計から製作の流れが完成していない。	告しているが、CADの
3	オフの法則、を理解となって、 キ理解となって、 おりまり、 はりののは、 はりののでは、 ないののでは、 ないのでは、 ないののでは、 ないののでは、 ないののでは、 ないののでは、 ないののでは、 ないののでは、 ないのでは、 ないののでは、 ないのでは、 はいのでは、 はいのではいのでは、 はいのでは、 はいのでは、 はいのではいのでは、 はいのでは、 はいのでは、 はいのでは、	求めることがののます。 ・現なでの過程を表している。 ・現なでののでののでののでののでののでののでののででののでででのでででいる。 ・のでののででのできるできるでいる。 ・のでできるできるできるできる。 ・のでできるできるできるできる。 ・のでできるできるできる。 ・のできるできるできる。 ・のできるできるできるできる。 ・のできるできるできるできる。 ・のできるできるできるできる。 ・のでのできるできるできるできる。 ・のできるできるできるできる。 ・のできるできるできるできる。 ・のでのできるできるできるできる。 ・のでのできるできるできるできる。 ・のでのできるできるできるできるできる。 ・のでのできるできるできるできる。 ・のでのできるできるできるできる。 ・のできるできるできるできるできる。 ・のでのできるできるできるできる。 ・のでのできるできるできるできるできる。 ・のでのできるできるできるできるできるできるできる。 ・のでできるできるできるできるできるできるできるできるできるできる。 ・のでできるできるできるできるできるできるできるできるできるできるできるできるできる	オームの法則, キルヒホッフの第1法則を理解の過る. コンデンサ回路の過渡現象を理解できる. トランジスタ回路のエミッタ接地回路を理解できる.	オームの法則、キルヒホッフの第1法則を理解できない。コンデンサ回路の過渡現象を理解できない。トランジスタ回路のエミッタ接地回路を理解でいい。
4	需要予測、線形計画法、スケジューリング、EOQ,MRPの数理的技法の目的を理解し、論理的なプロセスを経て正答を導いている。	需要予測、線形計画法、スケジューリング、EOQ,MRPの数理的技法について、正答が導かれているが、プロセスの論理性がやや不足している。	需要予測、線形計画法、スケジューリング、EOQ,MRPの数理的技法について、分析のプロセスの一部に論理的な不備があり、正答がきちんと導かれていない。	需要予測、線形計画法、スケジューリング、EOQ,MRPの数理的技法について、分析手法の基本的な考え方を誤認しており、学習効果が見られない。

	<u> </u>	成 30 年度 生産システムエ	学コース シフバス				
科目名		担当教員		学年	単位	開講時数	種別
ゼミナール (Seminar)	生	産システム工学コース教員	(常勤)	4	2	通年 2時間	必修
授業の概要	高専教育の総まと れ、卒業研究への	めとしての卒業研究に着手 心構えを養う。	するにあたり、その	予備段階	皆として	各研究室に	こ配属さ
授業の進め方	ガイダンスを行い がら、自分の研究	、学生を数人ごとの希望す テーマについて研究を進め	る研究室に配属する。 ていく準備を行う。	指導教	女員から	直接指導	を受けな
到達目標	1. 研究内容、研究 2. 卒業研究の心構	方法、実験方法、論文の作 うえや取り組み方法が理解で	=成方法、プレゼンテ ごきる	ーショ	ンなどフ	が理解でき	る
学校教育目標との 関係	A (学習力) 総合的]実践的技術者として、自主	E的・継続的に学習す	る能力	を育成	する。	
		講義の内容					
指導教員	テ・	-マ					
上島光浩	構	造デザインとエネルギー変	換に関するゼミ				
富永 一利	П.	ボット教材を用いた制御に	関するゼミ				
深津 拡也	精	密測定に関するゼミ					
坂本 誠	金	属の変形 (塑性加工) に関す	るゼミ				
松本 正樹	工	工場計画に関するゼミ					
伊藤 聡史	1	ライボロジーに関するゼミ					
三隅 雅彦	1	ンダストリアルデザインに	関するゼミ				
山下 正英	放	電加工に関するゼミ					
伊藤 敦	機	械力学と制御工学に関する	ゼミ				
鈴木 宏昌		体力学に関するゼミ 60 時間					
学業成績の評価方 法	 研究テーマに対す	る取り組み、ゼミナールへ	の参加状況から決定~	する。耳	又り組み	と参加状治	兄の比率
関連科目 割き士	卒業研究						
教科書・副読本		評価 (ルーブリ	w A)				
지수다 표원하신		`	,	t (=1)	+ 5114		(T=1)
	到達レベルの目安 (優) 容、研究方法、実験	標準的な到達レベルの目安(良) 研究内容、研究方法、実験	新がずりの到達レベルの目的 研究内容、研究方法、	` /		レベルの目安	` '
│ 方法、論	去、論文の作成方法、プ 方法、論文の作成方法、プ 方法、論文の作成方法、プ 験方法、論文の作成				成方法、		
	テーションなどを 応用できる。	を レゼンテーションなどが レゼンテーションなどの プレゼンテーション 理解できる。					
2 卒業研究 組み方 できる。		卒業研究の心構えや取り 組み方法が理解できる。	卒業研究の心構える 組み方法の基本的項 理解できる。	取り質目が	卒業研	 究の心構え 法の基本的 きない。	

科目名		担当教員		学年	単位	開講時数	種別
インターンシ		3—4300	李杰 (古巴北土 / 李		1		
(Internship)	('Y)	栗田勝実 (常勤)・富永一利 (第勤)・山口知子 (常勤)	予期)・田戸弘辛 (吊	4	2	集中	選択
授業の概要	以上、企業やだ たちの仕事を	色を持った実践的な「ものづく 大学・研究所などで「業務体験」 閲察・体験して、自らの能力向」 指導を行い、学生の企業選択・	」を行う。学校で学ん 上と、勉学・進路の打	しだ内容	ネを活用	し、現場の	の技術者
授業の進め方	説明会や企業	深索、志望理由作成、実習、報	告書作成・発表の順	で進める	る。		
到達目標	1. 技術者とし 2. 自身のキャ	ての自覚と、技術や業務を理解 リアについての意識を持つこと	できる ができる				
学校教育目標との 関係 B (コミュニケーション力) 総合的実践的技術者として、協働してものづくりに取り組んだ 社会で活躍したりするために、論理的に考え、適切に表現する能力を育成する。 C (人間性・社会性) 総合的実践的技術者として、産業界や地域社会、国際社会に貢献するた 豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。							
		講義の内容					
項目		目標					時間
インターンシ 特別区・企業	・大学等	インターンシップの説明会に 理解する。各インターンシップ	プ事業に応じて、数[/ップと 回、実別	手続き 色される	の流れを '。	2
	/ップ申込書の作成	インターンシップ申込書を完成		L 10			
・企業探索		掲示物や WEB サイトで企業を		する。			6
・面談		担当教員と面談し、アドバイン					
・志望理由	Huri T.)	志望理由を、教員の指導のも。 保険加入の説明を受け、理解					6
説明会 (保険	加へ) ⁄ップの諸注意	実習直前にインターンシップ	*	- 州)		学 た 本	$\frac{1}{2}$
1	ツノの舶任息		におりる任息を支り	、化饿	• 4)	一守を与	2
学生による企	業訪問・連絡	学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。					2
インターンシ	⁄ップ	実習先で、インターンシップを実施する。 5日(実働 30 時間)以上、実施する。					30
インターンシ	ップ報告書の作成	インターンシップ報告書を作品でいる。			を記載	しないよ	8
インターンシ	/ップ発表会	発表会に参加し、発表および	質疑を行う。				2
							計 60
学業成績の評 法	価方 受入れ先から 的に判断して	の報告と、学生の報告書および 評価を行う。	プレゼンテーション	等を担当	当教員、	コース代	表が総合
関連科目							
教科書・副説	法本 その他: 学校~ に従う。	で用意する「インターンシップァ	がイド」等を活用する	る。また	こ、各イ	ンターン	シップ先
		評価 (ルーブリ [、]	ック)				
到達目標 理	想的な到達レベルの目安 (個	優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)
1 技術·	術者としての自覚と、 や業務を理解できる	技 技術者としての技術開発 や業務を理解できる	技術者としての業務 解できる			としての[も理解でき	
の	身のキャリアについ 意識を持ち示すこと きる		自身のキャリアを示 とができる			キャリア <i>に</i> きてない	こついて

科目名			担当教員		学年	単位	開講時数	種別	
知的財産剂 (Intellecti		erty Law)			4 • 5	1		選択	
授業の概要	要		・として機能している知的財産権の概)中での知的財産の位置付け等、広い			、知的	財産を取	り巻く環	
授業の進	め方	講義を中心とで トフォーム (J-	¯るが、ミニワークや実習を通して、 PlatPat) の使い方など、知的財産に	特許明細書の読 に関する実践的な	み方、 授業を	書き方 :行う。	、特許情報	青報プラッ	
到達目標		1. 知的財産に 2. 知的財産に	関して、技術者として社会に出た時 関する知識を活用する術を修得する。	の求められる基礎。	楚的な	知識を理	里解する。		
学校教育目 関係	目標との		曵的技術教育を通じて、工学的知識 Ľ戦できる技術者を育成する。	・技術の基本を	備え新	[V)"	もの"の創	削造・開	
	'		講義の内容						
項目			目標					時間	
全体ガイ	ダンス・	履修指導	東京工学科目の授業内容の紹介と履 学全科目共通	遺修方法示し、履	修指導	を行う。	東京工	2	
第1日 ・ガイダ ・ミニワ	ンス	経田・吉川)	・授業全体の流れと評価基準の説明 ・なぜ今知的財産なのか(企業戦略 ・知的財産管理技能士検定とは	月 各との関係)				4	
第2日・特許法・実用新	の概要 案法の概		≪研究者として必要な法律の概要を ・特許法の制度概要 ・実用新案法の制度概要	と実践的に学ぶ》	>			4	
第3日・意匠法(・商標法(・ミニワ	の概要 の概要	吉川)	≪研究者として必要な法律の概要を ・意匠法の制度概要 ・商標法の制度概要	≿実践的に学ぶ≫	>			4	
第4日 ・著作権注 ・不正競・	第4日 (担当:吉川) 《研究者として必要な法律の概要を実践的に学ぶ》 ・著作権法の概要 ・不正競争防止法の概要 ・不正競争防止法の概要				4				
第5日 •実習1		経田・吉川)	≪研究者に必要な特許調査スキルを・特許調査の方法(IPC、キーワー・J-PlatPat 利用(基礎編)	と身に着ける≫				4	
第6日 ・実習2	(担当:約	柴田・吉川)	≪特許調査スキルを使って特定特書 ・J-PlatPat 利用(応用編) ・検索式の作り方	午を捜し出す≫				4	
第7日・実習3・まとめ	(担当:柴	経田・吉川)	≪研究者に必要な意匠調査・商標調・J-PlatPat 利用 (意匠編)・J-PlatPat 利用 (商標編)	周査の基礎を身に	:着ける	5≫		4	
			9 1 1001 00 13/13 (14) (AVAIDA					計 30	
学業成績の 法	の評価方	①授業への参加	『状況7割(小テスト実施), ②ミニ	-ワーク/実習3	割 で	評価する	5 。	<u> </u>	
関連科目									
教科書・	副読本	その他: 教科担	!当より指示する						
			評価 (ルーブリック)						
到達目標	理想的な	 到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりき	うの到達レベルの目安	(可)	未到達	レベルの目安	(不可)	
1	事業活動係を理解とができ	動と知的財産の 解し、説明する きる。	こ 係していることを理解で でき	財産権の用語を 、産業財産権の 説明できる。	全体	できてま	産権の用語 らず、特語 標の違い	午・実案・	
2	IPC やる 数を組み が立てら	キーワード等の み合わせて検索 られる。	式 味を理解し、いずれかを 許デ	ュアルを観なが <i>ら</i> ータベースの基 できる。	本操	マニュラデータグ	アルを見て ベースの <u>基</u> ない。	ても特許 基本操作	

科目名		担当教員	学年	単位	開講時数	種別
企業経営		324300	4 • 5	1	INDRIGHTS SOC	選択
(Business Manage	,					
授業の概要	授業の概要 エンジニアが仕事をする場でもある企業とはどういうところなのか、ゲームで会社の運営 擬似体験を通じで企業経営を学ぶ。					
授業の進め方	の進め方 企業経営に関する講義と企業経営を擬似体験するビジネスゲーム演習、企業の事例などを通 論と実践の両面から学んでいく。					
到達目標 1. 経営者の意思決定により、経営資源(人、もの、お金、情報)を運用して市場に製品を提売上・利益をあげるプロセス、ならびにエンジニアと企業や社会との関わりについて理解す 2. 自分たちが専門科目で学んだ知識を活かす場である企業というのは、どのようなところなの ビジネスとはどのようなものかを理解し、専門科目を学ぶための広い視野を育む。						提供し、 する。 なのか?
学校教育目標との 関係		践的技術教育を通じて、工学的知識・技術の基本を N戦できる技術者を育成する。	:備え新	しい"	もの"の創	創造・開
		講義の内容				
項目		目標				時間
全体ガイダンス・	履修指導	東京工学科目の授業内容の紹介と履修方法示し、履 旬、7月中旬に各1回を予定。東京工学全科目共		を行う	。6月中	2
1) 企業で仕事を ~ビジネスゲ	するとは? ーム演習 I ~	企業という組織でエンジニアが仕事をするとは、と 解する。	ごのよう	なこと	なのか理	4
2)企業と社会の 分析演習 I 及 成 I		CSR(企業の社会的責任)とエンジニアの関わり、 析手法などを理解する。	ゲーム(の理論、	CVP分	4
3) 企業を設立す ~ビジネスゲ	る ーム演習Ⅱ <i>~</i>	企業を設立するにあたり、どのようなことを考える キャッシュフローやゲーム理論の基礎を理解する。	る必要が	あるの	か、また	4
4) 企業を運営す ~ビジネスゲ	る ーム演習Ⅱ <i>~</i>	企業の経営資源(人、もの、お金、情報)を効率的性と意思決定の大切さを理解する。	りに運用	するこ	との重要	4
5)経営状況を確 ~ビジネスゲ	認する ーム演習Ⅱ <i>~</i>	他社との競争のなかで、売上・利益を増やしていく 重要なのか理解する。	にはど	のよう	なことが	4
6)企業経営・マ の理論と分析		企業経営やマーケティングに必要な市場分析手法な	ょどの基	礎を理	解する。	4
7) プレゼンテーション これまでの振り返りとプレゼンテーション、ビジネスゲームのレポート作 成を行い総括する。				4		
						計 30
学業成績の評価方 法	授業への参加、 習における 2 [演習への取り組み状況(40%)と2回のレポー 団の課題提出(20%)により評価を行う。	ト作成、	提出	(40%),	分析演
関連科目						
教科書・副読本	その他: 随時、	レジメを配布する。				

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	レポートI(ビジネスゲー ムIのレビュー、社会ー 献)について講義とと、 がら得られたこととおりの意見が書かれておる。 分の意見が書章量でわる。 があられる文られている。 分析演習I(CVP分析) について、演習の目やス に理解し論理的なプロセス を経て正答を導いている。	レポート I (ビジネスゲー ム I のレビュー、 大会ー自就) について講義やがら得られたことと、 の意見が書かれているが、 求められる文や習い、 でいる。分析)について、 でいる。 V P分析)について、 が導かれているが、や が導かれているが、や がなの論理性がやや している。	レポート I (ビジネスゲーム I の レビュー、社会章献)に書かれている文章がやや不十分であり、るが、十分に整理できていない。分析演習 I (CVP分析)についるの一次論理があり、であり、正答があり、ではない。	レポートI(ビジネスゲー ムIの レビュー、な全章量 献)に書かれている分子の 見かれている分子のであり、らい。 が不十分に述ざる。 見い。分析演習I(CVP 分析)について、分を が不的、学習効果が のはない。
2	レポート II (ビジネス経ート II (ビジネス経ート II (ビジネス経ー、 いて、 いて、 いて、 いて、 いた、 いた、 いた、 いた、 いた、 いた、 いた、 いた、 いた、 いた	の意見が書かれているが、 求められる文章量、あるいは説得力がやや不足している。分析演習Ⅱ(環 境分析)について、演習の 目的を理解して対象の調	レポート II (ビジネスゲーム II の レビュー、ス X 文 性	レポートII (ビジネスゲームIIの レビュー、経営章量念)に書かれている文章量が不十分であり、自分ので見まが不十分に述習II (現手を)に対析)について、分析に対策者があり、について、分析を誤らがあり、学習効果が見られない。

		平成 30 年度 生産システムエ	- 子コース クラバス				
科目名		担当教員		学年	単位	開講時数	種別
安全工学 (Safety Engineeri	ng)			4 • 5	1		選択
授業の概要	工学系の組織・ を生かした授業	作業環境における安全性の確 を行う。	保・向上に関して、そ	・の知識	もの学習 かんかん かいかい かいかい かいかい かいかい かいかい かいかい かいか	と自発的	アイデア
授業の進め方	受業の進め方 講義のほか、演習を重視した PBL (Project Based Learning) 方式を取り入れて、各回の講 を元に、チームに分かれて各回の課題の検討、討議および発表を踏まえて進める。						講義内容
到達目標	達目標 1. 技術者として安全性に関する基本的な知識を習得できる。 2. 技術者倫理を踏まえて安全確保の方策および主体的な行動規範を身につけることができる。						
学校教育目標との 関係		桟的技術教育を通じて、工学的 戦できる技術者を育成する。	的知識・技術の基本を	備え新	しい"	もの"の	創造・開
		講義の内容	\$				
項目		目標					時間
全体ガイダンス・		東京工学科目の授業内容の紹 旬、7月中旬に各1回を予定	介と履修方法示し、履 。東京工学全科目共通	修指導 重	を行う	。6月中	2
第1日:安全工学	の基礎	アクシデントやインシデント ための方策の基礎を概観する	の例題を含めて、安全 。	性向上	の必要	性とその	4
第2日:信頼性・		信頼性・安全性を高めるため					4
第3日:産業各分! 安全対策		産業現場における作業状況を 向上対策を学ぶ。					4
第4日:リスクと		安全へのアプローチとして、!					4
第5日: ヒューマ 安全性		ヒューマンエラーとその防止 策を学習する。					4
第6日:自然環境 織での安全対応		自然環境を保全し、社会生活 となる安全確保が重要である	・組織を安全にするた ことを学習する。	:め、そ	のライ	フライン	4
第7日:まとめ、	報告書作成	本科目の総括を行うと共に、 とめ報告書の作成を行う。	これまでの講義研修に	:関して	、総合	演習、ま	4
*******		V @d > n bYfullyn	40.0/ Q.H.H.M.M. 00	0/ -===	ᅣᄺᆠᅩᇰ		計 30
学業成績の評価方 法	①出席状况 30、	%、②チームワーク活動状況	40 % 、③提出食料 30	% で計	片価する	0	
関連科目							
教科書・副読本	その他: 特にな	し。(講義資料、報告課題、済	·	度配布	する。)		
		評価 (ルーブリ	, I				
	到達レベルの目安 (優)	` '	ぎりぎりの到達レベルの目安	(- /		レベルの目安	
する基 理解し	として安全性に 本的な知識を深 、これらを応用 ン設計などの応 る。	く する基本的な知識を習得 し できる。	技術者として安全性 する基本的な知識を できる。	理解	する基準できない 数不足に	として安全本い。またはことない。	戦を理解 、出席日
し、主	ができる。 技術者倫理を踏まえて安全確保の方策および主全確保の方策を深く理解し、主体的な行動規範を身につけることができる。 東京では、主体的な行動規範をある。 東京できない。 大術者倫理の意義と必要性を理解できる。 技術者倫理の意義と必要性を理解できる。 大術者倫理を踏まる。 技術者倫理を踏まる。 技術者倫理を踏まる。 大術者倫理を踏まる。 大術者倫理を描述る。 「本稿を描述る」 「本					はび主体 里解でき 席日数不	

科目名		担当教員		学年	単位	開講時数	種別
都市環境工学 (Urban Environm ing)	nent Engineer-			4 • 5	1		選択
授業の概要	都市の形成経緯 て、水環境、大 れる技術課題な	ないまえ、現在の都市環境につ 気環境、エネルギー事情、交通: とどについて学ぶ。	いいて学ぶ。今後のジンステム環境などの	都市環)諸課題	境設計(しと今後	に向けた訳 の方向性、	果題とし 期待さ
授業の進め方	討事項について	環境諸課題について、具体的事例 グループ討議を実施し、その結 対について自らの考えをクリア	果について発表させ	いて学 さる。各	習する一回の講	とともに、 義、討議	その検 • 発表を
到達目標	1. 人と産業技術 ンジニアに期待	が調和する暮らしやすい都市の される役割について理解できる	創成に向けて、都市 。	万環境の	問題意	識を明確は	にし、エ
学校教育目標との 関係	\	桟的技術教育を通じて、工学的知 戦できる技術者を育成する。	田識・技術の基本を	備え新	しい"	もの"の創	削造・開
		講義の内容					
項目		目標					時間
全体ガイダンス・	履修指導	東京工学科目の授業内容の紹介。 を行う。6月中旬、7月中旬に	と都市環境工学履修 各 1 回を予定。	方法を	示し、月	覆修指導	2
第1日 都市の形成		古代都市から近世都市への発展が現都市の抱える環境課題をさぐ		環境問題	夏を調査	分析し、	4
第2日 都市の水珠	環境	上下水道、雨水利用、積雪対策、 今後の水環境改善に関して学習、	、河川と洪水などオ 、討議する。	火環境 に	こついて	学習し、	4
第3日 都市の大気	示環境	大気を構成する空気の流れによる 気汚染など大気環境に関する課	る、温暖化現象、上 題とその対策に関し	層オゾ て学習	ン層の	変動、大する。	4
第4日 都市のエネ 事情とライフサイ	クル	都市を維持するためのエネルギーる。また都市生活においては、多物が出される。そのリサイクルを	くの資源が消費され	し、その	結果と	して廃棄	4
第5日都市交通と	: 道路事情	都市交通の変遷と近年の状況、 に、今後の動向を考える。	および今後の発展に	関して	学習す	るととも	4
第6日 未来都市と		都市環境アセスメントを通じ、都 未来都市構想を討議する。	都市発展と自然環境	維持と	の調和	を考えた	4
第7日総合演習は		本科目の総括を行うと共に、これ 実施し、まとめ報告書の作成を行	れまでの講義・討議 行う	に関し	ての総合	合演習を	4
書作成							計 30
学業成績の評価方 法	①出席状況 30 '	%、②チームワーク活動状況 40	%、③提出資料 30	% で評	′価する	0	
関連科目	その他: 特にな	し。(講義資料、報告課題、演習	習課題などはその都	度配布	する。)		
教科書・副読本	その他: 特にな	し。(講義資料、報告課題、演習	習課題などはその都	度配布	する。)		
		評価 (ルーブリッ	ク)				
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良) ぎ	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
暮らし [*] に 題意識 ジニア	業技術が調和す やすい都市の創り て、都市環境の を明確にし、エ に期待されるそ て深く理解できる	成 ンジニアに期待される役 暮 問 割について理解できる。 に ン 割	、と産業技術が調和 らしやすい都市の に向けた都市環境の 意識を理解できる。	問題()	に向けて 意識を明 ア に理解 は、出席	業技術が請けているない。 では、確さでもない。 では、できない。 できない。 と。 できない。 と。 でもない。 と。	竟の問題 いい いい いい いい いい いい いい いい にい いい にい いい にい いい にい いい にい いい にい いい にい いい にい いい にい いい にい に

科目名		担当教員	学年	単位	開講時数	種別
応用数学 I (Applied Mathem	atics I)	富永一利 (常勤)・大島佐知子 (非常勤)	4	3	通年 3 時間	必修
授業の概要	トル解析、フー	□学コースで学ぶ工学科目において、広く使われて□ -リエ変換、ラプラス変換)について解説し、実際の でいるかを述べる。	いる数学 D対象シ	対識 (⁄ ステム	微分方程 に対して、	式、ベク どのよ
授業の進め方		てフーリエ級数、ラプラス変換、微分方程式、、後其 め適宜、演習を行う。	月はベク	トル解	析を講義で	する。理
到達目標	2. ベクトル解	の基礎の理解ができる。 折の基礎の理解ができる。 数、ラプラス変換の基礎の理解ができる。				
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				的な技術
		講義の内容				
項目		目標				時間
微分方程式とは		微分方程式の基礎の理解				2
微分方程式と曲線	群および解	曲線群および解の理解				2
変数分離形微分方	程式	変数分離形微分方程式の解法				4
同次形微分方程式		同次形微分方程式の解法				2
線形微分方程式		線形微分方程式の解法				2
完全微分方程式		完全微分方程式の解法				2
微分方程式の応用		微分方程式の応用の理解				2
線形微分方程式・	微分演算子	線形微分方程式・微分演算子の理解				4
定数係数線形同次	微分方程式	定数係数線形同次微分方程式の解法				4
定数係数線形微分	方程式	定数係数線形微分方程式の解法				6
						計 30
ベクトル解析とは		ベクトルの基礎の理解				2
内積・外積		内積・外積の理解				4
ベクトルの微分		ベクトルの微分の理解				4
ベクトルの積分		ベクトルの積分の理解				4
スカラー場・勾配		スカラー場・勾配の理解				2
発散・回転		発散・回転の理解				4
空間曲線		空間曲線の理解				2
線積分・面積分		線積分・面積分の理解				4
発散定理		発散定理の理解				2
ストークスの定理		ストークスの定理の理解				2
						計 30
フーリエ級数とは		フーリエ級数の基礎の理解				4
フーリエ級数の性	質	フーリエ級数の性質の理解				6
偏微分方程式とフ	ーリエ級数	偏微分方程式とフーリエ級数の理解				4
ラプラス変換とは		ラプラス変換の基礎と性質の理解				4
ラプラス逆変換		ラプラス逆変換の理解				4
定係数微分方程式	の解法	定係数微分方程式の解法の理解				4
単位関数・デルタ	関数	単位関数・デルタ関数の理解				2
単位関数・デルタ	関数の応用	単位関数・デルタ関数の応用の理解				2
						計 30
						計 90
学業成績の評価方 法	演習・レポーポート提出を調	ト(30%)と定期試験(70%)により評価する。 果す場合がある。	なお、	成績不	良者には	
関連科目						
教科書・副読本	#1 *1 +	整解析学 改訂版」矢野健太郎、石原繁 (裳華房)				

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	微分方程式の応用問題が 解ける。	微分方程式の基本的な問 題が解ける。	微分方程式の基礎内容に ついて説明できる。	微分方程式の基礎内容に ついて説明できない。				
2	ベクトル解析の応用問題 が解ける。	ベクトル解析の基本的な 問題が解ける。	ベクトル解析の基礎内容 について説明できる。	ベクトル解析の基礎内容 について説明できない。				
3	フーリエ級数、ラプラス変 換の応用問題が解ける。	フーリエ級数、ラプラス 変換の基本的な問題が解 ける。	フーリエ級数、ラプラス 変換の基礎内容について 説明できる。	フーリエ級数、ラプラス 変換の基礎内容について 説明できない。				

	T	成 30 年度 生産システムエ	.学コース シフハス				
科目名		担当教員		学年	単位	開講時数	種別
電子工学 (Electronics)	深	津拡也 (常勤)		4	1	後期 2 時間	必修
授業の概要	マイコンやパソコ 習得する。	ンによる機械制御技術、ロ	ボット等の制御技術を	を理解す	- るため	の電子回	格技術を
授業の進め方	講義を中心とする 史を説明する。	が、理解度向上のために授	業の中で質問・演習を	を行う。	また、	電子工学の	の主な歴
到達目標	1. 電子工学の歴5 2. 受動部品、能動 3. ディジタル回路	已,専門用語が理解できる 前部品の構造・動作原理が理 各、コンピュータとのインタ	単解できる アーフェイス回路が理	解でき	る		
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						的な技術	
		講義の内容	}				
項目	目	標					時間
ガイダンス	ガ	イダンス					2
受動部品の基礎知	識 抵	抗、コイル、コンデンサの	特性と使用法の理解				2
能動部品の基礎知	識半	導体, ダイオード、トランシ	ジスタおよび FET の動	协作原理	見と使用	法の理解	6
オペアンプとオペ および演習	アンプ回路回路	ペアンプと種々のオペアン	プ回路の理解.dB と周	引波数特	特性の理	!解.	6
ディジタル回路の基礎 ディジタル素子とその特性の理解						2	
ディジタル IC の	基礎 T	ΓL、C-MOS IC の動作レ	レベルと論理動作の理	!解			4
ディジタル回路の	応用フ	リップフロップ、レジスタ	、カウンターの理解				2
コンピュータと機 フェイス 1	養械のインター モ	ータ制御、A/D・D/A コン	/バータの動作理解				4
コンピュータと機 フェイス 2	幾械のインター R.	A232C, GP-IB 等のデバイ	ス間通信の理解				2
							計 30
Walle Dick				- Dieta a	Z. I., 16 N		
学業成績の評価方 法	定期試験、参加状 3 とする。	況(出席、態度)により評	価する。なお、定期	試験と	参加状数	はの評価比	挙は7:
関連科目	電気工学						
教科書・副読本	教科書: 「配布プ	リント:副読本・メカトロ、	ニクスのための電子回	可路基礎	*」西堀	賢司 (ニ	ロナ社)
		評価 (ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)
	学の歴史、専門用語 問題が解ける。	電子工学の歴史、専門用語 の基本的な問題が解ける。	電子工学の歴史、専語の基礎内容につい 明できる。	て説	電子工作 語の基礎 明できた	学の歴史、 遊内容に ない。	専門用
造・動作	受動部品、能動部品の構 造・動作原理の応用問題 が解ける。				基礎内容		
ュータ	ディジタル回路、コンピ ディジタル回路、コンピ ディジタル回路、コンピ ディジタル回路、 ュータとのインターフェ ュータとのインターフェ ュータとのインターフェ ュータとのインタ イス回路の応用問題が解 イス回路の基本的な問題 イス回路の基礎内容につ イス回路の基礎内					ターフェ 内容につ	

科目名		担当教員	学年	単位	開講時数	種別	
材料力学 I (Mechanics of Ma	terials I)	廣井徹麿 (非常勤)	4	2	通年 2 時間	必修	
授業の概要	生産システムを構成する機械や構造物の設計,および製品に作用する力とその変形および砂測をできるための,必要な計算力と力学的なイメージを説明できる能力を習得することをする.						
授業の進め方	講義を中心とし、理解を深めるために演習を取り入れる。また、授業中にほぼ半数以上に遊試問を実施し、授業への集中度を高める。						
到達目標							
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応)				りな技術	
		講義の内容					
項目		目標				時間	
ガイダンスと(単 第1章 応力とひ	位と接頭語) ずみ	専門用語と単位の定義を言える 応力、ひずみ、ポアソン比を説明できる				2	
フックの法則		フックの法則を使って応力、ひずみを求めることな	ができる)		2	
機械的性質と許容	応力	材料試験から応力、ひずみを求め、安全率と許容履	芯力を訪	胡でき	る	2	
第2章 引張りと	圧縮	引張と圧縮の不静定問題の軸力を求めることができ	きる			4	
自重による応力と	熱応力	自重と熱による応力と変形を求めることができる				2	
骨組構造 トラスの軸力を求めることができる					2		
第3章 ねじり		軸に生じるせん断応力とねじれ角を求めることがで	できる			2	
第4章 真直ばり		反力と固定モーメントを求めることができる				2	
自由物体図		自由物体図を描き、せん断力と曲げモーメントの きる	正負を	求める。	ことがで	2	
SFD と BMD		せん断力図(SFD)と曲げモーメント図(BMD)	を描く	ことが	できる	4	
第5章 真直ばり	の応力	各種断面形状のはりに生じる応力を求めることがで	できる			4	
第6章 真直ばり	の変形	たわみの微分方程式の導出を理解し、片持ちばりの	の変形を	説明で	きる	2	
面積モーメント法		面積モーメント法によってたわみ角とたわみを求め 理解できる	ること	ができ	ることを	2	
第7章 不静定ば	り	不静定ばりを分解して変形条件から外力を求めるこ	ことが理	1解でき	る	4	
連続ばり		連続ばりを分解して変形条件から外力を求めること		-		4	
平等強さのはり		平等強さのはりの原理を理解し、板ばねとコイルは きる	だねのば	ね定数	を説明で	2	
第9章 モールの	応力円	単軸の引張りと圧縮および純粋せん断のモールの きる	応力円	を描く	ことがで	2	
組み合わせ応力		曲げとねじりの組み合わせ状態のモールの応力円を ん断応力を求めることができる	と描き、	主応力	と最大せ	2	
モールのひずみ円		平面ひずみ状態を理解し、モールのひずみ円を描く	くことカ	ぶできる	,	2	
ひずみゲージによ	る応力測定	ロゼットゲージを使った計測データから主応力を記	十算でき	る		2	
第 10 章 円筒と野	求	薄肉円筒と厚肉球の応力式の導出を理解し、応力を	と求める	ことか	できる	2	
第 12 章 柱の圧約	育 12 章 柱の圧縮 短柱の圧縮応力と長柱の座屈応力を計算できる				2		
応力集中と衝撃応力 応力集中係数を理解し、応力を求めることができる。また、高さゼロから の衝撃応力を求めることができる				2			
前期分のまとめ		応力とひずみの計算、ねじりと曲げの応力計算が BMD を描き、変形の様子を説明できる	できる。	また、	SFD と	2	
後期分のまとめ		不静定ばりの重ね合わせ、モールの応力円を説明で プ応力などを求めることができる	ぎきる。	座屈応	力、フー	2	
						計 60	

学業成績の評価方 法	定期試験と授業集中度で点数化する。授業集中度とはノート内容・口頭試問回答状況である。定期 試験点数 90 %、授業集中度 10 %で各定期試験ごとに評価する。前期評価を 45 %、後期評価を 55 %とし、後期を重視する。
関連科目	工業力学・3 次元 CAD 設計製図 II
教科書・副読本	教科書: 「ポイントを学ぶ材料力学」西村 尚編著 (丸善出版株式会社)

学業成績 法	りの評価方	定期試験と授業集 試験点数 90 %、打 %とし、後期を重	中度で点数化する。授業集 受業集中度 10 %で各定期試 視する。	中度とはノート内容・口頭 験ごとに評価する。前期評	試問回答状況である。定期 価を 45 %、後期評価を 55
関連科目	1	工業力学・3 次元	CAD 設計製図 II		
教科書	・副読本	教科書: 「ポイン	トを学ぶ材料力学」西村	尚編著 (丸善出版株式会社)	
			評価 (ルーブリ	ック)	
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	材料力等を使ったる	学のフックの法則 た応用問題を解け	材料力学のフックの法則 を使った基本問題を解け る	材料力学のフックの法則 を説明できる	材料力学のフックの法則 を説明できない
2	ねじり変 問題を角	変形における応用 翼ける	ねじり変形における基本 問題を解ける	ねじり変形における応力 とねじれ角を説明できる	ねじり変形における応力 とねじれ角を説明できな い
3		モーメント図を示	基本的なはりのせん断力 図と曲げモーメント図を 示すことができる		はりのせん断力と曲げ モーメントを説明できな い
4	はりのB 応用問題	曲げ変形における 夏を解ける	はりの曲げ変形における 基本問題を解ける	はりの曲げ変形における 応力とたわみを説明でき る	はりの曲げ変形における 応力とたわみを説明でき ない
5		- の座屈応力の式 た応用問題を解け	オイラーの座屈応力の式 を使った基本問題を解け る	オイラーの座屈応力を説 明できる	座屈変形を説明できない
6	組合せM の応力F きる	芯力状態のモール 円を描くことがで	引張、圧縮、ねじりのモールの応力円を描くことが できる	モールの応力円を説明で きる	モールの応力円の座標を 説明できない

		平成 30 年度 生産システムコ	-デュース シフハス				
科目名		担当教員		学年	単位	開講時数	種別
インダストリア (Industrial Desi		三隅雅彦 (常勤)		4	1	前期 2 時間	必修
授業の概要	拡張するもの~	アル・デザインと我々の生活は である。インダストリアル・デ D育成を目的とする。	密接な関係にあり、依 ザインを学習すること	使用者の こで、よ	生活を	より豊か 的な発想	に便利に と設計力
授業の進め方		っている工業製品 (実物、画像 チ絵を学習することで、人工物			、講義	形式で進	める。ス
到達目標 1. 工学とインダストリアル・デザインとの関係を理解できる 2. インダストリアル・デザインの現状を理解できる 3. 人工物を2次元の絵で捉えることができる							
学校教育目標との 関係	\ /	合的実践的技術者として、数4 倫に関する知識をもち、工学的					的な技術
		講義の内容	2				
項目		目標					時間
ガイダンス		ガイダンス/アンケート					2
工学とデザイン	の融合とは	デザインと工学の恊働/スケ	ッチ技法				2
デザインとは		デザインとアートの違い デザイン事例紹介/スケッチ デザインの歴史	技法				8
生活とデザイン		製品のデザイン Gマーク デザイン事例紹介/スケッチ	技法				8
デザインと製造	技術	素材と製造方法 デザイン事例紹介/スケッチ技法					4
デザインと障が	۲ /	ユニバーサルデザイン					2
デザインプロセ	ス	商品開発プロセス					2
まとめ							2 計 30
法	方 2 回の定期試験 とする。なお、	後の得点と授業への参加状況か 成績不良者にはレポート提出	ら決定する。定期試験 出を課する。	倹と参加	1状況の	評価比率	は4:1
関連科目							
教科書・副読本		げイン工学の世界」柘植綾夫 (セ社)・「あるボートデザイナー	の軌跡 2」 堀内浩太」			デザイナー	-の軌跡」
		評価 (ルーブリ	ック)				
到達目標 理想的	な到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	岁 (可)	未到達	レベルの目安	(不可)
┃ ┃ インと	ブストリアル・デ ニ工学の特徴を理 折しい創造活動が	解 インと工学が恊働する意	インダストリアル・ インの専門領域が理 きる	デザ	デザイ: 理解で?	ン領域(3 きない	分野) が
	と理解した上で新 ' の発想ができる	し デザインの歴史的な流れが理解できる	話題となった製品や イナを知っている	デザ	インダ. インと! ない	ストリア は何かが	ル・デザ 里解でき
3 寸法を の部品 描写で	と把握した上で複 品を一つの画面上 ごきる	数 立体物をあらゆる方向か に ら捉えて描写できる	下絵をなぞらなけれ 写できない	ば描	幾何形態	態が把握て	ごきない

		1	平成 30 年度 生産システム」		I		I	l .
科目名			担当教員		学年	単位	開講時数	種別
設計工学 (Design	ž II Engineeri	ng II)	小坂利宏 (非常勤)					必修
授業の概	要	プラスチック身 と基本的な考え	付出成形、金属プレス加工用金 こ方を習得する。	型の設計の基本を学び	バ、もの	づくり	のための	基礎知識
授業の進	態め方	プラスチック、 する。	金属製品を設計する際に必要	となる射出成型、プレ	/ ス金型	の基礎	知識につい	いて講義
到達目標	Ē	2. 射出成形金	おける金型知識の重要性につい 型の種類や構造、用語を習得で の種類や構造、用語を習得でき	できる				
学校教育 関係	「目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						的な技術	
			講義の内容	\$				
項目 目標							時間	
ガイダン	ノス							2
製品設計	と素形材	、金型技術	製品設計、素形材、金型技術	との関連の理解				2
金型とは	ţ		金型の種類と基本用語の習得	ı				2
金型材料	斗と加工		金型材料と加工に関する知識	の習得				2
射出成形金型設計基礎			射出成形金型の種類と構造、用語の習得 射出成形部品の基礎知識の習得					10
プレス金	2型の基本		プレス金型の種類と基本用語	の習得				4
プレス金	全型設計		工程設計と型構造の理解					6
まとめ								2
								計 30
学業成績 法	の評価方	2回の定期試験 とする。	の得点と授業への参加状況か	ら決定する。定期試験	きと参加	状況の	評価比率に	‡ 4 : 1
関連科目	1	基礎材料学・基 CAD 設計製図	基礎加工学・材料工学・生産加 II	工学・機械設計製図・	3 次元	CAD	設計製図 I	・3 次元
教科書·	副読本	その他: 教科書	夢を使用しない					
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目室	국 (可)	未到達	レベルの目安	(不可)
1	方法や金	見察してその成 金型の特徴を正 し説明すること	形 金型技術に関する基礎知 識や用語を理解し適切に が 用いることができる	金型で製作される製 それらの金型につい 本的な構造や特徴に て説明することがで	て基プ	種類や	製作される 金型の特 できない	る製品の 数につい
2	型での注 切な製品	シでの不具合や Ξ意点を理解し、 品形状を考える ミる	適 成形法についての種類や	射出成形金型の代表 種類や構造、用語に て説明することがで	ついり	射出成え種類やなってきない	形金型の作用語につい けい	代表的な いて説明
3	とができる							

科目名		担当教員		学年	単位	開講時数	種別
流体力学 (Fluid Dynamics)		鈴木宏昌 (常勤)		4	2	通年 2 時間	必修
授業の概要	様々な分野において利用されている流体の基本事項を把握し、流体の物理量の力学的な考 的知識や実験結果を導入して流体の運動を合理的に解明することを学ぶ。						察, 経験
授業の進め方	講義を中心とし、理解を深めるために例題および演習を行う.						
到達目標	1. 流体の物理特性や質量保存則,エネルギ保存則,運動量保存則の基礎式が理解できる2. 流路や物体周りの流体現象の特性が理解できる					解できる	
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基 関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する							りな技術
		講義の内容					
項目 目標							時間
ガイダンス							2
流体の物理的性質		単位系および流体の物理的性質の理解					4
流体静力学 I		圧力、マノメータ、壁面に及ぼす液体の力					6
流体静力学 II		浮力,相対的静止					4
流体運動の基礎 I		連続の式(質量保存則)					4
流体運動の基礎 []	1	ベルヌーイの定理(エネルギ保存則)					6
流体運動の基礎	Π	運動量の法則,渦運動					4
							計 30
流れとエネルギ損失I レイノルズ数、層流と乱流						4	
流れとエネルギ損		円管内の層流、乱流のせん断応力と円管内の乱流				6	
流れとエネルギ損		管摩擦,管路抵抗				4	
物体周りの流れⅠ	1	境界層、平板の摩擦抵抗				4	
物体周りの流れⅠ	1	円柱周りの流れと物体の抵抗、物体の揚力				4	
開きょの流れ	1	一様流,常流と斜流				2	
次元解析と相似則		次元解析、相似則				2	
ポテンシャル流れ	1	速度ポテンシャル,流れ関数,複素ポテンシャル				2	
粘性流体の運動方	住八	ナビエ・ストークス方程式					2 ≥4.20
							計 30
 学業成績の評価方 定期試験および講義中の演習により評価する.比率は定期試験 60 %,演習 40 % とする						/ 1. ナフ	計 60
子耒成績の評価力 定期武駛おより講義中の便首により評価する。 比率は定期武鞅 60 %, 便首 40 % とする 法						0 C 9 S.	
関連科目							
教科書・副読本	副読本 教科書: 「基礎と演習 水力学」細井豊 (東京電機大学出版局),参考書: 「流体の力学水性・完全流体力学の基礎」松尾一泰 (オーム社)・「JSME テキストシリーズ 流体力学」学会 (日本機械学会)						
		評価 (ルーブリ	ック)				
到達目標 理想的な	な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安						(不可)
存則, ユ 動量保 ^元	物理特性や質量(- ネルギ保存則,) 存則の基礎式が〕 解できる	運 存則,エネルギ保存則,運 存則,エネルギ保存則,運 存則,エネルギ係				ニネルギ保 存則の基礎	存則,運 🛮
	物体周りの流体3 性が正しく理解・		流路や物体周りの流 象の特性がそこそこ できる			物体周りの生が理解で	

科目名		担当教員		学年	単位	開講時数	種別
熱力学 (Thermodynamics	s)	島光浩 (常勤)		4	2	通年 2 時間	必修
授業の概要	熱エネルギを利用 の主な目的となっ する。	目して高効率で動力を発生され っている。本講義では、熱力	せる装置(熱機関)を 学の法則やエネルギ	理論的 変換等	Jに考察 の基礎I	することな	が熱力学
授業の進め方	身近に起きている 的な熱の現象に関	熱に関する現象を例に取りま 関する演習を多く行う。	あげて講義を進める。	また、	理解を	深めるため	めに実用
到達目標	1. 熱力学の法則 ³ 2. 完全ガスの状態	や熱機関の原理・サイクルに 態変化について理解し、その	ついて理解すること 計算ができる。	できる。	o		
学校教育目標との 関係		的実践的技術者として、数学 :関する知識をもち、工学的i					りな技術
		講義の内容					
項目		標					時間
1.ガイダンス	熱	力学の歴史と意義について理	里解する				2
2. 熱力学の基礎領	知識 熱	エネルギーの計算ができる					4
3. 熱力学第ゼロ注	去則熱	力学第ゼロ法則について理解	解する こうしゅう				2
4. 熱力学第一法則	則 仕	:事と熱, 内部エネルギについ	て理解する				6
5. 熱力学第二法則	則 カ	ルノーサイクルについて理解	解する こうしゅう				4
	エ	ントロピについて理解する					2
	エ	クセルギについて理解する					2
6. 完全気体の状態	態変化 完	全気体の状態式について理解	解する こうしゅう				2
	状	態変化が計算できる					6
7. 熱機関のサイク	クル 自	動車のエンジンサイクルを理	里解する				4
	ガ	、スタービンサイクルを理解で	する				2
	熱	機関のサイクル効率を計算で	できる				2
8. 水蒸気の性質	水	蒸気の性質を理解し、その記	†算ができる				2
	水	蒸気の状態量を計算ができる	á				2
9. 蒸気サイクル	蒸	気サイクルの原理・構造を理	里解する				2
	蒸	気サイクルの効率を計算でき	きる				2
10.冷凍・暖房の	のサイクル 冷	凍・暖房のサイクルを理解で	する				2
11.熱移動	熱	移動の基礎式を理解する					2
	熱	伝導の計算ができる					2
	対	流熱伝達の計算ができる					2
	熱	通過の計算ができる					2
	熱	交換器の計算ができる					2
	\$	く射熱伝達の計算ができる					2
							計 60
学業成績の評価方 法 	中間試験(40%))、レポート(20 %)、期末詞	式験(40 %)で評価? ────	する。			
関連科目							
教科書・副読本	教科書:「JSME	テキストシリーズ熱力学」F	日本機械学会 (丸善出	版株式	会社)		
		評価 (ルーブリ)	ック)				
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
1 熱力学の法則や熱機関の 原理・サイクルについて十 分に理解し、さらに実際の 熱ネツ機関サイクルの効 率について考察できる。 熱力学の法則や熱機関の 原理・サイクルについて 理解し、さらに基礎的な 熱機関サイクルの効率計 算ができる。			ナイクルに				
いて十分							

科目名 機械力学 (Dynamics of Mac 授業の概要	メカトロニクン	担当教員 伊藤敦 (常勤)	4	2	通年	必修
授業の概要	メカトロニクン 喜くなっている				2時間	化修
4	高くなっている。そこで機械振動の基礎知識も含めた力学法則の理解を高め、応用する力をつける。					
授業の進め方	講義項目ごとり 機械や物理現象	こ該当する力学の法則を説明し、あわせて例題を用い 象を多く取り入れた演習を繰り返し行う。	った解説	をおこ	なう。次に	こ身近な
到達目標	1. 運動方程式、慣性モーメントおよび不減衰自由振動の運動方程式と固有振動を理解し、これが計算できる。 2. 減衰自由振動のモデルを理解し、質量、ばね定数、減衰力の関係から振幅および周期が計算できる。 3. 減衰強制振動の運動方程式を理解し、加振力と機械の応答が計算できる。 4. 2自由度系の不減衰自由振動と強制振動の運動方程式を理解し、1次共振と2次共振を求めることができる。					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				りな技術
		講義の内容				
項目		目標				時間
ガイダンス						2
剛体の運動		慣性モーメントと平行軸の定理				2
,也!唐不。也!		剛体の回転運動(力とエネルギ)				4
1 自由度系の自由	版 動 (个减衰)	重りとばねから構成される系の運動方程式				4
		単振り子と物理振り子				4
		剛体系の等価質量 (2017年)				3
		等価ばね定数				$\frac{1}{4}$
		色々な系の固有振動数の求め方				4
		エネルギ法				4
前期演習	₩ 新.	前期習得内容の確認	4-			2
減衰1自由度系の	恢 期	重り、ばね、ダンパから構成される系の運動方程				2
┃ 不減衰1自由度系	のお生性利	減衰自由振動の応答				2
个概表 日田及东	シカ	不減衰強制振動の運動方程式 不減衰強制振動の応答				2
 減衰1自由度振動	の強制振動	小枫表短前振動の応告 減衰強制振動の運動方程式				4
	V/知刊100到	減衰強制振動の応答			ı	$\frac{2}{4}$
		振動伝達と防振				4
 不減衰2自由度系	の振動	運動方程式				$\frac{4}{3}$
1个贼农 2 自田及尔	∨ノ](大美)	固有振動数と固有振動モード				4
後期演習 後期習得内容の確認						3
及利其日						計 60
学業成績の評価方 4 回の定期試験の得点(90 %)と授業への取り組み姿勢および出席状況(10 %)を加味して決定法 する。						
関連科目						
教科書・副読本	教科書: 「基礎 繁 (コロナ社)	演習 機械振動学」岩田佳雄他 (数理工学社),参考	考書: 「 ⁷	機械力質	学(増補)	青木

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	慣性モーメント、自由振	慣性モーメント、自由振	慣性モーメント、自由振	慣性モーメント、自由振
	動の運動方程式の応用問	動の運動方程式の基本的	動の運動方程式の基礎内	動の運動方程式の基礎内
	題が解ける	な問題が解ける	容について説明できる	容について説明できない
2	減衰自由振動モデルの応 用問題が解ける	減衰自由振動モデルの基 本的な問題が解ける	減衰自由振動モデルの基 礎内容について説明でき る	減衰自由振動モデルの基 礎内容について説明でき ない
3	減衰強制振動の加振力と	減衰強制振動の加振力と	減衰強制振動の加振力と	減衰強制振動の加振力と
	機械応答の応用問題が解	機械応答の基本的な問題	機械応答の基基礎内容に	機械応答の基基礎内容に
	ける	が解ける	ついて説明できる	ついて説明できない
4	2自由度系の不減衰自由	2自由度系の不減衰自由	2自由度系の不減衰自由	2自由度系の不減衰自由
	振動と強制振動の応用問	振動と強制振動の基本的	振動と強制振動の基礎内	振動と強制振動の基礎内
	題が解ける	な問題が解ける	容について説明できる	容について説明できない

			平成 30 年度 生産システムエ	学コース ソフバス				
科目名			担当教員		学年	単位	開講時数	種別
3 次元 C (3D-CA) Drafting			鈴木宏昌 (常勤)・伊藤聡史 (常 常勤)	勤)・朝比奈奎一 (非	4	2	通年 2 時間	必修
授業の概	双要	機械の設計・製 を磨く。	製図の基本知識と3次元 CAD を	を利用した設計方法を	学び、	エンジ	ニアリン	グセンス
授業の進	態め方	講義と CAD・ 行う。	CAE の実習を行う。理解を深る	めるための問題演習や	き課題に	こよる C	AD · CA	E実習を
到達目標 1. 設計計算書を作成できる 2. 設計計算書を基に設計ができる								
学校教育 関係	目標との	E (応用力・実施	 裁力) 総合的実践的技術者として	て、専門知識を応用し	問題を	解決する	る能力を育	が成する。
			講義の内容					
項目			目標					時間
ガイダン	/ス							2
	、課題に行	計](設計の概要 详って設計書を	手巻ウインチ機構とその設計	方法を理解する				28
1. 設計仕様の読み方と機構の選定の理解 2. 関連法令、材料選定と強度、安全率の理解 3. 機械要素の設計法の理解 4. 組立設計、設計書の意味と記載事項の理解 5. 手巻ウインチ機構の設計書を作成								
								計 30
ガイダン	/ス							2
3 次元 C	AD 実習		3次元 CAD を用いた手巻ウイ	ンチ機構のモデリン	グ実習	ı		14
CAE 演	習		手巻きウインチ部品の CAE 弦	強度解析				2
2 次元 C	AD 実習		2次元 CAD を用いた手巻ウイ	ンチ機構の機械製図	の作成	!		12
								計 30
								計 60
学業成績 法	の評価方	課題および授業	巻への参加状況から決定する。	課題と参加状況の比	率は 4	:1とす	る。	
関連科目		3 次元 CAD 設	計製図 I・3 次元 CAD 設計製	図 III・機械設計製図				
教科書・	副読本	書)」(実教出席	きウインチの設計」機械設計存 反)・「機械設計法」三田 純義、 C CAD 設計製図 I] の配布テキ	朝比奈奎一、黒田	副読之	本: 「機 、山口	械製図(健二 (コ	検定教科 ロナ社),
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目野	マ (可)	未到達	レベルの目安	(不可)
1		計算書を正しく作成 設計計算書を概ね作成で 周囲の協力を得て設計計 設計計算書を作成						
2 設計計算書を基に正しく 設計計算書を基に概ね設 周囲の協力を得て設計計 設計計算 設計ができる 計ができる 算書を基に概ね設計がで 計ができ				周囲の協力を得て設 算書を基に概ね設計 きる	計計がで	設計計算計ができ	算書を基 <i>l</i> きない	こ概ね設

生産システム工学実験実習 I	-1-1	1	十成 30 平反 主座 クステムエチュース クラバス				
Experiments and Practice of Preduction Systems Engineer	科目名		担当教員	学年	単位	開講時数	種別
受業の進め方 各チーマに沿った実験および実習を通して、座学で学習した基礎知識を確実に習得する。 1)	(Experiments and	d Practice of	伊藤聡史 (常勤)・山下正英 (常勤)・根澤松雄 (非	4	4		必修
到達目標	授業の概要	生産システムコ	Ľ学コースで必要な機械4力学、制御工学、CAD/C	CAM に	関する	実験実習	を行う。
2. 動力学ンス制御の金融能が理解できる。	授業の進め方	各テーマに沿っ	った実験および実習を通して、座学で学習した基礎に	印識を確	催実に習	習得する。	
	到達目標	2. 動力学(振動など)について、測定および測定結果の理論的解釈ができる。 3. シーケンス制御の基礎が理解できる。 4. 光弾性応力解析の原理と画像測定法の流れを理解し、有限要素法によるシミュレーショ 比較検討ができる。 5. 熱移動や流れの現象と法則の理解ができる。					
国目	学校教育目標との 関係	E (応用力・実) 	,	問題を	解決する	る能力を育	「成する。
がイダンス 前期実験テーマの説明、実験およびレポートの事前指導を行う。 シーケンス制御について 有接点シーケンス回路の組み立て リレー・タイマー回路の応用 無伝導率の測定 自然対流熱伝達に関する実験 エンジン性能に関する実験 エンジン性能に関する実験 エンジン性能に関する実験 エンジン性能に関する実験 北野性応力解析法の原理と測定 画像測定におけるフィルタリングおよび2値化 有限要素法を用いた解析による実験値との比較検討 課題品の設計および製図 機械加工実践および製図 機械加工実践および製門 最上の設計まよび製図 機械加工実践および製作品検査 各学生に対して実験内容に関する試問を行うとともに、レポート内容について 助言する。 各テーマ毎に、前期実験内容の総括を行う。 がカデッの作用する現象のについて 片持はりの自由振動、強制振動とその測定 CAEによる数値実験 ラダー図の基礎 シーケンサによるブログラミング 機器制御への応用 強制対流熱伝達に関する実験 ペンチュリー管による流量測定 CAD/CAM について 3 次元自動加工の演習 5 条字ーマ毎に、後期実験内容の総括を行う。 計 12 学業成績の評価方 実験に対する取組み姿勢とレポート内容および口頭試問の結果から評価を行い、出席状況およびに関連科目			111211				
	項目						時間
有接点シーケンス回路の組み立て リレー・タイマー回路の応用 熱・流体実験 I	ガイダンス			前指導を	:行う。		4
自然対流熱伝達に関する実験 エンジン性能に関する実験 大弾性応力解析法の原理と測定 画像測定におけるフィルタリングおよび2値化 有限要素法を用いた解析による実験値との比較検討 課題品の設計および製図 機械加工実践 機械加工実践 大学に対して実験内容のに関する試問を行うとともに、レポート内容について助言する。 総括 各字生に対して実験内容の総括を行う。 がイダンス 後期実験テーマの説明、実験およびレポートの事前指導を行う。 動力学の作用する現象のについて 片持はりの自由振動、強制振動とその測定 CAEによる数値実験 制御機器実験 II ラゲー図の基礎 シーケンサによるプログラミング 機器制御への応用 熱・流体実験 II 強制対流熱伝達に関する実験 ベルヌーイの定理に関する実験 ベルターイの定理に関する実験 ベルターイの定理に関する実験 ベルターイの定理に関する実験 ベルチュリー管による流量測定 CAD/CAM について 3 次元自動加工の減習 3 次元自動加工の課題製作および総括 各学生に対して実験内容に関する試問を行うとともに、レポート内容について助言する。 総括 各学生に対して実験内容に関する試問を行うとともに、レポート内容について助言する。 総括 各字生に対して実験内容に関する試問を行うとともに、レポート内容について助言する。 総括 各字生に対して実験内容に関する試問を行う。 計12	制御機器実験I		シーケンス制御について 有接点シーケンス回路の組み立て リレー・タイマー回路の応用				12
画像測定におけるフィルタリングおよび2値化 有限要素法を用いた解析による実験値との比較検討 課題品の設計および製図 機械加工実践 機械加工実践 機械加工実践の内容に関する試問を行うとともに、レポート内容について助言する。 終括 各テーマ毎に、前期実験内容の総括を行う。 がイダンス 後期実験テーマの説明、実験およびレポートの事前指導を行う。 応用物理実験 助力学の作用する現象のについて 片持はりの自由振動、強制振動とその測定 CAEによる数値実験 ラグー図の基礎 ・フケンサによるプログラミング 機器制御への応用 強制対流熱伝達に関する実験 ベンチュリー管による流量測定 CAD/CAM について 3次元自動加工の演習 3次元自動加工の演習 3次元自動加工の演習 3次元自動加工の演習 3次元自動加工の演習 4を学生に対して実験内容の総括を行う。 とおしてよるに関する実験 インチュリー管による流量測定 となりともに、レポート内容について助言する。 を対して実験内容の総括を行う。 を対して実験内容の総括を行う。 を対して実験内容の総括を行う。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	熱・流体実験 I 熱伝導率の測定 自然対流熱伝達に関する実験					12	
機械加工実践 機械加工実践 機械加工実践 おび製作品検査 レポート指導 各学生に対して実験内容に関する試問を行うとともに、レポート内容について助言する。 格括 各テーマ毎に、前期実験内容の総括を行う。 がイダンス 後期実験テーマの説明、実験およびレポートの事前指導を行う。 助力学の作用する現象のについて 片持はりの自由振動、強制振動とその測定 CAE による数値実験	┃ ■ 像測定におけるフィルタリングおよび2値化				12		
総括	設計・製作実践		機械加工実践				12
がイダンス 後期実験テーマの説明、実験およびレポートの事前指導を行う。 動力学の作用する現象のについて 片持はりの自由振動、強制振動とその測定 CAE による数値実験 ラダー図の基礎 シーケンサによるプログラミング 機器制御への応用 強制対流熱伝達に関する実験 ベルヌーイの定理に関する実験 ベンチュリー管による流量測定 CAD/CAM について 3次元自動加工の誤習 3次元自動加工の課題製作および総括 各学生に対して実験内容に関する試問を行うとともに、レポート内容について助言する。 各テーマ毎に、後期実験内容の総括を行う。 計 12 学業成績の評価方 実験に対する取組み姿勢とレポート内容および口頭試問の結果から評価を行い、出席状況およびし法 ポート提出状況などを加味して総合的に評価する。ただし、評価の比率は4:1とする。 関連科目	レポート指導		いて助言する。	に、レ	ポート	内容につ	4
動力学の作用する現象のについて	総括						4
片持はりの自由振動、強制振動とその測定 CAE による数値実験	ガイダンス			前指導を	:行う。		4
制御機器実験	応用物理実験		片持はりの自由振動、強制振動とその測定				12
熱・流体実験 II 強制対流熱伝達に関する実験 ベルヌーイの定理に関する実験 ベルヌーイの定理に関する実験 ベルヌーイの定理に関する実験 ベンチュリー管による流量測定 3 次元自動加工の演習 3 次元自動加工の演習 3 次元自動加工の課題製作および総括 各学生に対して実験内容に関する試問を行うとともに、レポート内容について助言する。 各テーマ毎に、後期実験内容の総括を行う。 計 12学業成績の評価方 実験に対する取組み姿勢とレポート内容および口頭試問の結果から評価を行い、出席状況およびレポート提出状況などを加味して総合的に評価する。ただし、評価の比率は4:1とする。 関連科目	制御機器実験Ⅱ		シーケンサによるプログラミング				12
3 次元自動加工実習	熱・流体実験Ⅱ		強制対流熱伝達に関する実験 ベルヌーイの定理に関する実験				12
レポート指導 各学生に対して実験内容に関する試問を行うとともに、レポート内容について助言する。 総括 各テーマ毎に、後期実験内容の総括を行う。 計 12 学業成績の評価方 実験に対する取組み姿勢とレポート内容および口頭試問の結果から評価を行い、出席状況およびレポート提出状況などを加味して総合的に評価する。ただし、評価の比率は4:1とする。 関連科目	3 次元自動加工実習 CAD/CAM について 3 次元自動加工の演習				12		
計 12 学業成績の評価方 法 実験に対する取組み姿勢とレポート内容および口頭試問の結果から評価を行い、出席状況および はポート提出状況などを加味して総合的に評価する。ただし、評価の比率は4:1とする。 関連科目	レポート指導	レポート指導 各学生に対して実験内容に関する試問を行うとともに、レポート内容につ				内容につ	4
学業成績の評価方 実験に対する取組み姿勢とレポート内容および口頭試問の結果から評価を行い、出席状況およびレ 法 ポート提出状況などを加味して総合的に評価する。ただし、評価の比率は4:1とする。 関連科目	総括 各テーマ毎に、後期実験内容の総括を行う。						4 計 120
	学業成績の評価方 実験に対する取組み姿勢とレポート内容および口頭試問の結果から評価を行い、出席状況および						
教科書・副読本 その他: 配布プリント	関連科目						
	教科書・副読本	その他: 配布フ	プリント				

		 評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安(良)	・・・) ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	任意形状の三次元モデリングおよび自動加工機を 用いた加工ができ、さら に加工条件について得た い面粗度や精度に合わせ て選定することができる。	任意形状の三次元モデリングおよび自動加工機を 用いた加工ができ、さら に加工条件について説明 できる。	任意形状の三次元モデリングおよび自動加工機を 用いた加工ができる。	任意形状の三次元モデリングおよび自動加工機を 用いた加工ができない。
2	実際に生じる動力学的諸 問題について、評価手法 や得られる結果の予想が できる。	動的不釣合いや振動の基 礎理論に基づき、実験に より得られた測定結果を 正しく解釈できる。	動的不釣合いや振動の現 象を説明でき、基本的な 測定項目を挙げることが できる。	動的不釣合いや振動の現象を説明でき、基本的な 測定項目を挙げることが できない。
3	シーケンス制御について 深く理解し、応用的な回 路について、ラダー図の 作成、タイムチャートの作 成、回路の作成ができる。	図の作成、タイムチャート	シーケンス制御の基本的 な事項が理解でき、簡単 なラダー図の作成と回路 の作成ができる。	シーケンス制御の基本的 な事項が理解できない。
4	汎用有限要素法を用いた シミュレーションを行い、 実験との定性的な一致を 確認して、比較検討をす ることができる。	汎用有限要素法の簡単な 原理を理解でき、シミュ レーションによって材料 の応力、ひずみを解析す ることができる。	光弾性応力測定法やモアレ法の原理を理解でき、材料の応力、ひずみを測定することができる。	光弾性法やモアレ法を用いて、材料の応力、ひずみを測定することができない。
5	熱流体に関する実験を通 じて熱移動・流れに関する 現象と法則を理解し、さら に実験結果を深く考察で きる。	熱流体に関する実験を通じて熱移動・流れに関する 現象と法則を理解し、さら に実験結果を考察できる。	熱流体に関する実験を通じて、熱移動・流れに関する現象と法則を理解できる。	熱移動・流れに関する現象 と法則を理解できない。
6	実製品を例に挙げて製造・ 供給工程を正しく推測す ることができ、そこで必 要とされる要素技術を挙 げることができる。	設計仕様や加工工程を考慮した設計図面類が作成でき、正しい段取りで加工を行うことができる。	自身の構想に基づいた簡 単な製作物の加工図面の 作成と基本的な機械加工 ができる。	自身の構想に基づいた簡 単な製作物の加工図面の 作成と基本的な機械加工 ができない。

科目名			担当教員		学年	単位	開講時数	種別
工業英語 (Techni	Eal English	a)	藤田文 (非常勤)		4	1	前期 2時間	選択
授業の概		基礎的な英語力	」をつけ,目的に応じた文章を自力で 日ではなく,長く使える理屈を習得す		こうにな	:ること		する. そ
授業の過	重め方		記明ののち,例文を読み下す.毎回謝					
到達目標			・表現の特徴を理解し、英文を読みる		きる.			
学校教育 関係	育目標との		ーション力) 総合的実践的技術者と りするために、論理的に考え、適切				取り組んで	だり国際
			講義の内容					
項目			目標					時間
ガイダン	ノス		本授業の内容説明、授業ルールの確	認,現状把握の	の小テス	くト		2
品詞			名詞, 動詞, 形容詞, 副詞を明確に	区別する.				2
構文1			文型(S+V, S+V+C, S+V+O)を	習得する.				2
構文 2			文型 (S+V+O+O, S+V+O+C) を	を習得する.				2
助動詞			主要助動詞と助動詞相当表現の意味	と使い方を習行	导する.			2
前置詞			主要前置詞の意味と使い方を習得す	る.				2
試験の返却および解説 試験の返却および解説を行う. 成績を伝達し, 意義申し立ての機会を与える.					2			
関係代名詞 Who, whose, which, that, where, when, why の意味と使い方を習得する.					2			
動名詞			「動詞+ing」の意味と使い方を習得	身する.				2
to 不定	訶		「to + 動詞原形」の意味と使い方	を習得する.				2
過去分詞	司		受動態と過去分詞形による修飾を習	得する.				2
時制			「現在・過去」と「進行形・完了形	」とその組み食	合わせを	習得す	~る.	2
疑問文			疑問文の仕組みを習得する.					2
接続詞			各接続詞の意味と使い方を習得する	•				2
試験の違	区却および	解説	試験の返却および解説を行う.成績える.	責を伝達し, 意	義申し	立ての	機会を与	2
								計 30
学業成績 法	責の評価方	定期試験(5))%), 毎回の課題(50%)					
関連科目		科学英語 I・科	学英語 II					
教科書	・副読本		技術英語の基礎」高橋 晴雄 (森北出席)スティン・ギブソン (共著) (IBC /			る英語	1	リチャー
	評価 (ルーブリック)							
到達目標	理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎ	りの到達レベルの目5	岁 (可)	未到達	レベルの目安	(不可)
1 理工系の英語によく使われる文法・構文・表現の特徴を理解し、英文を正確に読みこなすことができる。 理工系の英語によく使われる文法・構文・表現の特徴を理解し、英文を当分以上読みこなすことができなきる。 理工系の英語によく使われる文法・構文・表現の特徴を理解し、英文を当分以上読みこなすことができなきる。 はを理解し、英文を当分は大きないできなきる。					表現の特 を読みこ			

	平成30年度 生産システム工学コース シラバス							
科目名			担当教員		学年	単位	開講時数	種別
新素材 (Advanced als)	d Engine	eering Materi-	春本高志 (非常勤)		4	1	前期 2 時間	選択
授業の概要	更	従来の素材と比て学ぶ。	比較して優れた機能や性質を有	する新素材について、	その特	持性、構	造、活用	去につい
授業の進め	か方	講義を中心とす	「る。毎回小テストを実施する	0 0				
到達目標		1. 新素材・新 材料選択ができ	材料についての理解を深め、様 きる。	幾械や製品を設計/製作	乍するゴ	立場から	適材適所	の素材・
学校教育目 関係	標との		合的実践的技術者として、数学 論に関する知識をもち、工学的					内な技術
			講義の内容	<u></u>				
項目	項目						時間	
ガイダンス	ス		講義概要,新素材概念の理解	1				2
合金	金 合金の概念と、ステンレス鋼、自動車用高張力鋼、磁性金属材料、生体金 属材料、アモルファス金属などについての理解						10	
半導体			電気伝導の概念と、半導体と オードなどについての理解	ドーピング、集積回路	8、太陽	湯電池 、	発光ダイ	6
炭素系新素	秦材		炭素系新素材である炭素繊維 チューブ、フラーレンなどに	Éとその複合材、グラ ついての理解	フェン	、カー	ボンナノ	4
ファインも	セラミッ	クス	ファインセラミックスの概念 ティングなどについての理解	と、誘電・圧電材料、	超伝導	体、機	能性コー	6
その他新素	素材		電池についての理解					2 計 30
学業成績σ 法	D評価方	毎回の小テスト	、(80%)と、参加状況(20%)) で評価する.				
関連科目		基礎材料学・林	材料工学・機械材料 I・物理 II	・化学 I・化学 II				
教科書・副	副読本	その他: プリン	小等					
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	マ (可)	未到達	レベルの目安	(不可)
新素材・新材料が持つ優れ た特性、及び、その特性が 発現する機構を説明でき る。更に、機械や製品を 設計/製作する立場から適 材適所の素材・材料選択が できる。								

			平成 30 年度 生産システムコ	<u>-</u> 学コース ソフハス				
科目名			担当教員	Į	学年	単位	開講時数	種別
自動車工 (Automo		neering)	古川純一 (非常勤)		4	1	後期 2時間	選択
授業の概	要	走る、曲がる、 いて学ぶ。	止まる。機械工学のすべての	要素が盛り込まれた約	念合工学	をとして	の自動車	L学につ
授業の進	め方	講義を中心とし	て、課題について調べ、講義	養中に発表する。発表	内容を	レポート	、として提	出する
到達目標		1. 自動車の構造 2. 自動車の持つ	造について理解を深める。 o社会問題について、周囲の/	人に、本質を啓蒙でき	るよう	にする。	,	
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な 関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						内な技術		
			講義の内容	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
項目			目標					時間
ガイダン	ス, 歴史		授業の進め方,勉強の仕方,	歴史的背景				2
動力伝達	装置		動力の伝達と遮断,減速装置					4
走行装置		1	車輪の整列,ハブ、リム、タ	イヤ				2
懸架装置			車軸懸架と独立懸架					2
舵取り装	-		かじとり機構					2
ブレーキ		1	ブレーキ装置					2
フレームとボデー フレームとボデー				2				
動力性能		1	原動機の性能					2
新しい原			ハイブリッド、電気自動車					2
走行抵抗		1	直線走行性能、動力性能,曲					2
電気・電		1	点火装置、自動車の電子制御					2
自動車と			環境問題					2
自動車と		1	総合工学としての自動車					2
自動車と	社会		自動車の持つ社会問題					2 ≢1. 20
 学業成績(法	の評価方	レポート(2回):40%,中間試験:30%,	期末試験:30 %の合	計点で	評価する	る。	計 30
関連科目								
教科書・	副読本	教科書: 「自動	車工学 2(検定教科書)」 (実	/				
			評価 (ルーブリ	ック)				
到達目標 理想的な到達レベルの目安 (優)			標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目別	분 (可)	未到達	レベルの目安	(不可)
1 動力伝達装置の構成を説 動力伝達装置の構成を説 自動車の基本的な構造を 自動車の基準 明でき、個々の構成要素 明でき、個々の要素の役 説明できる. 説明できないできる. 割を説明できる.				な構造を				
2 自動車の持つ社会問題に ついて説明でき,運転者 に課せられた社会的責任 を説明できる. 関できる. 日動車の持つ社会問題に ついて説明でき,気球規 模の環境破壊と自動車が どのように関わるかを説 明できる.				会問題に さい.				

平成 30 年度 生産システム工学コース シラバス								
科目名			担当教員	Į	学年	単位	開講時数	種別
ロボット (Robotic	、工学 cs Enginee	ering)	大野学 (常勤)		4	1	後期 2 時間	選択
授業の概	双要	本講義では、口識を習得し、さ	ロボットを開発するために必要 さらにロボットの運動解析、#	なメカニズム、センサ 御の基礎を理解する	ナ、アク ことを	チュエ目的とす	ータ等に ける。	関する知
授業の進	態め方	授業内容につい を学ぶことから	って説明し,例題や事例を通し 5,専門基礎科目の復習を行う	て理解を深める.また。	と, ロオ	ドット工	学という	复合分野
到達目標	E C	1. メカニズム、 2. ロボットの 3. ロボットの	センサ、アクチュエータの原 基本的な運動解析ができる。 制御系が理解できる。	京理が理解できる。				
学校教育 関係	育目標との		合的実践的技術者として、数 ² 命に関する知識をもち、工学的					的な技術
			講義の内容	\$				
項目			目標					時間
ロボット	、工学の歴	史・創造	ロボット工学の概要、歴史を	理解する。				2
ロボット	、工学の基	礎	ロボット工学の定義とシステ	ム工学を理解する。				2
アクチュ	ムエータ		ロボット工学で扱う各種アク	チュエータの種類と選	選定を理	里解する	0 0	6
中間試験	食 まとめ	• 解説						2
センサ			ロボット工学で扱う各種セン	サの種類と選定を理解	解する。			6
機構・重	力学		ロボットのメカニズムを理解	し、機構や運動学を拡	及簡単に	に紹介す	-る。	6
制御の基	基礎		センサによる計測・アクチュ の基礎を紹介する。	エータによる駆動、選	動学に	基づい	た制御方	4
期末試験	食 まとめ	・解説						2 計 30
学業成績 法	りでいます。	定期試験 90 %	、演習・課題5%、授業への参	参加状況(出席状況、 <u></u>	授業態	度) 5%	により評	価する。
関連科目	1	メカトロニクス	ス・センサ工学・機械システム	△制御 I・機械システム	ム制御 I	I・シス	テム制御	工学
教科書·	・副読本	教科書: 「ロオ	ジット入門」渡辺 嘉二郎、小	(保 善史 (オーム社)				
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目録	岁(可)	未到達	レベルの目安	(不可)
1 メカニズム、センサ、アク チュエータの原理の応用 問題が解ける。					基礎きる。	クチュ、	ズム、セン エータの原 について記	原理の基
2 ロボットの基本的な運動 ロボットの基本的な運動 ロボットの基本的な運動 ロボットの 解析の応用問題が解ける。解析の基本的な問題が解 解析の基礎内容について 解析の基礎 ける。 説明できる。 説明できる				基礎内容は				
3	ロボットの制御系の応用 問題が解ける。 ロボットの制御系の基本 的な問題が解ける。 ロボットの制御系の基本 内容について説明できる。 ロボットの制御系の基礎 内容について説明できる。 ロボットの制御系の基礎 内容について説明できる。					系の基礎 月できな		

科目名		平成 30 年度 生産システム工学コース シラバス 担当教員	学年	単位	開講時数	 種別	
計測工学		伊藤聡史 (常勤)	4	2	通年	選択	
(Measurements a			1	_	2 時間	×21/ €	
tation Engineerin	<u> </u>						
授業の概要	物理的現象をと	ごのように計測して取り扱うべきかを学ぶことを目的 の成立ちや誤差・精度の考え方とデータの一般的総	内とする	。前期	には、計	則の基本	
	は、統計処理を	と用いた合理的なデータの取扱いや測定された信号の	の処理方	法と特	こそ子ふ。 徴につい	で学ぶ。	
授業の進め方	教科書に従って	て授業を進める。理解を深めるための演習を適宜実	施する。				
到達目標	1. 誤差と精度	の基本的な考え方を説明することができる。					
2. 計測値に含まれる物理的、統計的な意味を理解できる。 3. 計測値に適切な統計的処理を行い、合理的な結果を得ることができる。							
	4. 計測された信号に対する各種処理の特徴と基本的な処理手段を挙げることができる。						
学校教育目標との		合的実践的技術者として、数学・自然科学・自らの				内な技術	
関係	と基礎的な理語	倫に関する知識をもち、工学的諸問題にそれらを応	用する質	能力を育	育成する。		
		講義の内容					
項目		目標				時間	
計測工学とは		計測工学の必要性と関連分野についての理解				2	
物理量の単位		物理量の単位の理解				2	
次元・次元式 次元・次元式の理解					4		
測定誤差とその性質の理解					4		
偶然誤差と正規分布 偶然誤差と正規分布の特徴と性質の理解				6			
統計的な計測値の		各種平均法の特徴と取扱いの理解と利用				4	
統計的な計測値の	· ·	誤差の伝播の仕組みの理解と利用				4	
統計的な計測値の	処理の基本 III	最小二乗法の理解と利用				4	
						計 30	
統計的な計測値の		t 分布の特徴の理解と利用				6	
統計的な計測値の		カイ二乗分布の特徴の理解と利用				4	
デジタル信号処理		サンプリングと量子化の理解				6	
デジタルノイズと		デジタルノイズと D-A 変調方式の理解				4	
周波数解析の考え		フーリエ変換に至る考え方の理解				6	
高速フーリエ変換	型の特徴	高速フーリエ変換の特徴の理解				4	
						計 30	
W W			٠.١.٨	+1/4 7 /-	V-4-2121 - 17:	計60	
学業成績の評価方 法	定期試験また 況(20%)	はそれに代わる課題レポートの得点(80%)と授∮ こより評価する。	業中に 美	き施する	海智の取	り組み状	
関連科目		応用数学 I・実験計画法・卒業研究					
関連科目 応用数学 I・実験計画法・卒業研究 教科書・副読本 教科書: 「機械系教科書シリーズ 8 計測工学」前田 良昭、木村 一郎、押田 至啓 (コロナ社), 参考書: 「高校数学でマスターする 計測工学 - 基礎から応用まで - 」小坂学 岡田志麻 (コロナ社)・「ロボティクスシリーズ 3 メカトロニクス計測の基礎」石井明 木股雅章 金子透 (コロナ社)・「計測システム工学の基礎 第 3 版」西原主計、山藤和男、松田康広 (森北出版)・「計測工学入門」中村 邦雄 石垣 武夫 冨井 薫 (森北出版)							

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	計測値に含まれる誤差を 分析でき、計測値の精度 を評価できる。	各種誤差に対する対策を あげることができ、また、 計測値に精密度と正確度 を適用できる。	誤差の種類、原因と精度に ついて説明できる。	誤差の種類、原因と精度に ついて説明できない。
2	偶然誤差を含む計測値群 から有用な値を的確に得 ることができる。	偶然誤差と正規分布の基本的な性質を理解しており、また、計測値の単位変換を正確に行える。	物理量の基本単位と次元について理解している。	物理量の基本単位と次元について理解していない。
3	任意の計測値に対して、適 切な統計的処理を行い、有 用な値を得ることができ る。		平均化や最小二乗法など 基本的な統計処理を行う ことができる。	平均化や最小二乗法など 基本的な統計処理を行う ことができない。
4	各種信号処理の利点、欠 点を踏まえて、計測目的 に合わせた適切な処理を 適用することができる。	測定された信号に対する フィルター処理などの特 徴と適用法を説明できる。	計測に用いる信号の特徴 と基本的な処理手段を挙 げることができる。	計測に用いる信号の特徴 と基本的な処理手段を挙 げることができない。

		⊬成 30 年度 生産システム⊥	-チョーヘンフハヘ				
科目名		担当教員		学年	単位	開講時数	種別
卒業研究 (Graduation Stud		E産システム工学コース教員	(常勤)	5	8	通年 8 時間	必修
授業の概要	高専の5年間に 解析、実験、考察	りたる一般教育・専門教育の 客、まとめなどを行い、自主	総仕上げとして、各位的研究能力や創造的	研究テ 開発能	ーマにて 力などを	いて調査 養成する	、理論、
授業の進め方	学生を数人ごとの て卒業論文を作品	の研究室に配属し、指導教員 成するとともに、発表し質疑	から直接指導を受けな 討論を行う。	ながら、	自分の	研究テート	っについ
到達目標	1. 研究内容を把 2. 研究内容をま 3. 生産システム	握し、研究方法、実験方法を とめ、発表し、質疑討論する 工学を総合的に理解体得し、	を立案・実施し、卒業 ることでさらなる課題 創造力と問題解決能	論文を を発見 力を身	作成できる。 につける	きる。 ることがで	·きる。
学校教育目標との 関係	E (創造力) 地域が 挑戦できる技術を	産業の発展に貢献するため、 者を育成する。	課題探求能力を有し、	設定し	た課題	に向かって	て果敢に
		講義の内容	7				
指導教員	9	=-マ					
上島 光浩	が	定回流燃焼器を用いたバイオ	マス粉体の燃焼				
坂本 誠	5	E縮空気を用いた球体発射装	置の試作・開発				
富永 一利	E	1ボット教材を利用した制御	・情報に関する研究				
深津 拡也	 	ピセンサの実用化に関する研	究				
伊藤 聡史		摩擦・摩耗特性評価およびその試験装置の開発					
松本 正樹		工場レイアウトと日程計画に	関する研究				
三隅 雅彦	1	インダストリアルデザインに	関する研究				
山下 正英	1	口工技術(放電加工、小径ド	リル、三次元プリンタ	タ) に厚	員する研	究	
鈴木 宏昌	走	迢音速噴流に関する研究					
	書記	十240 時間					
学業成績の評価方 法	研究テーマに対	する取り組み、卒業論文、研	f究発表を総合的に評値	価する。)		
関連科目							
教科書・副読本							
		評価 (ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	국 (可)	未到達	レベルの目安	(不可)
方法、美		研究内容を把握し、実験方 法を実施し、卒業論文を作 成できる。	研究内容を把握でき	る。	研究内容	容を把握で	きない。
し、質疑	研究内容をまとめ、発表 し、質疑討論することでさ らなる課題を発見できる。						ること
的に理り と問題	ステム工学を総合 解体得し、創造力 解決能力を身につ とができる。	的に理解し,体得できる。	生産システム工学を できる。	理解		ステム工学 解体得でき	

平成30年度 生産システムエ学コース シラバス										
科目名		担当教員		学年	単位	開講時数	種別			
応用数学 II (Applied Mathen	natics II)	深津拡也 (常勤)		5	1	前期 2 時間	必修			
授業の概要	複素関数は、エ	学、特にシステムを解析した	り制御するために必要	要な学問	間である					
授業の進め方	複素関数につい	て講義する。理解を深めるた	:め適宜、演習を行う。							
到達目標		基礎を理解できる 川関数を理解できる								
学校教育目標との 関係		合的実践的技術者として、数学 に関する知識をもち、工学的					りな技術			
講義の内容										
項目 目標						時間				
複素数とは 複素数の基礎の理解						2				
n 乗根 n 乗根の理解						2				
数列・級数・関数 数列・級数・関数の理解						4				
正則関数 正則関数の理解						4				
コーシー・リーマ		コーシー・リーマンの方程式	の理解				4			
基本的な正則関数		基本的な正則関数の理解					4			
複素数の関数の積	[分]	複素数の関数の積分の理解					2			
コーシーの定理		コーシーの定理の理解					4			
コーシーの積分表	表 不	コーシーの積分表示の理解					4			
世界はほう気圧士		1 2 1 2 (0 0 0 /) 1 2	###==================================	し ね ⇒ボ/	エナッ		計 30			
学業成績の評価方 法	演習・小テスト	・レポート等(20%)と定	E期試験(80%)に。	より評1	回りる。					
関連科目										
教科書・副読本	教科書: 「基礎	解析学 改訂版」矢野健太郎	、石原繁 (裳華房)							
		評価 (ルーブリ	ック)							
到達目標 理想的な	よ到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)			
	複素関数の基礎を理解し、複素関数の基礎を理解し 応用問題が解ける. 基礎的な問題が解ける. きる. 複素関数の基礎を説明で きる. きない.						光説明で			
	な正則関数を理解 用問題が解ける.	解 基本的な正則関数を理解 し,基礎的な問題が解け る.	基本的な正則関数を できる.	説明	基本的できない	な正則関数 (^.	枚を説明			

科目名			1 /	担当教員		学年	単位	開講時数	 種別
技術者倫	#田		焦_			5	1	後期	
(Engineer	ring Ethi				Note that a second seco			2時間	
授業の概念		としての役割 る 行う。	と責任	技術と企業・社会との関係 任を果たすために必要な知	識と共有すべき価値の	り習得を	と目的と	し、講義	と演習を
授業の進	め方	前半は配布する ルーブワークに ワーク力及びこ	るよここ	キストを中心に講義を行い り、倫理的な事例演習を通 ュニケーション能力を高め	ゝ、適時小テストによ じて技術者倫理への理 る。	理解度 理解度を	の確認と高める	を行う。行 とともに、	後半はグ ・チーム
到達目標		2. 技術者が持 3. グループ討	つべ 議・	立場について理解できる き倫理を理解できる プレゼンテーションを通じ 像を訴求することができる	で論理的な事例紹介	ができ	る		
学校教育! 関係	目標との	\		i) 総合的実践的技術者とし 、技術者として社会との関				こ貢献する	ために、
				講義の内容	7				
項目			目標	票					時間
(1)技講	術者に必 義 + 小テ	要な基礎知識スト	のま ①技 ②技 ③技	支術者としての意識を高め 理解を深める。 支術者とは何か 支術者のような技術者を 支術者の働く環境 〜紅君総と個人(技術環境 支術者を取り巻く経済環境	指すのか~	経済・企	業環境	について	10
	(2)技術者倫理について 講義+小テスト 立技術者倫理とは何か ~技術者倫理の必要性~ ②技術者の社会的役割と責任							4	
(3)事 (4)社 働		技術者として	ンで 向 (1) (2) (3)	命理的な事例を題材に取り」 を行って貰い、論理的・倫理 上を図る。 事例演習Ⅱ及び発表 事例演習Ⅱ及び発表 事例演習Ⅱ&Ⅲ解説 れからの技術者像					2
学業成績(法	の評価方	①小テスト 20)% (②演習 40 % ③グループワー	- ク 40 % で評価する。	>			計 30
関連科目									
教科書・	副読本	その他: 特にな	なし.	必要な資料を講義にて配					
				評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	ē) │	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	安 (可)	未到達	レベルの目安	(不可)
1	者が持つ	ら,組織内の技 つべき意識と現 氐減することが	ままし	組織内で技術者が持つべき意識を複数挙げることができる.	組織内で技術者が持 き意識の基本的な項 習得することができ	i目を る.	かを挙	とはどうる げることな 習等の参加 る.	ができな
2	者が社会	会の一員として 倫理を指摘する	持	技術者が社会の一員として持つべき論理を複数挙げることができる.	技術者が社会の一員 て持つべき基本的論 習得することができ	a理を る.	習得す	が持つべき ることが 寅習等の参 ある.	できてい
3	討議結果を集約して、論 理に基づくプレゼンテー ションを行うとともに、質 疑応答にこたえることが できる. 討議結果を集約して、論 対議の結果を集約して、基 本的なプレゼンテーショ ン手法で発表することが できる. はに欠ける。 にこたえることができる。						全で, プ / も論理		
4	会情勢やして、とが今後が	けでなく現状の 対技術革新を予 ごのような技術 必要なのかを述 ぶできる.	想書べ	授業だけでなく現状の社会情勢を反映して,どのような技術者が今後必要なのかを述べることができる.	授業を受けて, どのな技術者が今後必要かを述べることがで	i なの		る技術者(ができない	

科目名		半成 30 年度 生産システムエ学コース シラハス 担当教員	学年	単位	開講時数	種別	
生産システム設計 (Production Syste	em Design)	朝比奈奎一 (非常勤)	5	2	通年 2 時間	必修	
授業の概要	生産工場におい	っては、工業製品の多様化に伴い多品種小量生産が結 用したフレキシブルな自動化が促進されている。本 関する生産制御システムと生産技術情報システムの理 学んで行く。	」 ◇儀なく :講座で 見状を認	されて は機械 溢する	いる。そう 加工に焦り とともに、	こでコン 点をおい . システ	
授業の進め方	講義を中心にし 形で整理を行っ クする。	、て授業を進める。授業内容はノートを作成し、各自 うよう指導する。時を見てノートのチェックを行うご	目が工夫 ことで授	をしな 業への	がら理解 参加姿勢	しやすい をチェッ	
到達目標	到達目標 1. 生産システムの全体像が把握できる。 2. 技術情報システムとして CAD/CAM の重要性を説明できる。 3. 管理情報システムとしての MRP,JIT の概要について説明できる。 4. 生産制御システムとしての各種モノづくりシステムを理解できる。						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 倫に関する知識をもち、工学的諸問題にそれらを応				的な技術	
		講義の内容					
項目		目標				時間	
生産システムの基	. 礎概念	生産におけるシステム化の概要を理解				2	
生産システムとこ 活用	コンピュータの	モノづくりにおけるコンピュータの活用方法を理解	译			4	
技術情報システム		CAD モデルデータを中核とした情報の流れを学ふ	» >			4	
CAD の概要と有効	効活用法	CAD の生産システムでの役割と活用法を学ぶ				2	
CAE の概要と活月	刊	設計におけるコンピュータを活用した解析を理解				2	
作業設計システム		作業設計システムの処理内容について理解				4	
作業設計の自動化	1	ES 等を活用した自動化システムの内容を理解				4	
CAD/CAM の適	用	CAD/CAM のしくみと活用方法を理解				4	
生産工場のシステ	ム化の方向	3 次元 CAD 中核のコンカレントシステムの概要を	理解			4	
						計 30	
管理情報システム	ك MRP	管理情報システムの概要について MRP を事例に	 学ぶ			4	
JIT 生産システム		JIT 生産の概要と構築方法について学ぶ				2	
加工システムの自	動化手法	機械加工における NC 技術活用を理解				4	
FMC、FMSの	芯用事例	多品種少量生産向けシステムを学ぶ				2	
組立システムの構	築法	加工以外の工程におけるシステム化手法を学ぶ				4	
産業用ロボット適	i用	ロボットの生産現場での活用法を理解				4	
加工の生産設計の	実際	工程設計と作業設計の内容を理解				4	
生産設計の自動化	1	コンピュータ活用の生産設計システムを理解				4	
自動プログラミン	グシステム	コンピュータ活用の作業設計システムを理解				2	
						計 30	
						計 60	
学業成績の評価方 法	前・後期末考34:1とする。	をの2回の得点と授業の参加状況から決定する。な なお、成績不良者には追試やレポート提出を課す	る、定期 る。	試験と	参加状況(
関連科目							
教科書・副読本		らい生産システム工学入門」朝比奈 奎一 (日本理 法」日本設計工学会編 (コロナ社)	里工出版	(会),	参考書: 「	3 次元 C	

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	IOT 活用のモノづくりの 進展する将来の生産シス テムの状況を自分なりに 説明できる	生産システムを構成する3つのシステムの関係を情報と制御の観点で説明できる	生産システム構成する 3 つのサブシステムの機能 が理解できる	生産システムを構成する3 つのサブシステムとは具 体的に何を指すのかが説 明できる
2	CAD は単なる設計のツールではなく、生産全体のコンカレントシステムの中核的役割を担うということが理解できる	の有効活用法が説明でき	CADの機能、CAD/CAM の機能が自動プログラミ ングシステム (APT) との 相違で説明ができる	生産システムにおける技 術情報システムとは具体 的に何を指すのかが説明 できる
3	多様化が進む中で、部品 中心生産の実現のための 管理システムのありかた を説明できる	ムの中で特に注目されて	MRP と JIT の目的、仕組 み、内容を理解し、相互の 関係が理解できている	管理情報システムでの具 体的対象が何を指すのか が理解できている
4	スマート工場が進展する 中での、生産制御システム (自動化) の将来展望が 語れる	生産制御システム (FMS) を構成する各要素とネットワークシステムが理解できている	生産制御システムの基盤 技術としてのNCやPCの 重要性が理解できている	生産制御システムとは具体的に何を指すのかを情報システムとの違いで説明できる

科目名			担当教員		学年	単位	開講時数	種別
インダスト (Industria		デザイン II ı II)	三隅雅彦 (常勤)		5	2	通年 2 時間	必修
授業の概要	要	拡張するもので	プル・デザインと我々の生活は である。今後さらに複雑化や多 √」のハイブリッドな技術者の	様化する社会に対応 で	使用者の けるため)生活を)の「工	より豊か! 学+イン?	こ便利に ダストリ
授業の進め	か方	日常生活で使っ ループによる訓	っている工業製品(実物、画像 関査とプレゼンテーションと5	と、映像等)を例に挙じ 反転授業を行う場合も	げながら ある。	、講義	形式で進む	める。グ
到達目標		2 インダスト	Jアル・デザインの現状を理解 Jアル・デザインと工学との[見点と工学的視点による問題]	関係を理解できる.	き出す	ことが゛	できる。	
学校教育目 関係	標との		合的実践的技術者として、数: àに関する知識をもち、工学的					りな技術
			講義の内容	容				
項目			目標					時間
ガイダンフ	ス		ガイダンス					2
デザインの	のプロセ	ス	製品(商品)開発のプロセス 移動具の開発プロセス					6
造形の把握	屋①		黄金比率					2
コンピュー			歴史と応用					4
デザインと	とビジネ	Х	ブランド 知的財産 デザインマネジメント デザイン実務紹介					8
造形の把握	屋②		2 次元による造形表現					2
社会とデサ	ザイン		エコデザイン 安全とデザイン 地域とデザイン					6
近代デザク	イン史		産業革命 アーツ・アンド・ デザイン 日本のデザイン	クラフツ運動 バウハ	・ウス	現代ア	メリカの	16
造形の把握	屋③		2 次元による造形表現					2
建築とデサ	ザイン		インターナショナル・スタイ デザイン実務紹介	ル				4
造形の把握	屋④		2次元による造形表現					2
デザインコ	エンジニ	ア	デザインエンジニアに求めら	れる「力」とは				4
まとめ								2 計 60
学業成績の 法	D評価方	2回の定期試験 とする。なお、	の得点と授業への参加状況か 追試は行わない。	ら決定する。定期試験	倹と参加	旧状況の	評価比率	は4:1
関連科目								
教科書・副	副読本		・イン工学の世界」柘植綾夫 (ンデザイナー協会 (ワークスコ 版株式会社)					
			評価 (ルーブリ	「ック)				
到達目標	理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目録	₹ (可)	未到達	レベルの目安	(不可)
	欧米と 比較し~ 状を理解	日本のデザイン つつデザインの 军できる	を 産業革命以降、現代まの 現 デザインの歴史的な流れ が理解できる	デザイン領域(3 分野 インダストリアル・ラ ンが理解できる		デザイン理解でき	ン領域 (3½ きない	分野)が
2	もデザインと工学が恊働 ものづくりにおいてデザ インダストリアル・デザ インダストリアル した新しいものづくりを インと工学が主張する(譲 インと工学が恊働したも インと工学が恊働 創造できる れない)部分を理解できる のづくりを理解できる 味が理解できない					動する意┃		
	インに	4 年間の工学知 スして新しい創	ザ 身の回りのモノ・コトに 識 存在する問題点を発見で 造 きる		見で	身の回り 存在す きない)の製品 (る問題点な	商品) に と発見で

利日夕		十成 30 年度 生産ン人テムエ セン教員		半左	出产	88 ≘# n+ 业L	括 PII			
科目名		担当教員		学年	単位	開講時数	種別			
システム制御工学 (System Control]	Engineering)	富永一利 (常勤)		5	2	通年 2 時間	必修			
授業の概要	制御工学は工学 展によりその応 フィードバック	:・理学・社会学等の広い分野 用範囲もロボット・航空宇宙 制御を中心として、制御工学	での必須の基礎概念で などの先端科学技術が の基礎を理解すること	があり、 分野に別 とを目的	コンピ 及んでい 的とする	ュータの怠 いる。本講 う。	急速な発 義では、			
授業の進め方	教科書に従って	授業を進める。理解を深める	ための演習を適宜実施	包する。)					
到達目標	2. 制御系の過源	ック制御の基礎が理解できる。 度特性、周波数特性解析ができ E性、制御系設計が理解できる	ぎる。 う。							
学校教育目標との 関係		合的実践的技術者として、数学 記に関する知識をもち、工学的	諸問題にそれらを応用				りな技術			
講義の内容										
項目		目標					時間			
自動制御とは	1	自動制御の概要					2			
数学の基礎知識		極座標・複素数表示・ラプラ					6			
伝達関数		制御系の基本要素の伝達関数	の理解				6			
演習		理解確認のための演習	hr-h-1/2				2			
ブロック線図		制御系のブロック線図及び等					4			
時間応答	1	制御系の基本要素の時間応答	の埋解				8			
定期試験の返却・	用年記	定期試験の返却・解説				1	2			
 周波数応答①		制御系の基本要素の周波数応	ダの理解				計 30			
周波数応答②	1	両両示の基本安系の同仮数心 ベクトル軌跡・ボード線図の				1	$\frac{4}{4}$			
	1	特性根(極)と応答及び根軌					4			
演習		理解確認のための演習	以 (*/*生/)于			1	2			
安定判別法①	1	フルヴィッツ・ラウスの安定	判別法の理解				4			
安定判別法②	1	ナイキストの安定判別法の理					$\overline{2}$			
自動制御の設計		自動制御の設計の理解					$_4$			
自動制御の設計法		プロセス制御・サーボ機構の	理解				4			
定期試験の返却・	解説	定期試験の返却・解説				1	2			
							計 30			
							計 60			
学業成績の評価方 法	演習問題・小テ	コスト・レポート(20%)と	定期試験(80%)	こより	評価する	5 。				
関連科目	応用数学 I									
教科書・副読本	教科書: 「機械	系教科書シリーズ 21 自動制		(コロ・	ナ社)					
		<u>評</u> 価 (ルーブリ	ック)							
	到達レベルの目安 (優)	` '	ぎりぎりの到達レベルの目安	(- /		レベルの目安				
1 フィードバック制御の応 フィードバック制御の基 フィードバック制御の基 用問題が解ける。 本的な問題が解ける。 礎的事項が説明できる。 礎的事項を説明で										
2 制御系の過渡特性、周波 数特性解析の応用問題が 解ける。 制御系の過渡特性、周波 数特性解析の応用問題が 数特性解析の基本的な問 類が解ける。 制御系の過渡特性、周波 数特性解析の基礎的事項 が説明できる。 数特性解析の基础 を説明できない。				解析の基礎 できない。	** **********************************					
3 制御系の 計の応見	D安定性、制御系詞 目問題が解ける。	設制御系の安定性、制御系 設計の基本的な問題が解 ける。	制御系の安定性、制 設計の基礎的事項が できる。	説明	制御系の設計の製できない	の安定性、 基礎的事項 い。	制御系 頁を説明			

ション		I	平成 30 年度 生産システムエ		224 F-	77 /T	DD 244 - 1 1111	红石川
科目名			担当教員		学年	単位	開講時数	種別
3 次元 CAI (3D-CAD Drafting II	based	提図 III Design and	三隅雅彦 (常勤)・鈴木宏昌 (常勤)	5	2	後期 4 時間	必修
授業の概要		 機械設計・製図 ングセンスを磨	¶の基本知識と、3 次元 CAD _/ 唇く。	/CAE を活用した機柄	」 找設計手	法を学	び、エン	ジニアリ
授業の進め		講義と3次元 CAD/CAE実	CAD/CAE の実習を行う。 習を行う。	理解を深めるための)問題演	資習や調	果題による	3 次元
到達目標		2. 3次元 CAD 3. 機械部品の引	を活用した創造設計を行うこ で学習した内容をプレセンテ 寅度解析・評価ができる 果を報告書としてまとめること	ーションすることが	できる			
学校教育目 関係	標との	E (応用力・実践	桟力) 総合的実践的技術者とし		問題を	解決する	る能力を育	が成する。
			講義の内容	\$				
項目			目標					時間
ガイダンス	· ス 創造設計課題のガイダンス							4
3 次元 CAI	D 実習 (創造設計)	アイディアスケッチ					8
3 次元 CAI	D 実習 (創造設計)	3次元 CAD を用いた構想図f	作成				16
3 次元 CAI	D 実習 (創造設計)	プレゼンテーション					4
CAE の実	習		CAE と有限要素法 (FEM) の	基礎知識の理解と習	得			16
CAE の実	習		構造解析の基礎知識の習得と	実習				8
CAE の実	習		機構解析の基礎知識の習得と	実習				4
								計 60
学業成績の 法	評価方	授業への参加な プレゼンテーシ	代況とプレゼンテーション、C ∕ョン、CAE の課題との比率	AE の課題から決定す は 1:4 とする。	ける。な	お、授	業への参	加状況と
関連科目								
教科書・副	l読本	その他: 教科書	を使用しない					
			評価 (ルーブリ	ック)				
到達目標	理想的な到	剛達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)
1 7	材料特性 上で設計	生を概ね理解し かできる	た CAD ソフトのアセンブリ が操作できる	CAD ソフトの基本技 できる	操作が	3 DCA 作ができ	D ソフト きない	の基本操
3	ソフトの特徴を活用して 重要なポイントと補足説 伝える内容が概ね網羅さ プレゼンテーシ					ョンソフ ごきない		
J	束条件を	品に作用する加重や拘 条件を与え、正しく強 解析・評価ができる 解析・評価ができる 他の協力を得て部品に作 用する加重や拘束条件を 与え、強度解析・評価がで きる ない きない						評価がで
4	解析結果 書を作成	見から正しく報 えできる	告 解析結果から概ね報告書 を作成できる	他の協力を得て解析 から報告書を作成で	f結果 きる	解析結成できる	果から報行 ない	告書を作

		平成 30 年度 生産システム工学コース シラバス							
科目名		担当教員	学年	単位	開講時数	種別			
生産システム工学 (Experiments and Production Syste ing III)	d Practice of	三隅雅彦 (常勤)・深津拡也 (常勤)・松本正樹 (常勤)・朝比奈奎一 (非常勤)	5	2	前期 4 時間	必修			
授業の概要	②FMS、③CAT、④自動生産ライン工程設計実験の4項目に分けて生産シスープでは、 工学分野の応用を実験実習により理解させる。								
授業の進め方	上記の各4テー	-マを3週ずつ、ローテーションする.また、適時、	工場身	見学を組	日み込む.				
到達目標	2. FMS の概念 グを通じて理 3. 三次元測定 いて、CAD テ	デジタル化技術について RP,RE の実習を通じて理 な、 それを構成する産業用ロボット、NC 旋盤、 解できる 幾のマニュアル測定法およびオンライン測定法を理 「ータを用いた自動形状測定法が理解できる.寸法な 設計を通して生産システムを構築する流れの仕組み	自動倉庫 解できる 注・幾	軍、AG る.CA 経何公差	T プログラ	ラムを用			
学校教育目標との 関係	E (応用力・実)	践力) 総合的実践的技術者として、専門知識を応用し	問題を知	解決する	る能力を育	成する。			
		講義の内容			1				
項目		目標				時間			
①デザインのデジ ・ 3 次元 CAD に ・RP による実体(ガイダンス Dデザインのデジタル化 ・ 3 次元 CAD によるデザイン ・ RP による実体の造形 ・ リバースエンジニアリングによ による形状の取り込みから 3 次元モデルを作成する方法について学ぶ.					12			
②FMS ・産業用ロボットの 習 ・NC 旋盤の対話 ・ソグ演習 ・ロボットと NC 実習	の制御演習 のプログラム演 処理プログラミ との同期運転	②ロボットと周辺機器との同期制御手法を理解し、ラム作成方法を学ぶ. ・工作機械のプログラムと DNC 運転方法を理解. ・ロボットと NC との協調作業手法を学ぶ. ・FMS における自動運転のしくみを理解する.	ロボッ	トの運	転プログ	12			
 ・FMS における目 ③ CAT ・3次元測定機の相 ニュアル形状測定 ・3次元測定機に ティーチング実習 ・3次元測定機に ティーチング (CA) 	構造の理解とマ 実習 よるオンライン よるオフライン	③ 3 次元測定機を用いて真直度、真円度などの形オンラインティーチングによる自動測定法を学び、データから測定プログラムを作成し、そのプログラ行う、CAT を学ぶ.	その瓦	が用とし	てCAD	12			
④自動生産ライン工程設計 ・Factor/Aim 操作説明 ・仮想工場新規設計 ・物流に関するシミュレーション ・異常発生時のシミュレーション ・異常発生時のシミュレーション ・関係を使用している。 ・物流が、					12				
⑤工場見学・演習		⑤工場見学と各項目の理解度を確認する演習				8 計 60			
学業成績の評価方 法	提出されたレス とする.	ポートの内容と実技への参加状況から決定する.なる	お、前者	音と後者	の比率は、	, 4:1			
関連科目									
教科書・副読本	その他: フリー	-テキスト							

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	デザインのデジタル化技 術について RP,RE の実 習を通じて理解し、高度 な応用ができる	術について RP,RE の実	術について RP,RE の実	
2	FMS の概念を、 それを 構成する産業用ロボット、 NC 旋盤、自動倉庫、AGV のプログラミング理解で き、高度な応用ができる	構成する産業用ロボット、	NC 旋盤、自動倉庫、AGV のプログラミングを通じ	FMS の概念を理 解できない
3	三次元測定機のマニュアル測定法およびオンライン測定法を理解でき、CATプログラムを用いて、CADデータを用いた自動形状測定法が理解できる。寸法公差・幾何公差を理解できる。	三次元測定機のマニュアル測定法およびオンライン測定法を理解できき、CATプログラムを用いて、CADデータを用いた自動形状測定法が理解できる.	ル測定法をおよびオンラ	三次元測定機のマニュアル測定法およびオンライン測定法をを理解できない.
4	仮想工場の設計を通して 生産システムを構築する 流れの仕組みが理解でき、 高度な応用ができる	仮想工場の設計を通して 生産システムを構築する 流れの仕組みを理解し、簡 単な応用ができる	生産システムを構築する	仮想工場の設計を通して 生産システムを構築する 流れが理解できない

科目名		担当教員		学年	単位	開講時数	種別				
実験計画法 (Design Methoo ments)	d of Experi-	中曽根恵美子 (非常勤)		5	1	後期 2 時間	選択				
授業の概要	実験計画法は、 策を策定する品として有効であって。	実験のやり方やデータの解析 質管理手法、生産システムの 6る。本講義では、少ない実験	法を扱う学問で、製品 開発、設計、製造する 対回数で所期の目的を	日の品質 5時に最 達成す	〔 状況 遠条件 る実験	の分析やは を求める第 計画の手続	品質向上 実験手法 去を学習				
授業の進め方	テキストをもと を通して実験計	に講義するとともに、演習問 一画法の解析手法の理解を深め	題を解きながら実験 詩 うる。	画のす	すめ方	を学習する	る。実習				
到達目標	1. 統計的手法 d 2. 直交表の活用	と実験計画法の内容の理解がで 目ができる	できる								
学校教育目標との 関係 D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。							的な技術				
		講義の内容	\$								
項目		目標					時間				
1. 実験計画法とり	t	目的・概要を理解する					2				
2. 一因子実験		一元配置を学ぶ(完全無作為	法、乱塊法、その他)				6				
3. 二因子実験		二元配置を学ぶ					6				
4. 三因子以上の	実験	多元配置を学ぶ					2				
5. 分割法		分割法を学ぶ					2				
6. 直交法による	実験計画	・2 水準の場合を学ぶ					6				
		・3 水準の場合を学ぶ					2				
		・分割法					2				
7. 実験計画の実	施	実験計画の諸注意を理解する					2				
MANUAL	Ibit I. be La 1		(I da) \ (I - 150+	- 1 hm 2 1 1	alaste /s I	[[N H -]]	計30				
学業成績の評価方 法	4とする。	題演習、授業の参加状況から		試験と	寅 習参加	叩状況の比					
関連科目	管理システム]	Ľ学 I・管理システム工学 Ⅱ・	計測工学								
教科書・副読本	教科書: 「実験	計画法入門 改訂版」鷲尾	,								
		評価 (ルーブリ	ック)								
到達目標 理想的な	は到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目室	そ (可)	未到達	レベルの目安	(不可)				
┃ ┃ 用し、	実験の計画、分散分析を活 分散分析を通して解析す 2つの変数の間の関係の解 統計の基礎知識 用し、データの見方、結果 の解釈の仕方ができる。					が理解さ					
2 実験計i 導き出	画を活用し、 結論 すことができる。	を 直行表を使用し、実験の計 画ができる。	直行表の基礎的な知 理解されている。	識が		計画の考え ていない。	え方が理				

科目名		担当教員		学年	単位	開講時数	種別				
人間工学 (Ergonomics)		中曽根恵美子 (非常勤)		5	1	前期 2 時間	選択				
授業の概要	生産システムを 性とを踏まえ、 学の観点から	を設計するとき、人間性を無視 快適性、合理性、安全性、信 学習する。	するようなことがあっ 頼性のある機器、作業	ってはな 美方法及	らない びその	。人間の能 環境などを	能力と特 を人間工				
授業の進め方	テキストをもと で補足する。	とに講義を中心として授業を進	めるが、理解を深める	らために	:問題演	習を適宜行	ううこと				
到達目標	1. 人間の特性 2. 人間の特性	を基本にしてモノと人間の関係 から機器の利用や作業環境のも	系の理解ができる。 あり方の理解ができる	0							
学校教育目標との 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					内な技術				
		講義の内容	<u> </u>								
項目 目標											
人間工学の意味・役割 人間工学の必要性を理解する							時間 2				
人間工学における	る人間の特性	人間工学を進める前提として	様々な人間の特性を理	里解する	ś		3				
作業姿勢と作業空	空間	作業条件が人間に与えるファ	クターを理解する				3				
視覚の人間工学		視覚と機器との関係について	理解する				3				
聴覚の人間工学		聴覚と機器との関係について	理解する				3				
触覚の人間工学		触覚と機器との関係について	理解する				2				
時間・速度の人間	訂工学	時間・速度がマン・マシンシ	ステムに与える影響に	こついて	て理解す	·る	3				
環境の人間工学		環境がマン・マシンシステム	に与える影響について	て理解す	ける		2				
高齢者・身障者の)人間工学	高齢者・身障者における人間	工学の関わりを理解で	する			2				
人間工学における	6疲労	人間工学における疲労の概念	を理解する				2				
マン・マシンシス	ステム	人間と機械との関わりを理解	する				2				
安全の人間工学		人間工学の観点から安全性を	考える				2				
適正・訓練と作業	É	人間の特性と訓練や作業の関	係を考える				1				
							計 30				
学業成績の評価方法 法	日頃の授業への状況・レポー	の参加状態(出席状況を含む)。 トと定期試験の評価比率は2:	、レポート、定期試験 2:6とする。	食などを	:総合し	て評価する	る。参加				
関連科目	インダストリン 工学 II・生産	アルデザイン I・インダストリ ンステム設計・3 次元 CAD 設	アルデザイン II・管理 計製図 III・生産シス	里シスラ テムエ	テム工学 学実験3	≠I・管理: 実習 III	システム				
教科書・副読本		ジニアのための人間工学 改 応じ、資料を配布する	訂第5版」横溝克己、	小松原	明哲 (日	本出版サ	ービス),				
	1	評価 (ルーブリ	ック)								
到達目標理想的和	な到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目野	국 (可)	未到達	レベルの目安	(不可)				
	から見た入力・出 題点の解決・対策 。										
使用し 環境、	学の方法の知識 、製品や機器、作 注活環境の問題点 対策できる。	業器、快適な作業環境、生活	人間工学の考え方、方 知識が理解できてい		人間工学知識が近	学の考え方 里解できて	、方法の いない。				

			平成 30 年度 生産システムコ	「学コース シラバス					
科目名			担当教員			単位	開講時数	種別	
CAE (CAE)			伊藤敦 (常勤)		5	1	後期 2 時間	選択	
授業の概	要	設計において について学ぶ。	CAE を有効に用いるために設	計手法の原理と全体化	象につい	ハて学び	K, CAE	の有用性	
授業の進	の進め方 講義と CAE の実習を行う。理解を深めるため、解析原理である有限要素法 (FEM) の概要 析理論なども学ぶ。								
到達目標	1. 数値計算による基礎的な微分方程式の近似解法を説明できる 2. 有限要素法の原理を説明できる 3. 簡単な工学的問題に対する有限要素解析ができる								
学校教育 関係	目標との		合的実践的技術者として、数 ⁴ 命に関する知識をもち、工学的					的な技術	
			講義の内容	2					
項目									
1. ガイク	ダンス		設計解析の概要を理解する					2	
2. 誤差に	こついて		コンピュータの演算から生じ	る誤差の種類や原因は	こついて	て理解す	- る	2	
3. 連立ス	方程式の解	学 法	計算機による連立方程式の解	法について理解する				2	
4. 固有值	直・固有べ	ミクトル	固有値・固有ベクトルの求め	方やその意味を理解す	する			2	
5. 補間法			ラグラジュアン補間,ベジエ曲線,スプライン補間,B-spline,NURBS 補間などを理解する						
6. 数值和	責分法		台形公式,シンプソン則,ガウス-ルジャンドル数値積分法について理解 する					2	
7. 微分7	方程式の近	近似解	テイラー展開を基本とする,差分法(オイラー法,中心差分法,風上差分 法など)について理解する						
	要素法の基		有限要素法の基本的原理について理解する						
9. 有限 適用	要素法のJ	二学的問題への	有限要素法を使って、工学的問題に適用をすることが出来る						
学業成績	の評価方	毎回の演習課題	夏 (60 %) 授業への参加状況 (2	10 %) 期末テストまた	はレポ	3- h (3	80 %)	計 30	
法	,								
関連科目	-								
教科書・	副読本	参考書: 「偏微 その他: フリー			好,大世	古 和栄	(日刊工業	新聞社),	
			評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	憂) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安						
1	微分方秆	算による基礎的 呈式の近似解法 夏が解ける。	な 数値計算による基礎的な の 微分方程式の近似解法の 基本的な問題が解ける。	数値計算による基礎 微分方程式の近似解 説明できる。		基礎的な 以解法を			
2		素法の基礎的な 目問題が解ける。		有限要素法の基礎的 理を説明できる。	有限要素法の基礎的な原 理を説明できる。 有限要素法の原理を説明できる。				
3		Ľ学的問題に対 要素解析の応用 ける。		簡単な工学的問題に る有限要素解析が訪 きる。	明で		工学的問題 要素解析:		

平成 30 年度 生産システム工学コース シラバス									
科目名		担当教員			単位	開講時数	種別		
メカトロニクス (Mechanics and F	Electronics)	兼本茂 (非常勤)			1	前期 2 時間	選択		
授業の概要	メカトロニクス および制御器へ	分野を構成する各要素、セン の実装について学習する。	サ、アクチュエータ、	制御系	設計に	関する基礎	楚的項目		
授業の進め方	教科書に従って を行う。	授業を進める。各テーマごと	にポイントを学習した	た後、理	関解度を	チェック	し、演習		
到達目標 1. メカニクスとエレクトニクスとを統合したシステムを一つのシステムとして理解したりできる									
学校教育目標との 関係		合的実践的技術者として、数学 aに関する知識をもち、工学的					りな技術		
		講義の内容	?						
項目		目標					時間		
1. メカトロニク	クスとは	メカトロニクスの概念を理解する							
2. メカトロニッ	クシステム	システムの解析に必要な数学の基礎やモデリングについ学ぶ							
3. センサ		基本的なセンサについて理解する。							
4. アクチュエー	・タ	基本的なモーターについて学ぶ							
5.機械設計		機械部分の加工・設計等について学ぶ							
6. 制御設計		制御系の設計手法について学ぶ							
7. 制御器の実装		組み込みマイコンとその制御器への実装について学ぶ							
8. 前期末試験の	返却および解説	前期末試験を返却し、その解説を行う。							
							計 30		
学業成績の評価方 法	定期試験60%する。	る、演習・課題20%、授業へ	の参加状況(出席状況	记、授業	纟態度)	20%に	より評価		
関連科目									
教科書・副読本 教科書: 「メカトロニクス概論」古田 勝久 (オーム社)									
評価 (ルーブリック)									
到達目標 理想的な	:到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	目安 (可) 未到達レベルの目安 (不可)					
クスと	クスとエレクト を統合したシス 用設計ができる.	ニ メカニクスとエレクトニ テ クスとを統合したシステ ムの基礎設計ができる.	メカニクスとエレク クスとを統合したシ ムの説明ができる.	ステ	クスと	クスとエし を統合した 明ができな	こシステ		

平成 30 年度 生産システム上学コース シラバス									
科目名		担当教員		学年	単位	開講時数	種別		
オプトエレクトロ (Optoelectronics				5	1		選択		
授業の概要	概要メカトロニ 事例を踏まえな	クス機器に多用されているオ がら学ぶ。	プトエレクトロニクス	く技術の	原理と	その応用に	こ関して		
授業の進め方	進め方オプトエがら講義を行う。	レクトロニクス技術が機器の 。	中でどのように応用さ	されてい	いるか、	実用例を闘	沓まえな		
到達目標	1. オプトエレク	トロニクス技術について、原	原理と応用の両面から	技術を	理解で	きる			
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。									
		講義の内容	7						
項目	E]標					時間		
1. 光エレクトロニクスの基礎 光源, 検出器, ノイズと精度 光電変換の理解 精度に関する理解						6			
2. 光学の基礎 フェルマーの原理とレンズの結像公式の理解						8			
3. レーザーと応用機器 レーザー 光ファイバー 変調器・偏向器 気体レーザー、半導体レーザー等の原理の理解 光ファイバーの光伝送原理の理解 光を変調、偏向する各種手段の理解						6			
4. カメラ カメラとエレ 自動露出と自 デジタルカン	ンクトロニクス 目 目動焦点	カメラにおけるエレクトロニ 自動露出と自動焦点の原理と デジタルカメラの画像処理の	その実用例の理解				6		
5. 演習	ì	百智					2		
6. まとめ	<u> </u>	全体のまとめ					2		
							計 30		
学業成績の評価方 評価定期試験と平常テスト及び授業への参加状況から総合的に判断する。 法									
関連科目									
教科書・副読本 その他: 授業に合わせてプリントを配布する。									
評価 (ルーブリック)									
到達目標 理想的7	理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レ					レベルの目安	:ルの目安 (不可)		
技術に	オプトエレクトロニクス オプトエレクトロニクス オプトエレクトロニクス 技術について原理を理解 技術について原理を理解 技術について原理を説明 技術について原理を説明 し、応用技術を理解でき し、基礎技術を理解でき できる. できない.								

科目名		平成 30 年度 生産システム 担当教員		学年	単位	開講時数	種別	
材料力学 II (Mechanics of M	aterials II)	廣井徹麿 (非常勤)	廣井徹麿 (非常勤) 5 1				選択	
授業の概要	材料力学 I で学的考え方を発展	さんだ応力とひずみおよび変形 そさせることを目標とする.	ジの理解の上に、さら に	に深く理	上解する	ために必	要な力学	
授業の進め方	講義を中心としし、授業への気	、て,練習問題を解きながら進 集中度を高める.	進める.理解を深めるた	ため授業	ぎ中に適	宜口頭試	問を実施	
到達目標	. 曲りばりの応力と変形を説明できる.2. ひずみエネルギーとその応用を説明できる.3. 材料の破壊の条件を説明できる.4. 平板の曲げにおける応力と変形を説明できる.							
学校教育目標との 関係	校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。							
		講義の内容	容 ————————————————————————————————————					
項目		目標	-				時間	
ガイダンス・単位		材料力学 I の復習 はりの曲	由げ				2	
7章5節 曲りは	<i>(</i>)	曲りばりの応力					2	
8章 ひずみエネ	n th	薄い曲りばねの変形 引張り・曲げ・せん断・ねし	ぃりにトフハギカェラ,	1.49.			2	
8早 いりみエイ	ルイー	相反定理	, りによるひりみエイ/	V4-			$\frac{2}{2}$	
		カスチリアノの定理					$\frac{2}{2}$	
中間演習							$\frac{2}{2}$	
							計 14	
11章 材料の破	壊の条件	組み合わせ応力下の降伏条件	‡				2	
		塑性不安定						
13章 平板の曲	げ	長方形版の平面曲げと円筒曲げ						
		円板の軸対称曲げ						
F#4 \\\\$		長方形版の曲げ						
疲労	春刀≕ 好	疲労 概式 計算 解説					$\frac{2}{2}$	
期末試験の返却	・膵説	期末試験の返却・解説						
							計 16 計 30	
学業成績の評価方	中間演習409	。 %,期末試験50%,授業参加	加状况(口頭該問回答	+ 小門;	提出):	1.0%	HI 90	
法		0, 79,17,14,124,00, 0 0 70, 1,27,12,97.		1.3.1.3.	усті /	0 70		
関連科目	材料力学 I							
教科書・副読本	教科書: 「ポイ	ントを学ぶ材料力学」西村	尚編著 (丸善出版株式	(会社)				
		評価 (ルーブリ	リック)					
到達目標 理想的	な到達レベルの目安 (優	標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目録	보 (可)	未到達	レベルの目安	(不可)	
1 薄い円 きる	環の変形を計算	で 曲りばりの最大曲げ応力 を計算できる	曲りばりの最大曲け 発生場所を説明でき		方力 曲りばりの最大曲げり 発生場所を説明できた			
2 カスチ って変	リアノの定理を 形を計算できる	使 各種外力のひずみエネル ギーを計算できる	を種外力のひずみエ ギーを説明できる		ベル ひずみエネルギーを できない			
3 塑性不 みを求	安定条件時のひ めることができ	ず 降伏条件を計算できる	降伏条件を説明でき	る	降伏条件を説明できな			
4 平板の できる	最大たわみを計	算 平板の最大曲げ応力を計 算できる	・ 平板の最大曲げ応力 場所を説明できる		生 平板の最大曲げ応力発生 場所を説明できない			

ショク		平成 30 年度 生産システムエ		学年) 사 기	BB =# p+ W/	4手 DII		
科目名		担当教員			単位	開講時数	種別 選択		
精密加工 (Precision Mac		山下正英 (常勤)	2 時間						
授業の概要	や研削加工(工や高精度な仕上げが可能な特 砥石や砥粒による加工)につい NC 加工について学ぶ.	所殊加工法(放電加工, て学ぶ.また,その他	レー・ 也の加工	ザ加工, [法とし	電子ビーて歯車の	·ム加工) 加工, ブ		
授業の進め方	講義を中心と	し、授業中の試問により理解を	深めさせる.						
到達目標	1. 各種特殊加 2. 各種研削加 3. 歯車の加工	工について原理と特徴が説明で 工について種類と特徴が説明で 、ブローチ加工,NC 加工につ	できる. できる. いいて説明できる.						
学校教育目標と 関係	7育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。								
		講義の内容	7						
項目 目標									
ガイダンス		講義概要の説明					2		
放電加工		放電加工の原理や特徴、放電					4		
レーザ加工		レーザ加工の原理や特徴、加	工用レーザの種類にて	ついて理	里解する	•	4		
電子ビーム加工	•	電子ビーム加工の原理や特徴					2		
研削加工のあら		砥石や砥粒による加工の種類					2		
研削に用いる道		砥石や砥粒の種類、研削液に					$\frac{2}{2}$		
砥石車の取り扱		砥石車の保管方法について理解する							
砥石による加工		円筒研削、平面研削、内面研削と心なし研削について理解する							
砥粒による加工		ラップ仕上げ、ホーニング仕上げ、超仕上げについて理解する							
研削面のできば		研削作業における欠陥について理解する							
歯車の加工とフ	ローチ加上	歯切り方式とブローチ加工について理解する							
NC加工		NC 加工のあらましや加工の流れ,加工機について理解する 精密加工についてそれぞれの加工法の位置づけを理解する							
まとめ		精密加工についてそれぞれの 	加上法の位直つけを地	里解する	Ś		2 ≢1. 20		
出来はほの証件	ナーの同の雰囲ま	段の復長から別点ナフ あわり	与押封験の出建て白妻	リアノエカ書	注 1. 沿 /	(大会对心) (1)	計30		
学業成績の評価 法	カー2凹の定期試	験の得点から判定する。なお、	正期試験の成績不良有	には他	語と単1	业 認 正 武 縣	やで誅り。		
関連科目	基礎加工学・	生産加工学							
教科書・副読本		一一一	生委員会編 (産業図書	<u>†)</u>					
17.17 E HJULT	· 数件目: 坐	評価 (ルーブリ	,	1)					
到達目標 理想!	内な到達レベルの目安 (イ	憂) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	₹ (可)	(不可)				
理と	特殊加工について 特徴が説明でき, れの使い分けが記	そ 理と特徴が説明できる	各種特殊加工につい 理が説明できる		原 各種特殊加工について原理と特徴が説明できない				
理と	研削加工について 時徴が説明でき, れの使い分けが記	そ類と特徴が説明できる	各種研削加工につい 類が説明できる		種 各種研削加工について種類と特徴が説明できない				
工, N でき	の加工,ブロー ヲ IC 加工について記 それぞれどの橇 の加工に用いる カ きる	说明 工, NC 加工について説明 &な できる	歯車の加工,NC 加工 いて説明できる			加工,ブロ 加工につい い			

科目名					担当教員		学年	単位	開講時数	種別
管理シス (Manage neering		II ystems Engi-	松本』	E樹 (常勤)			5	1	後期 2時間	選択
授業の概	授業の概要 現代の生産管理、品質管理とは何かを目的に、企業経営上の問題とそれに対するシステム 決の例を示し、経営システムデザインの内容を概説する。また、経営管理と生産システム 専門用語、概念の理解をさせる。また、経営システムの分析・設計に関する数理モデルや 手法を紹介する。									工学的解 に関する 基本的な
授業の進	進め方	教科書の記述の内容を説明・理解させる上で、企業での実際例をより多く示し、机上の理論 らないように努める。								
到達目標	Ę	2. 企業の戦略	におけ る顧客	る生産と経営の の評価項目で	の管理の位	経営の管理の基本概念 位置づけを理解する 原価、納期を目標に			して合理に	的に生産
学校教育 関係	育目標との					学・自然科学・自らの 諸問題にそれらを応				的な技術
					構義の内容	7				
項目			目標							時間
	里と品質管			ブンス・概論		white facts				2
	里・品質管	理の基礎		管理・品質管理						2
QC 75				管理を支える 7 、		* * *				4
PERT 設備管理				ジェクト管理手 O字差ト設備等						$\frac{4}{4}$
	ェ なものの考	ラ 方	故障の定義と設備管理方策の理解 統計的手法の基礎の理解							4
統計的權		~/]	仮説と検定による統計的判断の理解						6	
管理図法			管理図の考え方、種類についての理解						4	
										計 30
										計 30
学業成績 法	責の評価方	期末考査の得点 実施しない。	点と授美	業の参加状況か	ゝら決定す	る。なお、成績不良	者のため	めの追討	やレポー	ト提出は
関連科目	1	管理システム	工学 I・	実験計画法						
教科書·	・副読本	教科書: 「生産	を管理コ	[学] 理論と実	[際]」富士	比 明良 (東京電機大	学出版	局)		
				評価((ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	문) 楞	準的な到達レベルσ)目安 (良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	: (不可)
1	1 科学的管理法・標準化概 が導入されてきた必然 を理解し、経営戦略と 関連性を把握できること			学的管理法・ の基本的概念 いるが、それ れてきた必然 不十分である。	を理解し らが導入 性の理解	科学的管理法・標準 念の基本的概念を でいること。	里解し		管理法・ 本概念のヨ ある。	
2	それを領生産権の		の管適	業の経営戦略を れを実現させ 産管理・品質を 技術の手法を る。	るための 管理の管 理解して	生産管理・品質管理技術の手法を理解いる。	解して	技術の方の理解	里・品質管 手法の基準 解が不十分	本的考え }である。
3	検定、推 計的手法 論理的力	等の数理的技法 定、管理図等の まの目的を理解し なプロセスを経 算いている。	統し、ておかせ	ERT 等の数理 定、推定、管理 的手法につい 導かれている スの論理性が ている。	図等の統 て、正答 が、プロ	PERT等の数理的技 検定、推定、管理図 計的手法について、 のプロセスの一部 的な不備があり、」 きちんと導かれてい	等の統 分 治 音 子 論 が	検定、推 計的手 手法の	等の数理(権定、管理 法にない。 まおり、 れない。	図等の統 て、分析 考え方を

	1	半成30年度 生産ン人テム上学コース シフバス								
科目名		担当教員	学年	単位	開講時数	種別				
特別演習 (Special Seminar)	t	坂本誠 (常勤)	5	1	前期 2 時間	選択				
授業の概要	機械設計技術者	機械設計技術者3級の資格試験を念頭において各種演習を行う。								
授業の進め方 これまで学んできた機械設計に関する基礎知識を復習し、演習を繰り返すことにより、 める。										
到達目標	標 1. 機械設計技術者 3 級の資格試験合格を目指し、機械工学の基礎である機構学、機械要素 械力学、制御工学、工業材料、材料力学、流体・熱工学、工作法、機械製図の基礎的知識 るものにできる									
学校教育目標との 関係	,	合的実践的技術者として、数学・自然科学・自らの に関する知識をもち、工学的諸問題にそれらを応				りな技術				
		講義の内容								
項目		目標				時間				
ガイダンス	;	本科目の目的および講義項目と進め方、評価方法	などの確	生認を行	ŕδ	2				
機械力学		静力学と動力学についてより深く理解し、機械に勢 動問題の解決方法を修得する	発生する	1自由	度系の振	4				
熱工学		熱力学を中心とした、熱工学の基礎理論を理解し、代表的サイクルを適用した機器に適した検討方法を修得する								
機械製図		第3角法、図面作成要領および図面記入項目を習熟し、代表的な機械要素の製図方法を把握する								
流体工学	i	流体機械の作動原理を理解し、基礎的な設計計算方法を修得する								
機構学・機械要素	設計	リンク・カムの動作理論を学びつつ、代表的な機械要素の特徴と設計法に ついて理解する								
制御工学	7	機械制御に関する基本項目を再確認すると共に、遅れ要素などを含む制御 系の検討方法について理解する								
工業材料	-	一般的に利用される金属材料の機械的性質と特徴を理解し、機械製品に適 用した場合の注意点について理解する								
材料力学	7	材料力学の基本項目を再確認し、実際に機械に生じる基本的な材料力学的 検討方法を理解する								
工作法		代表的な機械工作法を把握し、その工学的特徴と加工原理を理解する								
まとめ	-	授業の各項目について、総合演習課題を行い、課績	夏の解説	内容を	理解する	2				
						計 30				
学業成績の評価方 法	定期考査の成績	長、授業への参加状況によって評価する。								
関連科目										
教科書・副読本 副読本: 「機械設計技術者のための基礎知識」機械設計技術者試験研究会 (日本理工出版会他: プリント										
評価 (ルーブリック)										
 到達目標 理想的な	到達レベルの目安 (優)	,	安(司)	李 國達	レベルの目安	(不可)				
1 機械工	学の基礎分野の原	応機械工学の基礎分野の基機械工学の基礎分野	野につっ	機械工	学の基礎分	予野につ				
用問題が	が解ける。	本的な問題が解ける。いて説明できる。		いて説	明できない	, 。				