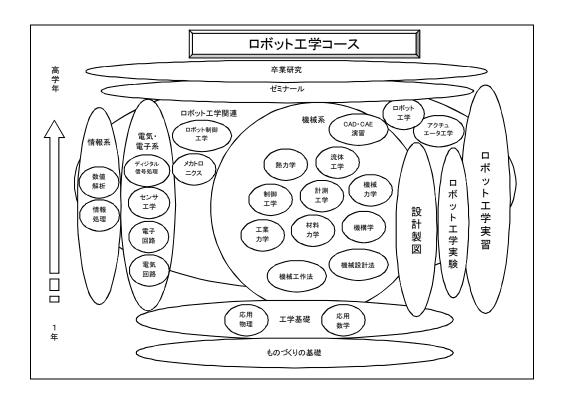
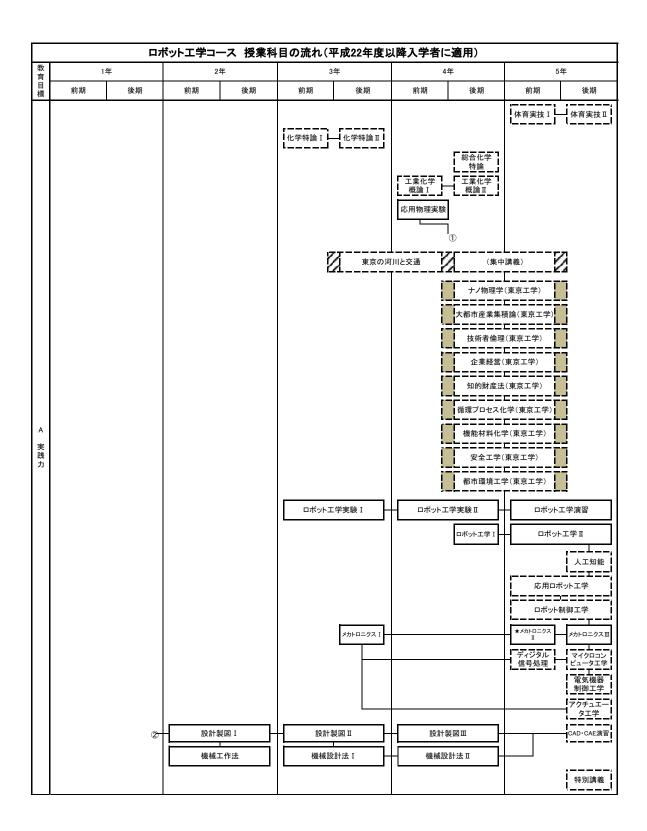
ロボット工学コース

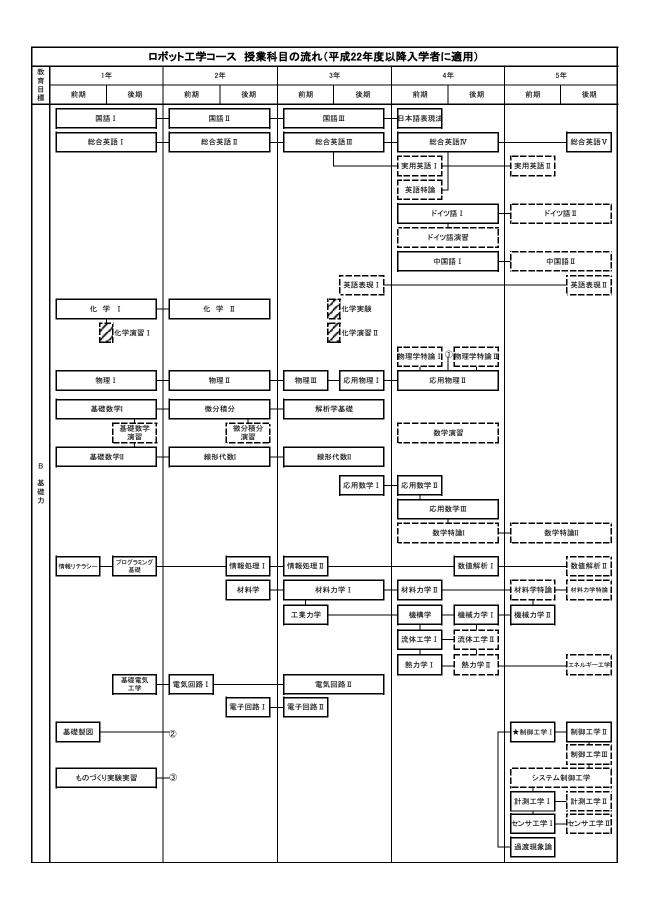
〇ロボット工学コース 教員一覧

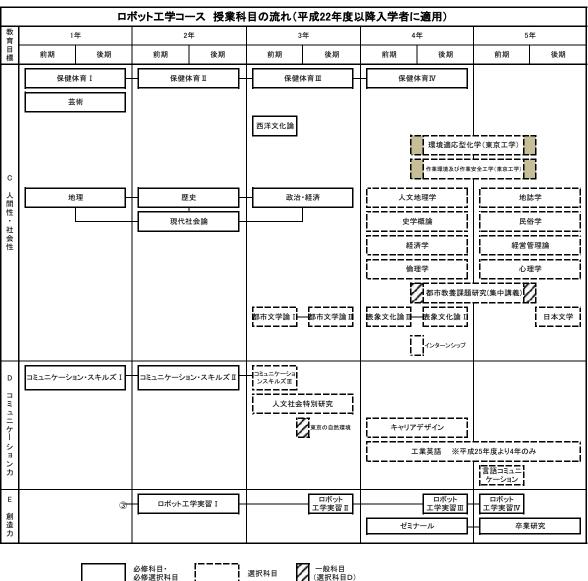
職名	氏名	主な担当科目	校務	
教 授	奥平 鎭正	電気回路	R 2 担任	
教 授	田村 恵万	流体工学		
教 授	根本 良三	設計製図	コース長、R4担任	
教 授	源 雅彦	ロボット工学		
准教授	大貫 貴久	材料学		
准教授	笠原美左和	制御工学		
准教授	鈴木 拓雄	設計製図	R3担任	
准教授	堀 滋樹	ロボット制御工学		
准教授	宮川 睦巳	材料力学・機械力学		
助教	瀬山 夏彦	機械工作法		

ロボット工学コース


育成する人材像


- ① 「機械(ロボットを含むメカトロニクスの機構部)を構成するための 技術」を習得するために必要である機械系科目の基礎力を有した学生
- ② 「上記のような機械の動きを制御するための技術」を習得するために 必要である電気・電子・情報系科目の基礎力を有した学生
- ③ 機械の設計、加工、組立、運転に必要な実践力を有した学生
- ④ ものづくりを実現するのに必要なコミュニケーション能力を有した学生
- ⑤ ものづくりを実現するために必要な創造力、問題解決能力を有した学生


カリキュラム・ポリシー


- ① ものづくりに必要な機械系の基礎科目を学習する。
- ② ものづくりに必要な機械系の基礎科目の上に、電気・電子・情報系の基礎科目を学習する。
- ③ 基礎科目の理解を深めるために、ロボット工学実験・実習と設計製図とを連携させてさらに理解を深めるように学習する。
- ④ 機械系応用科目、電気・電子・情報系応用科目、設計製図を通して、ものづくり実現のためにより実践的に学習する。
- ⑤ 実験・実習を通して、実践的なものづくりの基礎的技術や応用的技術を学習する。
- ⑥ ゼミナールや卒業研究を通して、創造力、プレゼンテーション力及び問題 解決能力を養えるように学習する。

主な科目の系統図

必修科目・ 必修選択科目 選択科目 (選択科目D) 東京工学科目 ★ 平成24年度は開講しない

※5年次の前期科目と後期科目は、入れ替える可能性あり

科目名		担当教員	学年	単位	開講時数	必修·選択
情報処理 I (Information Processi	ng I)	笠原 美左和(常勤)	2	1 専門科目	後期 2時間	必修
授業の概要	んだ 実習	で学んだ情報リテラシーの。 文章作成や"エクセル"に 中心に学ぶ。さらに、"パワ ピュータに関する基礎知識	よる物理 フーポイン	的・工学的な くト"を用いる	よ計算、グラフィ	作成などを
授業の進め方	パソ 行う	コンを使用した実習を中心 。	に行う。:	授業毎に内容	ぶを説明 したあ	と、実習を
到達目標		プロ・表計算ソフトウェア				
学校教育目標との関係	高度	な専門知識を学ぶための基	礎的学力。	や技能を備え	た技術者を育成	戈する。
		講義の	内 容	}		
項目		目		標		週
ガイダンス コンピュータに関する9 技術文章の作成 I 表計算とグラフ		この授業の内容や進め方を CAD を動作させるためのコ 基礎知識,情報セキュリテ ワードによる数式を含む文 エクセルによる物理的・コ	ンピュー ィについ 章が作成	タシステム, て学ぶ。 できる。		2
技術文章の作成Ⅱ 物理シミュレーション		る。 ワード・エクセルを用いて 物理の運動シミュレーショ 深める。				3 3
						計15
		、(30%)、出席・授業態度) _o
関連科目	修得し	た技術は工学実験実習、	卒業研究	にて必要と7	なる。 	
	②実験 ③CAD	x:①「数式作成に使う Wor 対データ処理に使う Excel 活 利用技術者試験「基礎試験 スパーソナルコンピュータン	用法」 」練習問題	カットシスラ 題ドリル 365	テム	

科目名	担当教員	学年	単位	開講時数	必修·選択				
設計製図 I (Design & Drawing I)	根本 良三 (常勤)	2	2 専門科目	通年 2時間	必修				
授業の概要	法記入・仕上げ記号やはめあい記	×授業では、ロボットなどに代表される機械を構成する機械要素について、寸 は記入・仕上げ記号やはめあい記号などの JIS 規格に関する知識を理解しなが っ、テクニカルスケッチとトレースを行い実技能力の向上と習熟を図る。							
授業の進め方	間および期末試験を実施し、習	記項目の実技と学習を行い、機械要素図面について理解を深める。また、中 および期末試験を実施し、習熟度の確認をする。							
到達目標	JIS 規格にのっとった機械要素の正しい利用法を体得させる。	IS 規格にのっとった機械要素の製図を理解し、寸法記入やはめあい記号などの Eしい利用法を体得させる。							
学校教育目標との関係		実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの"の創造・開発に粘り強く挑戦できる技術者を育成する。							
	講義の「	为 容							
項目	目		標		週				
ガイ第法とは、一個では、一個では、一個では、一個では、一個では、一個では、一個では、一個で	製図室および製図用具の使用法の線の種類と太さ、優先順位機械製図で使用される第三角法形状や機能・加工法からみた選ねじ製図の理解 コと製図の理解 対法補助記号、組み合わせによる可法公差、面の指示記号、幾何公部分断面図の理解 部分拡大図、給油装置の理解 幾何公差、歯車製図の理解 ばね製図の理解	について び方	里解		計 15				
学業成績の評価方法	課題提出物の完成度、作業態度、		回の定期試験	の結果よりお	計 15 快定する。な				
関連科目	お、成績不良者に対する追試は行っ 設計製図Ⅱ・Ⅲ、機械設計法Ⅰ・ 科目		コボット工学	実習 I ~IVの	り基礎となる				
教科書・副読本	教科書「実教出版 機械製図」								

科目名	担当教員	学年	単位	開講時数	必修·選択				
材料学 (Materials Science)	大貫 貴久 (常勤)	2	1 専門科目	後期 2時間	必修				
授業の概要	金属材料の機械的性質は、成分のみならず結晶構造、組織に大きく依存する。本講義では、基本的な材料試験とその機械的特性について学び、併せて、その基礎となる結晶構造、組織について学習する。また、組織の状態を理解するために重要な状態図の読み方、熱処理による組織変化についても学習する。								
教科書、プリントを使った講義を中心とするが、理解を深めるための演習、小授業の進め方									
①金属材料の機械的性質と基本的な試験方法と特性値の算出方法を理解する ②金属材料の基本結晶構造を理解する ③主要な二次元平衡状態図を理解し、組織状態、組織割合と成分組成を求め ④鋼の平衡状態図と組織、および、熱処理による組織変化について理解する									
学校教育目標との関係	高度な専門知識を学ぶための基礎的	学力や技	能を備えた打	技術者を育成で	する。				
-75 F	講義の内容				\m_				
項 目	目 標 基本的な材料試験方法(引張試	· FE 7m + ⇒	上になる。 (本)	・	週 の機 4				
1. 材料の機械的性質	を理解する。				. 124				
2. 結晶構造	純金属、合金の結晶構造について学び、充填率の算出方法ができるようにする。								
3. 二次元平衡状態図	相変態と全率固溶体型、共晶型状態図などについて学び、状態図から得られる組織の成分、割合の求め方について理解する。								
4. 鋼の平衡状態図と組織	主要金属材料である鋼を取り上 ーライト、オーステナイト、セ する。								
5. 鋼の熱処理と熱処理技術	主な種々の熱処理(焼鈍し、焼ならし、焼入れ・焼戻しなど)について 理解する。また、恒温冷却・連続冷却による組織変化、マルテンサイト 変態、および、焼入れ性と焼戻しについて学ぶ。								
					計 15				
学業成績の評価方法	基本2回の定期試験の平均得点 に行う小テストと課題について 点で加点し評価に反映する。				を深めるため				
関連科目	材料学特論、ロボット工学実習 材料力学Ⅰ・Ⅱ、材料力学特論	•			÷製図 I ~IV、				
教科書・副読本	教科書:打越二彌、「図解機械 その他:配布プリント	材料」、東河	京電機大学出	出版局、¥3, 15	0				

科目名	担当教員	学年	単位	開講時数	必修·選択				
機械工作法	担ヨ教員	子午	甲亚	用褲吁奴	业修⁺ 迭 択				
(Manufacturing Engineering)	瀬山 夏彦(常勤)	2	1 専門科目	通年 1 時間	必修				
授業の概要	おり、それによって様々な形状や くりの基礎となる鋳造、塑性加工	学の回りにある製品を構成している部品の多くは、なんらかの加工が行われていり、それによって様々な形状や機能が付与されている。本講義では、ものないの基礎となる鋳造、塑性加工、切削加工等の機械工作法について幅広く等習する。さらに、各種工作法で使用される工作機械や装置の概要、原理について学習する。							
授業の進め方	教科書を使った講義を中心とする ト等を配布し、講義を進める。	。内容に	よって、理	解を深めるた	こめのプリン				
到達目標	① 鋳造、塑性加工、切削加工、研する。② 各種工作法で使用する工作機械③ 希望する加工に応じて適切な機	で装置の	特長を理解	する。					
実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの"の 学校教育目標との関係 創造・開発に粘り強く挑戦できる技術者を育成する。									
	講義の内	容							
項目	目	標	į		週				
1. 機械工作法の概要	(1) 金属の加工性(2) 機械工作法の分類				2 2				
2. 鋳造	(1) 鋳造の概要(2) 模型の製作法と溶解(3) 特殊鋳造法				2 2 2				
3. 塑性加工、鍛造	(1) 塑性加工の概要(2) 自由鍛造と型鍛造(3) 圧延加工、転造加工、プレス加工	I.			2 2 2				
4. 切削加工	(1) 切削加工のメカニズム (2) 旋削加工とフライス加工におけ	る切削条件	#		4 2				
5. 研削加工	(1) 研削加工の概要と研削理論の基础 (2) 代表的な研削加工法	选			2 2				
6. 溶接	(1) 溶接の原理と特長 (2) 代表的な溶接方法				2 2				
25 W 76	2 回の定期試験(前期期末、後期期	末)の得	点、課題提	出、授業態度	計 30 Eおよび出席				
学業成績の評価方法	状況等によって評価する。 ロボット工学実習 I (特に旋盤、フ								
関連科目	関する実習項目)、設計製図 I 、材料	斗学 I		クセノグ 寿り	ノ別別ルルに				
教科書・副読本	教科書:平井三友、和田任弘、塚本 機械系教科書シリーズ 機			コロナ社					

科目名		担当教員	学年	単位	開講時数	必修·選択
電気回路 I (Electric Circuits	I)	多田 允建(非常勤)	2	1 専門科目	前期 2 時間	必修
授業の概要		電子系の工学技術を習得する である.第2学年では,直流				
授業の進め方	講義	を中心として,理解を深める	ために	演習を多く取	り入れる.	
到達目標	② 直 ③ 初	直流と交流について理解する 直流回路の基本的な法則,定 复雑な閉回路を含む回路の電	理につい 流や電圧	Eの導出のし	かたを理解す	
学校教育目標との関係	高度	な専門知識を学ぶための基礎	的学力や	や技能を備え	た技術者を育	育成する。
		講義の内				
項目		E		標		週
ガイダンス 直流回路の復習 連立方程式の解法 キルヒホッフの法則 I 練習問題 中間試験の解答・解説 キルヒホッフの法則 II 練習問題 重ねの理 テブナンの定理 交流 期末試験の解答・解説	クキキーキキ重重等等交	ームの法則, 直列・並列・直 ラーメルの式の理解 ルヒホッフの法則(枝電流流 ルヒホッフの法則(杖電流流 ルヒホッフの法則(ループ管 ルヒホッフの法則(ループ管 ルロ理の理解 ねの理の演習 価電源回路の理解 価電源回路の演習 流の定義, 正弦波交流の基本	去)の理 法)の演 電流法) 電流法) 本的事項	解習の理解の演習		1 2 1 1 1 1 1 1 1 1 1 1 1
学業成績の評価方法	る。定期	E期試験の得点と授業への参 明試験得点と授業への参加状 ☆じて、追試験を実施するこ	況・課是	夏の提出状況		
関連科目	第3学生	F後期で学習する電子回路 F以降で学習する電気回路及				
教科書、副読本		: 西巻正郎他2名著『電気回 : 『わかりやすい電気基礎』			页)	

科目名		担当教員	学年	単位	開講時数	必修·選択		
電子回路 I (Electronic Circuits I)	生方 俊典 (常勤)	2	1 専門科目	後期 2時間	必修		
授業の概要		気を利用する上で必要となる。 5諸法則等)を学ぶ。	、基礎知言	************************************	本的原理や電	気回路に関		
	9 %)相仏別寺)でする。						
授業の進め方	講義	溝義を中心として、理解を深めるために演習を取り入れる。						
到達目標	_	でイオードの基本特性が理解	_					
	_	、ランジスタの基本特性が理 トペアンプの基本特性が理解						
 学校教育目標との関係	高度	Eな専門知識を学ぶための基	选的学力·	や技能を備え	た技術者を育	育成する。		
- F		1	内 容	 標		· B		
項 目			#**************			週		
ガイダンス 半導体		授業を受けるに当たっての			ぶぎ四った	$\begin{bmatrix} 1\\2 \end{bmatrix}$		
十等平		半導体における電子と正孔	しり修動で	こ 电弧の 労理	が説明できん	S C 2		
ダイオード		と。						
ダイオート ダイオードを用いた整治	太同败	ダイオードの基本的性質について説明できる。 ダイオードを用いた整流回路について理解する。						
トランジスタの基本特		タイオートを用いた盤流回 トランジスタの動作原理お			・チンガ佐田)	につ 1		
トノンンスグの基本符	生	トノンシへみの動作原理や いて理解する。	よい増幅	作用、ヘイツ	/ソンクTF用(
トランジスタの増幅回	路	、	ついて理	解する。		1		
(中間試験の解答・解				,,,, , , ,		1		
FET の基本特性	· -/	FET の動作原理と基本特性	性について	理解する。		1		
オペアンプの基本特性		オペアンプの基本特性につ		-		2		
オペアンプの回路計算		オペアンプの回路計算法に				1		
オペアンプを用いた演	算機能							
		発振回路、コンパレータに	ついて理	解する。				
(期末試験の解答・解	説)					1		
<u>₩₩₩₩</u> ₩	0 III -	CHINA NEA A ZE LA LESTE	~ 42 - 11: \	H 2 3 40 A 11)__\\	計15		
学業成績の評価方法		定期試験の得点と、授業への						
		対状況の比率は8:2程度の なる	とする。言	はた、成績不	艮者には追認	んと実施する		
	<u> ことが</u>	ぶある。						
関連科目	第2学	年以降で学習する電子回路	等の基礎。	となる科目				
教科書、副読本	教科書	・「電子回路学入門」コロナ	生					
教科書、副読本	教科書	「電子回路学入門」コロナ	生					
教科書、副読本	教科書	・「電子回路学入門」コロナイ	<u></u>					

科目名	担当教員	学年	単位	開講時数	必修·選択
ロボット工学実習 I	源・瀬山(常勤)、		3	通年	
(Practice in Robotics I)	岸・杉原(嘱託)	2	専門科目	3時間	必修
授業の概要		、、トア ー	- 人の制作な	涌じて ロボ	いた制作に
授未の似安	必要な一連の流れである、設計、				
	て学習する。併せて、それらに				
	目指す。		<u> </u>	1,0000	111 1111
授業の進め方	年度当初は製作するロボットア	ームの理	単解を深める	ため全員教室	で、組立図
	を元に機構の自由度の理解、工	作機械、	加工手順、	材料、駆動モ	ータについ
	て学ぶ。その後、4 班に分かれ、				
	の実習を体験する。全ての部品				
	なお、本実習で製作したロボッ き続き使用する。	トナーム	は、第3字	中のロホット	美省Ⅱで別
到達目標	①組立図を基にロボットアーム	の機構	部品形状が3	理解できる	
7)是自休	②工作機械の習熟度を高める。	/ / IVX ITT /	אייייייייייייייייייייייייייייייייייייי	土川(こう。	
	③加工手順を考える能力を養い、	、加工手	-順書を理解	できる。	
	④モータ制御の基本原理が理解	できる。		-	
	⑤組立方法、運転方法を理解で	きる。			
学校教育目標との関係	地域産業の発展に貢献するため、			し、設定した	課題に向か
	って果敢に挑戦できる技術者を	育成する	00		
	=# * *				
	講義の内	容	1255		·=
項 目	目		標		週
ガイガンフ 港美・淀羽	・エータの其琳 図声の詰り古	燃構の	白山市 燃塩	でに注の其に	林左口 2
ガイダンス、講義・演習	・モータの基礎、図面の読み方、 識 材料の基礎知識 図面の				楚知 3
ガイダンス、講義・演習	識、材料の基礎知識、図面の	トレース	による部品	形状の理解	芝 知 3
ガイダンス、講義・演習 旋盤作業		トレース 書き方に	による部品	形状の理解	芝知 3 6
旋盤作業 フライス盤作業	識、材料の基礎知識、図面の ・図面を基にした加工手順書の ・入力軸、カラー、フランジ等 ・アーム、ボトムプレート、ア	トレース 書き方に の製作 ッパーフ	による部品 こついての講 パレートの製	形状の理解 義・演習 作	
旋盤作業 フライス盤作業 マシニングセンタ作業	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ	トレース 書き方に の製作 ッパーフ	による部品 こついての講 パレートの製	形状の理解 義・演習 作	6
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作	トレース 書き方に の製作 ッパーフ	による部品 こついての講 パレートの製	形状の理解 義・演習 作	6 6 2 2
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作	トレース 書き方に の製作 ッパーフ	による部品 こついての講 パレートの製	形状の理解 義・演習 作	6 6 2 2 1
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業	識、材料の基礎知識、図面の・図面を基にした加工手順書の。 ・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作	トレース 書き方に の製作 ッパーフ	による部品 こついての講 パレートの製	形状の理解 義・演習 作	6 6 2 2 1 1
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・ウCモータの駆動回路の製作	トレース 書き方に の製作 ッパーフ	による部品 こついての講 パレートの製	形状の理解 義・演習 作	6 6 2 2 1 1 6
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業	識、材料の基礎知識、図面の・図面を基にした加工手順書の。 ・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作	トレース 書き方に の製作 ッパーフ	による部品 こついての講 パレートの製	形状の理解 義・演習 作	6 6 2 2 1 1
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・ウCモータの駆動回路の製作	トレース 書き方に の製作 ッパーフ ドベース	による部品 こついての講 プレートの製 スプレートの!	形状の理解 義・演習 作 製作	6 6 2 2 1 1 6 3
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・DCモータの駆動回路の製作・ロボットアームの組立と運転	トレース 計き方に の製作 ッパーフ ドベース	による部品が こついての講 プレートの製 プレートの動 物を全て提出	形状の理解 義・演習 作 製作	6 6 2 2 1 1 6 3 計30
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・サイドカバーの製作・ロボットアームの組立と運転原則、製作作品を完成させ、から	トレース と か と た か か パーフ ドベース と た 、 と 、 と 、 と 、 と 、 と 、 と 、 と 、 、 、 と 、 と 、 と 、 と 、 と 、 と 、 と 、 、 と と 、 と 、 と 、 と 、 と 、 と 、 と と 、 と 、 と 、 と 、 と 、 と 、 と と 、 と 、 と 、 と 、 と と 、 と 、 と 、 と 、 と 、 と 、 と と と と と と と と と と と 、 と	による部品が こついての講 プレートの製 プレートの動 かを全て提出 加工技能の習	形状の理解 義・演習 作 製作 はすることを見 対象度(20%)	6 6 2 2 1 1 6 3 計30 必須とする。 、③製作作
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・DCモータの駆動回路の製作・ロボットアームの組立と運転原則、製作作品を完成させ、かて①出席状況および実習態度(40°品(20%)、④提出物[図面、は、実習分野ごとに①~④の項目	トレース とき数作 リッドベーース 提(②) よ)、ポート は(②) は(で)	による部品 こついての講 プレートの製 プレートの プレートの プレートの で全 で 大 で で で で で で で で で で で で で	形状の理解 義・演習 作 製作 ことを刺 ご評価する 点として、上	6 6 2 2 1 1 6 3 計30 ※ 3 製作的にで 。 具体的にで
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・ウビモータの駆動回路の製作・ロボットアームの組立と運転原則、製作作品を完成させ、かて①出席状況および実習態度(40%品(20%)、④提出物 [図面、は、実習分野ごとに①~④の項目重みをつけ評価点を算出する。記述	ト書のツドベースに と	による部品 にいての講 プレートの製 プレートの プレートの プレートの で全 で で で で で で で で で で で で で	形状の理解 義・演習 作 関熱で手 と20%) 点としってて 対によって 対によって	6 6 2 2 1 1 6 3 計30 ※ 3 製作的にで 。 具体的にで
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立 学業成績の評価方法	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・サイドカバーの製作・ロボットアームの組立と運転原則、製作作品を完成させ、かつの出席状況および実習態度(40°品(20%)、④提出物 [図面、は、実習分野ごとに①~④の項目重みをつけ評価点を算出する。」点評価)。また、正当な理由により	トレースに カッドベース 提の かん は (2) よい は (2) よい は (4) ない は (4) ない は (5) ない は (6) ない は (7) ない は	による部品 にいての講 プレートの製 プレートの プレートの がを全て提出 で な 等] (20%) で で で な で な で の に で で の に で で の に で の に で の に の の に の の に の の に の に の の の の の の の の の の の に の の の の の の の の の の の の の	形状の理解 義・演習 作 製作 ことを ごを でいる でいる でいる によっ でいる がによっ。	6 6 2 2 1 1 6 3 計30 ※ 3 製作的にで 。 具体的にで
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立	識、材料の基礎知識、図面の・図面を基にした加工手順書の。・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・かさ歯車の製作・サイドカバーの製作・ロボットアームの組立と運転原則、製作作品を完成させ、かて①出席状況および実習態度(40% 品(20%)、④提出物 [図面、は、実習分野ごとに①~④の項目重みをつけ評価点を算出する。記点評価)。また、正当な理由によ1年専門科目では、ものづくりま	ト書のッド つんのよう かいま でんしょ かい かい かい しょう はい かい	による部品 にいての講 プレートの製 プレートの で大きででは で大きででは ででは、では、 では、では、 では、では、 では、では、 では、	形状の理解 養・演習 作 製作 さこ (20%) 点によう。 を電気工学	6 6 2 2 1 1 6 3 計30 ※ 3 製作作にで 。 具体的合点 う (10点)
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立 学業成績の評価方法	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・サイドカバーの製作・ロボットアームの組立と運転原則、製作作品を完成させ、かつの出席状況および実習態度(40°品(20%)、④提出物 [図面、は、実習分野ごとに①~④の項目重みをつけ評価点を算出する。」点評価)。また、正当な理由により	ト書のッド つんのよう かいま でんしょ かい かい かい しょう はい かい	による部品 にいての講 プレートの製 プレートの で大きででは で大きででは ででは、では、 では、では、 では、では、 では、では、 では、	形状の理解 養・演習 作 製作 さこ (20%) 点によう。 を電気工学	6 6 2 2 1 1 6 3 計30 ※ 3 製作作にで 。 具体的合点 う (10点)
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立 学業成績の評価方法	識、材料の基礎知識、図面の・図面を基にした加工手順書の。・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・DCモータの駆動回路の製作・ロボットアームの組立と運転原則、製作作品を完成させ、かて①出席状況および実習態度(40%品(20%)、④提出物 [図面、は、実習分野ごとに①~④の項度重みをつけ評価点を算出する。記点評価)。また、正当な理由によ1年専門科目では、ものづくり第2年専門科目では、設計製図 I、	ト書のツドログルのようでは、下書のツドは、一つのかいまでは、大き製のが、様、からのは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きない	による部品 ポンマントの ポンマントートの ポンプンレートの ポンプンレートの 全を主 大でででででででいる。 でででいる。 でででいる。 でででいる。 でででいる。 でででいる。 ででいる。 でででいる。 でででいる。 でででいる。 ででい。 ででいる。 でいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででい。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 でいる。 ででい。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででいる。 ででい。 ででい。	形 様・ 作 関 を を で と を で と に で と に で に で に で で と に で で に に で で に に で で に に で で に に で に に で に に で に に で と に に で と に に で に に で と に に で と に で と に で と に で に で と に で に で と に で に に で に で に に で に に で に に で に に で に に で に に に に で に に に に に に に に に に に に に	6 6 2 1 1 6 3 計30 ※ 3 製体的合う 。 記 10 点 3 ま 10 点 10 点 11 点 11 点 11 点 11 点 11 点 11
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立 学業成績の評価方法 関連科目	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・サイドカバーの製作・ロボットアームの組立と運転原則、製作作品を完成させ、かつ出席状況および実習態度(40%品(20%)、④提出物[図面、は、実習分野ごとに①~④の項目重みをつけ評価点を算出する。記点評価)。また、正当な理由によ1年専門科目では、ものづくり第2年専門科目では、ものづくり第2年専門科目では、ものづくり第2年専門科目では、記計製図Ⅰ、路Ⅰ3年専門科目では、ロボットエジカ学、材料力学Ⅰ、電気回路Ⅱ、	ト書のッド つんがしまで、 笑、 学しき製パベ	による部品 によるの講 プレートの製 プレートの プレートの で で で で で で で で で で で で で	形義・作製作 で表を関する。 では、は、では、では、では、では、では、では、では、では、では、では、では、では	6 6 2 1 1 6 3 計30 ※ 3 数 体的合 点 で う (10 高 子 の う (10 高 一 で う で う 、 に う る に で る っ る っ 、 の る に る っ 、 の る ら る に る る っ 、 の る る ら る ら る る る る る る る る る る る る る る
旋盤作業 フライス盤作業 マシニングセンタ作業 塑性加工作業 鋳造作業 レーザ加工作業 モータ製作実習 ロボットアームの組立 学業成績の評価方法	識、材料の基礎知識、図面の・図面を基にした加工手順書の・入力軸、カラー、フランジ等・アーム、ボトムプレート、ア・モータ受け用プレート、サイ・サイドプレートの製作・かさ歯車の製作・サイドカバーの製作・サイドカバーの製作・ロボットアームの組立と運転原則、製作作品を完成させ、かつ①出席状況および実習態度(40%品(20%)、④提出物 [図面、は、実習分野ごとに①~④の項目重みをつけ評価点を算出する。記点評価)。また、正当な理由によ1年専門科目では、ものづくり第2年専門科目では、設計製図 I、路 I 3 年専門科目では、ロボット工会	ト書のッド つんがしまで、 笑、 学しき製パベ	による部品 によるの講 プレートの製 プレートの プレートの で で で で で で で で で で で で で	形義・作製作 で表を関する。 では、は、では、では、では、では、では、では、では、では、では、では、では、では	6 6 2 1 1 6 3 計30 ※ 3 製体的合う 。 記 10 点 3 ま 10 点 10 点 11 点 11 点 11 点 11 点 11 点 11

科目名		;	担当教員		学年	単位	開講時数	必修·選択
応用数学 I		E 11.#	L→ /⊣⊢≥4+	-1.\	0	1	後期	St life
(Advanced Mathematic	s I)	原开创	女子(非常勤	刃)	3	専門科目	2時間	必修
授業の概要	微分	方程式は	、自然現象	はもちろ	らんのこ	と社会現象を	記述する上で	必須の道具
						現象の振る舞り		
				系数線用	沙微分方	程式の解法を「	中心に、微分	方程式の基
ゼポの光ムナ	_	識と解法		4万子 沙吐)	よフナ は	の問題が対対す	4T. E	
授業の進め方	再爭	をピールと	するか、理	件を保(めるにぬ	の問題演習も	1丁ツ。	
到達目標			この概念を理		-	Lu 7 - 1 .21-	a + 7 - 1	
	_					求めることがで ることができる	-	
						oことができる Sことができる	-	
学校教育目標との関係						か技能を備え		が成する。
	14/		, ,		. = . + + / .		-5.114 0	,., 🕶
	=	群 義	の ゅ	容				
項目	ū	•						调
項目		目	標					週
微分方程式の意味	微分力	程式の概念	念を理解す	ること。				1
微分方程式の解	微分力	7程式の解	の種類と意	味を理解	解する。			1
変数分離形			分方程式の			00		3
同次形			程式の解法		-			1
1階線形微分方程式	1 階線	形微分方	呈式の解法	を習得す	「る。			1
中間試験	0. 厚比交角	TC公仏 ハーエ	п т а фли	初小小斤	テナ、T田 名刀	- ナフ		1
線形微分方程式			呈式の一般 形微分方程					2
定数係数斉次線形微 分方程式	足奴仍	·双月(人)脉	ツ双刀刀任	エレマノ州牛化	ムゼ 自信	r y る。		2
定数係数非斉次線形	定数係	(数非吝次)	線形微分方	程式の飼	解法を習	得する。		1
微分方程式	, — » N	J9171 77 V		,	.,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
いろいろな線形微分	連立微	分方程式	や定数係数	でない	敞分方程	式を取り扱う	0	1
方程式								
線形でない 2 階微分	線形で	でない 2階	微分方程式	の解法	を考察す	⁻ る。		1
方程式								
₩ ₩ ₽ /≠ ~ == ! - 1 · 1	4 🖂 😁	ر ان ۱۱ ۳۱۵۲۳۲	の組上)に	がたまと いい	11. 44 .11		相目は以中2~	計 15
学業成績の評価方法 						況・課題等の	提出状況から	評価する。
			と課題等の					
関連科目		_				する上での基礎		
				が,今後	後学習す	る数学や多くの	の専門科目を	理解するた
ᄽᄭᆂᅠᇛᆂᅩ		礎となる。		∏ (.l. □	+157 ±1			
教科書・副読本 			分積分 Ⅱ 分積分 Ⅱ	_				
	问起朱	: [77] [17]	スカ1項ガ Ⅱ	问烟果』	(八日/	↑囚首/		

科目名		担当教員	学年	単位	開講時数	必修·選択
応用物理 I (Advanced Physics I)	田上 慎(非常勤)	3	1 専門科目	後期 2時間	必修
授業の概要		学コースの専門科目を学ぶ際に必 現象の原理・法則の学習を通して				
授業の進め方	講義	が中心となる。理解を深めるため	の問題液	寅習も適宜行	テ う。	
到達目標		流と磁界の関係について理解する の基本的な性質について理解する	*			
学校教育目標との関係	高度	な専門知識を学ぶための基礎的学	力や技能	能を備えた お	技術者を育成する	5.
		講 義 の 内	容			
項目		目	ħ.	票		週
毎添しび 規	L ² /c.	荷、磁極、磁気に関するクーロン	小 注即	電流によ	くび 男 電流が	遂 4
電流と磁界	界法性	から受ける力、磁束密度、ローレ 体を理解すること。	ンツカ、	電流計・電	 国圧計の原理、	滋
電磁誘導		滋誘導の法則、レンツの法則、相 間試験	彑誘導、	目己誘導を	'埋解すること。	3
波の波長、振動数、速さ		の波長、振動数、速さの関係を理	解するこ	と。		1
正弦波 反射、屈折、干渉		弦波とその式を理解すること。 の反射、屈折、全反射、干渉、定	堂波を租	単解すること		$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$
音波演習		皮について、うなり、ドップラー				2
						計15
		12回の定期試験とレポート課題 評価比率は7:3とする。また、				
関連科目 第 第 第	第1学 第4学 第4学	年:「物理Ⅰ」、第2学年:「物理 :年:「応用物理Ⅱ」、第4・5学年 :年:「物理学特論Ⅰ・Ⅱ」	Ⅱ」、第 三:「応用	3 学年 :「物]物理実験」	理Ⅲ」	I ~ 67 20
		F:和達三樹監修,小暮陽三編集 :田中冨士男編著『高専の物理問				

科目名		担当教員	学年	単位	開講時数	必修·選択			
情報処理Ⅱ				1	前期				
(Information Process:	ing∏)	笠原 美左和(常勤)	3	専門科目	2時間	必修			
授業の概要	C 言	語はコンパイラ型言語である。	この言	語はプログラ	ムの事実上の標	準言語とな			
	って	っており、IT 業界の SE の募集において必須となっている。この C 言語を							
		で、ロボット制御に不可欠なマイコン制御の基礎的素養を身につけさせる。							
		をどのように実行するか、実行							
	しデ	ータを入力、処理、出力する技	法法などり	こついて、講	、 演習、 実習に	より字ふ。			
授業の進め方		の基本的なプログラミングに~	ついて講	義を行い、講	義の内容に関す	る演習、実			
	習を	行う。							
到達目標	①⊐	ンパイラを用いてソースファィ	(ルから	実行ファイル	を作成できるこ	と。			
		件分岐処理を伴うプログラムを							
	3繰	り返し文を伴うプログラムを作	作成でき.	ること。					
学校教育目標との関係	高度	な専門知識を学ぶための基礎的	り学力や	支能を備えた	技術者を育成する	る。			
		講義の「	内 容						
項目				 標		週			
ガイダンス・数の計算		2 進数、8 進数、16 進数の記	†算を習	得する。		1			
数の表示と種類と入力		変数の宣言、数の種類、表示の	の基礎、	数値入力につ	いて習得する。	1			
プログラム作成		フローチャートを用いたプロ	グラムの	作成法につい	て理解する。	2			
条件分岐処理1		If 文による条件分岐処理の方			ートを学習する。	2			
6 tl s 11 tr ==		また、プログラム演習により							
条件分岐処理 2		If 文複合条件による条件分岐			コーチャートを与	₹ 2			
繰り返し去す		習する。また、プログラム演習する。また、プログラム演習			した学習より	0			
繰り返し文1 		For 文による繰り返し処理のプまた、プログラム演習により			一下を子首りる。	2			
繰り返し文2		While 文による繰り返し処理			チャートを学習す	- 2			
		る。また、プログラム演習に			(121日)	2			
関数作成		関数を用いてプログラムを見				1			
総合演習		応用的なプログラム例の理解、	演習。			2			
						計 15			
学業成績の評価方法	テスト	(45%)、出席・授業態度(10%	6)と課題	(45%) によ	り評価する。				
関連科目	修得した	た技術は工学実験実習、卒業	研究にて	び要となる。					
教科書、副読本	訓蒜木	 : ①「C 言語ワークブック」	カットミ	/ステム (姓)					
ガバイ盲、 囲 の (中	凹机牛	:① に言語ワークノック」 ②「やさしいC 第3版」			'ティブ				
			· / I /	- / / /	7 1 Z				

科目名		担当教員	学年	単位	開講時数	必修	・選択		
設計製図 II (Design & Drawing II)	鈴	木拓雄 (常勤)	3	3 専門科目	通年 3 時間	必	必修		
授業の概要	する。	軸受、軸、ネジ等の機械要素から構成される機構の組立図より、製作図を する。手描きと CAD により図面を作成する。与えられた要求性能を満た 構を設計し、更に組立図・部品図の製図を行い実技能力の向上を図る。							
授業の進め方	間およ をする		をし、製	図、機構及び機	械要素に対する	理解度	の確認		
到達目標 学校教育目標との関係	描く能 様に基 る。	いれた機構の組立図を を力をつける。並行し でいて設計計算を行って の技術教育を通じて、	して CAI 行い、そ) の基本的な操 こから組立図・	作を習得する。 部品図を作成す	与えら る能力	れた仕 を付け		
	創造・	開発に粘り強く挑戦	銭できる	技術者を育成す	·る。				
-7	講	義 の 内	容	I To			\m		
項 目 転がり軸受けユニット			目	標			週		
転がり軸受コニット組立 き及び CAD 組立図から各部品図の作 軸受箱、CAD カバー、CAD 軸、CAD 軸受上ット、CAD 軸受座金、CAD ブッシュ、調整ナット、 パンタグラフ形ねじ式ジ 設計計算書の作成 部品図の作成 ベース・荷受台 スペーサ・ピン ハンドルアーム・フック ソケット・ブラケット アーム・ステー	成、CAD CAD	全断面組立図の理解 以降、各部品製作図 得する。部品図の作 与えられた仕様のミ 以降、設計計算書	の作成を成順はサ	だ況により変更す かける。 を設計する。	ることがある。	去を修	7 2 1 1 1 1 1 1 1 3 2 2 2 2 2		
組立図の作成							2 計 15		
月 k	度は主とし こわたった	の完成度、授業態度 て課題への修正指示 内容について出題す	に対すっ る。評価	る対応を評価し, 割合は完成度+授	試験は機械製図 受業態度:試験=5:5	の規格 とする	の全般 5。		
		[・Ⅲ、機械設計法 I			宇省 I 〜IVの基	礎とな .	る科目 		
软件音、 副読本 ^素	双件有「尹	ミ教出版 機械製図」,	機械設i	訂伝Ⅰ・Ⅱ					

科目名	担当教員	学年	単位	開講時数	必修·選択
機械設計法 I (Machine Design I)	根本 良三(常勤)	3	1 専門科目	通年 1 時間	必修
授業の概要	機械を構成する基本的な機械関する。	要素である、	ねじ、軸受、	、歯車などに	ついて学習
授業の進め方	教科書を基本として講義を行うを配布する。	う。内容によ	にり適宜、補力	足資料として	プリント等
到達目標	基本的な機械要素の機能と強度 理解する。	芝評価法を 理	里解する。設	計製図・製作	との関連を
学校教育目標との関係	実践的技術教育を通じて、工芸創造・開発に粘り強く挑戦でき			備え、新しい	"もの"の
	19.5 65.5	容			
項目					週
摩擦と効率	滑り摩擦と転がり摩擦 機械の損失と効率				2 2
ねじ	ねじの種類 ねじに働く力締め付け時に要っ ねじの効率	する力のモー	ーメント		3 3 2
ボルトとナット	ボルトが受ける軸方向荷重 締結用ねじと運動用ねじ				2 2
軸受	滑り軸受 転がり軸受				3 3
歯車	歯車の種類と平歯車の基本 歯車列の速度伝達比				4 4 計30
学業成績の評価方法	4回の定期試験の得点・課題レスる。	ポートの提出	出・授業の出	席状況などに	より評価す
関連科目	設計製図 I ・ロボット工学実習	Ⅱ・材料力学	≱Ⅰ・工業力	学ほか	
教科書・副読本	教科書:「機械設計1」、「機械設	計2」、「機	滅製図」実教	出版	

科目名	担当教員	学年	単位	開講時数	必修·選択
材料力学 I (Strength of Materials I)	宮川 睦巳(常勤)	3	2 専門科目	通年 2時間	必修
授業の概要	機械や構造物に使用される部材の材 る。そのためには、部材内部に生じ り、機械や構造物の設計に不可欠な を通じて、基礎力と応用力を養う。	る応力と	ひずみを明し	うかにするこ	とが必要とな
授業の進め方	教科書を使った講義を中心に行う。	また、理解	解を深めるた	こめに演習を耳	页り入れる。
到達目標	 応力とひずみ、およびフックの 真直棒の引張圧縮の問題についる 真直ばりに作用するせん断力。 真直ばりに作用する曲げ応力を 真直ばりのたわみの基本式を 	いて応力お と曲げモー を理解する 理解し、言	らよびひずみ -メントを見 る。 +算できる。	タが計算でき 里解する。	3 .
学校教育目標との関係	高度な専門知識を学ぶための基礎的	学力や技能	能を備えた払	技術者を育成す	する。
	講義の内	容			ı
項目	I	標			週
ガイダンス 材料の変形に関する特 性評価 引張・圧縮	材料力学の目的,内容について学ぶ 応力とひずみ,フックの法則と弾性係 応力-ひずみ曲線図,および許容応力。 引張圧縮に関する簡単な問題(応力と 引張圧縮に関する応用問題(不静定問 引張圧縮に関する応用問題(熱応力,	と安全率の 変形につ 題)を解)意味を学ぶ いて) を解 [。] く		1 2 1 2 1 1
支点と支点反力 真直はりのせん断応力 と曲げモーメント	真直ばりに用いられる支点と支点反力 真直ばりのせん断応力と曲げモーメン 真直ばりのせん断応力と曲げモーメン 真直ばりのせん断応力と曲げモーメン 真直ばりのせん断応力と曲げモーメン	トの関係 トの問題 トの問題	を学ぶ (片持ちば) (両端支持/		1 1 2 2 1 計15
真直はりの応力	真直ばりの応力について基本方程式を 断面二次モーメントおよび曲げ剛性を 断面二次モーメントおよび曲げ応力の 断面二次モーメントに関する定理を理 真直ばりのせん断応力 真直はりのたわみ曲線の基本式(たた たわみ曲線の基本式を用いた問題(片 たわみ曲線の基本式を用いた問題(両	学ぶ 問題を解 解する みの微分 持ちはり)	方程式)を ⁴)を解く	学ぶ	2 1 2 2 1 1 2 2 2
	たわみ曲線の基本式を用いた問題(不 合計4回の定期試験および授業中に実	静定問題)を解く	「杉神野み、た 絵〉	2 計 15
学業成績の評価方法	る。定期試験の点数および小テストと	課題の評	価の比率は	8:2とする。	
関連科目	材料力学Ⅱ、材料力学特論、材料学、 習 I ・ II ・ III・IV、卒業研究		、機械設計	去Ⅰ・Ⅱ、口2	ホット上字実
教科書・副読本	黒木剛司郎著『材料力学』(森北出版)				

科目名		担当教員	学年	単位	開講時数	必修·選択			
工業力学 (Engineering Mechanic	s)	瀬山 夏彦(常勤)	3	1 専門科目	前期 2時間	必修			
授業の概要	理解を 学年、 と拡張	機械工学に関連した力学系の専門科目の基礎になる考え方や、基本的知識について 理解を深める。そのために様々な例題、問題を解きながら学ぶ。本講義では、第一 学年、第二学年で学んだ物理(力学)を基礎とし、取り扱う物体を質点から剛体へ と拡張する。また、その物理的事柄について、第一学年、第二学年で学んだ数学(方 程式、三角関数、ベクトル、微分、積分など)を使って解説を行う。							
授業の進め方	行う。	教科書を使った講義・例題 できるだけ実演, 簡単なも	のつくり			めの演習を			
到達目標		・モーメントの分解・合成が 題に沿って、質点・剛体の鉛 なる。		、運動方程式	を立て、解を求	められるよ			
学校教育目標との関係	高度	な専門知識を学ぶための基礎	的学力や	技能を備えた	技術者を育成す	る。			
		講義の	内 容						
項 目		E	1	標		週			
静力学の基礎 力とベクトル 力の合成と分解 1点に働く力の釣合 力のモーメント		力をベクトルとして取り想平行四辺形の原理を理解し 1点に働く力の釣合方程記力のモーメントを理解し、	ノ、力の合 弋を立て、	成・分解をで 解を求められ	きるようにする るようにする。	3			
剛体に働く力 剛体での力の合成と釣 偶力 トラス(節点法、切断		剛体に働く力の合成ができ 剛体に働く力の釣合方程式 偶力の意義について理解す トラスの解法(節点法)を	弋を立て、 トる。	解を求められ		3			
重心		重心の意味を理解し、求め	りられるよ	うにする。		2			
摩擦 静止摩擦、動摩擦、摩	擦角	クーロンの法則を理解し、 立て、解を求められるよう							
並進運動する物体の動力	学	1. 運動学で使用する並進過 2. ニュートンの法則の意味を求められるようにする 3. 慣性力とダランベールの 4. 求心力と遠心力を理解し うにする。	kについて る。 ○原理につ	理解し、運動いて理解する	方程式を立て、				
剛体の動力学		1. 角運動方程式と慣性モー解を求められるようにす 2. 慣性モーメントの定義、 求めることができるよう 3. 剛体の平面運動について せた問題を解けるように	ける。 または定 うにする。 て、運動方	理を用いて、	慣性モーメント	を			
						計 15			
		E期試験の得点により評価を Eも加味する。	<u></u> 行う。たた	ごし、授業中に	こ行う演習、小う	テスト、			
関連科目	コボット	、工学実習、設計製図、材料	力学、材料	斗学特論、卒業	 業研究				
教科書、副読本	吉村靖夫	E,米内山誠共著『工業力学』] (コロナ	社)					

科目名	担当教員	学年	単位	開講時数	必修·選択			
電気回路Ⅱ	12-1-0-23	3 1	2	通年	~!> ~!\			
电风凹路 II (Electric Circuits II)	奥平 鎮正 (常勤)	3	専門科目	2時間	必修			
(Electric Officials II)		`		77				
授業の概要	電気電子系の工学技術を習得するう 科目である。第3学年では、交流回				ない専門基礎			
	科目である。第3字年では、父伽巴	始り基礎	かなり谷の記	典我を117。				
授業の進め方	講義を中心として、理解を深めるた	めに演習	を多く取りた	入れる。				
到達目標	① 交流について理解すること ② 基礎的な交流回路解析が行なえる	ステレ						
	② 医硬形な文加固時解析が刊ぶれる	 佐吹りな文礼四崎仲付か行なんること						
学校教育目標との関係	高度な専門知識を学ぶための基礎的	度な専門知識を学ぶための基礎的学力や技能を備えた技術者を育成する。						
	講義の内容	3						
項目	目	村	票		週			
【前期】								
ガイダンス	オームの法則、直列・並列・直並列	直流回路	の計算方法の	り確認	2			
及び直流回路の復習								
キルヒホッフの法則	キルヒホッフの法則を用いた直流回				2			
テブナンの定理	等価定電圧源回路(テブナンの等価				2			
正弦波交流	正弦波交流についての理解、瞬時値	· 位相 • ⁄	代表値につい	っての理解	2			
中間試験の解答説明	中間試験内容の復習と再確認		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VI ~ = 111 / 121	1			
フェーザ(複素ベクトル)	フェーザ(複素ベクトル)を用いた	上上弦波交	流の表現方	法の埋解、交	流電 2			
フェーザ法(ベクトル記号	│ 力と力率の理解 │ 抵抗・コンデンサ・コイルの性質と	フーーザ	た用いた同児	タキニの細細	2			
(法)	投が、コンテンサ・コイルの性質と	ノエーリ	を用すりに回じ	谷衣/小り生件	2			
フェーザ法による交流回	│ │フェーザ法を用いた交流回路の計算	法の理解			1			
路計算		12 12/1						
期末試験の解答説明					1			
					計15			
【後期】								
インピーダンス	電圧、電流のフェーザ表示法と交流				2			
交流直列回路	R-L 直列回路、 $R-C$ 直列回路、 $R-L-C$				3			
交流並列回路	R-L 並列回路、 $R-C$ 並列回路、 $R-L-C$	立列回路	の特性計算	法の理解	2			
中間試験の解答説明					1			
交流直並列回路	直列⇔並列等価変換、力率改善法の	理解			2			
周波数特性	R-L 回路、R-C 回路の周波数特性の	里解			2			
	R-L-C 回路の周波数特性、共振特性	の理解			1			
等価回路表現	インピーダンス整合と供給電力最大	の条件の	理解		1			
期末試験の解答説明					1			
					글! ㅋㅌ			
	4回の定期試験の得点と課題の提出 4回の定期試験の得点と課題の提出		総合的に注意	セナス 定期	計 15 計 15 計 15			
学業成績の評価方法	題提出点の比率は7:3とする。必要				N®欠1寸点 ⊂ 床			
関連科目	第4学年以降で学習する電気電子・	制御系専	門科目					
教科書・副読本	教科書:山口静夫『電気回路基礎入	門』(コロ	ナ社) (2	学次に購入済)				
		_		•				

科目名		担当教員	学年	単位	開講時数	必修·選択
電子回路 II (Electronic Circuits II)	\\\ <u>\</u>	野木 健二 (非常勤)	3	1 専門科目	前期 2 時間	必修
授業の概要	11.41 1.02	器やマイクロコンピュー				_ •> · > · - ·
	に必要	となる論理素子の動作や語	倫理回路の〕	取り扱いなど	の知識を学ぶ。	
授業の進め方	講義を	中心として、理解を深める	るために演	習を行うこと	がある。	
到達目標	_	体系が理解できること。 理回路の基本特性が理解で	ベキス			
	_	リップフロップの基本特性		きる。		
***************************************		ウンタの基本特性が理解で		LL- /		1
学校教育目標との関係 	局度な	専門知識を学ぶための基礎	の 学力や	技能を備えた!	技術者を育成で	する。
		 講 義 の	内 容			
項目				標		週
ガイダンス		ガイダンス	att alet a			1
数体系のまわりまり建数		10進数,2進数,16				1
負数の表わし方と補数 基本論理回路		マイナスの数値の表現方 デジタル回路の基本論理				1 2
組み合わせ回路		MIL記法を理解すると			手法および組合	
		回路を理解する				
中間試験		DC → 11 → → → → □	ゆについて	TH A77 7		
フリップフロップ		RS フリップフロップ回路 JK フリップフロップ回路				1 1
		Tフリップフロップ回路				1
		Dフリップフロップ回路				1
レジスタ回路		レジスタ回路について理	解する。			2
カウンタ回路		カウンタ回路について理	解する。			2
						計 15
	2回の定	 期試験の得点と、授業への)参加状況/	いら総合的に泊	央定する。 定期	 钥試験点数、
学業成績の評価方法		の比率は8:2とする。ま				
関連科目						
教科書、副読本	教科書「	電子計算機概論[第2版],	森北出版			

科目名		担当教員	学年	単位	開講時数	必修·選択			
メカトロニクス I (Mechatronics I)		笠原 美左和(常勤)	3	1 専門科目	後期 2時間	必修			
授業の概要	近年、カ	近年、大多数の機械にはマイコンが組み込まれ、極めて厳密な制御により各種動作							
		りが多い。そこで、マイコン - ** **	/および周辺	2回路の実用的	りな回路や制御	卸プログラム			
授業の進め方	について	(字ふ。 /を使用した実習を中心に行	テム 極業信	記ァ 内宏 た 治日	旧1 たなし 3	主羽な行う			
技業の進め力	/ / / 4	/ を使用した美音を中心に1	」 ノ。 1文 末 节	まにい合て 呪り	力しためこ、ラ	天白を17 ノ。			
	① マイ		: る。						
21.21	_	イコンを用いてさまざまな実		らや制御プロク	ブラムを理解で	できる。			
学校教育目標との関係	実践的技	支術教育を通じて、工学的知	□識・技術の)基本を備え、	新しい"もの	か"の創造・			
	開発に料	占り強く挑戦できる技術者を	で育成する。						
		=# ÷ o	.						
	1	講義の	<u>内容</u> ∃	 標		週			
ガイダンス	1		-	1示		1			
マイコンを動かしてみ	ろ	LED を表示させるプロ	グラムを作品	立させる		3			
信号機を作成する	۵	信号機を作成する。	/ / C C II /	,x C C 0°		2			
ブザーを鳴らしてみる		ブザーを鳴らすプログラ	した作成す	-ス		2			
- ···									
スイッチも用いる		スイッチを用いて、LEI				2			
モータを回す		モータドライバ IC を用			· る。	3			
光センサを用いる		光センサを用いた防犯装	置を作成す	⁻る。		2			
						計15			
						пп			
学業成績の評価方法	筆記テス	<u>ー</u> ト (30%)、実技テスト (3	0%)、出席	 授業態度 	(10%)と課題	(30%) によ			
	り評価す								
関連科目	ロボット	を製作する為の基礎となる	科目となる。						
教科書、副読本	副読本「	楽しい H8Tiny マイコンエ	作」CQ 出席	万					
		-							
Į									

科目名		担当教員	学年	単位	開講時数	必修·選択			
ロボット工学実習 II (Practice in Robotics II	()	源・鈴木(拓)・宮川(常勤)、 福田(好)(嘱託)	3	2 専門科目	後期 4時間	必修			
授業の概要	りる記の	第2学年のロボット実習Iで製作したロボットアームを改良し、アーム部に取り付けるロボットハンドを製作する。さらに、ロボットハンドの動作を制御するための回路作成を通してロボット工学の基礎となる制御技術を学習する。上記の実習内容を通じてロボット実習Iよりも高度な基礎技能、機械加工と制御の基礎知識の習得を目指す。							
授業の進め方		班に分かれ、ローテーションに る。全ての部品を作り上げた後				美智を体験			
到達目標	2 3 4 5	組立図を基にロボットハンドの 汎用工作機械の習熟度を高め、 3次元 CAD による部品図の作品 シーケンス制御の基本原理が理 組立図を基に組立手順を考え、	特殊加 成ができ 解できる 運転方法	L機による作 る。 る。 去を理解でき	業を体験する				
学校教育目標との関係		地産業の発展に貢献するため、果敢に挑戦できる技術者を育成		常能力を有し	、設定した課	題に向かっ			
		講義の内容				· B			
項 目 ガイダンス		目標 ・実習内容の概要、ローテーショ	ョン制	作すスロボ、	, トハンド燃料	週 構に 1			
フライス盤実習		関する説明等 ・クリッパー、ベースプレート							
放電加工実習		・放電加工機の説明・クリッパーステー(2点)、モ	ータスラ	テーの製作		3			
3 次元 CAD 実習		3 次元 CAD によるスライドン 品図作成			-ト、ハンドの	の部 2			
レーザ加工と塑性加工 実習		・3次元 CAD 実習で作成した部を行う。さらに塑性加工により				1			
制御回路製作		ロボットハンドのための制御	回路製作	=		3			
ロボットハンド組立		・ロボットハンドの組立と運転				2 計 15			
関連科目 1	出金の第里年年	、製作作品を完成させ、かつ、 状況および実習態度(40%)、②が 出物 [図面、レポート等](20 ~④の項目について各 10 点満 する。評価は、評価点の平均に による欠席の場合、補習を行う 専門科目では、ものづくり実験 専門科目では、設計製図 I、機	加工技能)%)で言 点として よって 。 実習、基 械工作法	の習熟度 (20 評価する。具 て、上記の割 うう (10 点満 会機製図、基礎 、材料学、1	9%)、③製作/ 体的には、実 合で重みをつ 请点評価)。ま 遊電気工学 電気回路 I、	作品 (20%)、 習分野ごと け評価点を た、正当な 電子回路 I			
<i>†</i>	才料	専門科目では、ロボット工学実 力学Ⅰ、電気回路Ⅱ、電子回路 ント教材を配布する。			幾械設計法Ⅰ、	、工業力学、			

科目名		担当教員	学年	単位	開講時数	必修·選択			
ロボット工学実験	. 1	奥平 (常勤)、		2	通年				
(Experiments in Robe		西村・金子・呉	3	専門科目	2 時間	必修			
-		(非常勤)	<u>に</u> 1 生		ラフロかっ 八田	マリス・コレング			
授業の概要		学・材料学、計測工学、ロフ な実験を通して学び、その							
	全爬口	な犬族を通じて子び、ての	が終る日	山火 レルキ 明	△ 7.4 圧 bro. G . 1 1)	0			
授業の進め方	1クラ	スを4班に分け、担当教員	の指導の	りもと、ロー	テーションに	より、班別			
		ミ験を行う。実験実施後は担当教員とのディスカッションにより、実験結果							
		トにまとめることにより、	実験した	と内容につい	て理解を深め	、第三者へ			
		能力を養う。							
到達目標		·力学、材料学について理解	するこ	<u>-</u> 0					
		の知識を深めること。 `を用いてロボットの基本構	生の理解	マシア カステ	L				
	_	を用いてロホットの基本情 回路・電子回路の基礎を理			<u> </u>				
学校教育目標との関係		技術教育を通じて、工学的			備え、新しい	"もの"の			
	創造・	開発に粘り強く挑戦できる	技術者	を育成する。					
	講	義 の 内 容							
項目		目	楞	-		週			
ガイダンス		の目的、概要、注意事項のヨ	理解。 レ	ポートの書き	き方について	学習 1			
	する。								
テーマ [金属	材料の引張試験、衝撃試験、	硬さ討	は験を行う。何	并せて これ	らの 6			
材料力学・材料学実験		的特性と関連の深い、熱処				J., .			
テーマⅡ	マイ:	クロメータなどさまざまな	計測機器	骨の使い方を⁴	学習する。	6			
計測実験 テーマVI	ロボ	ット制御の基礎であるモー	夕生 徐 太	今ごレレオノ	アーセンサを	用い 6			
ロボット制御実験		シーケンス制御やフィード							
	める。		ΣΣΙ ΙΙ:	I PARCE DA CE	PHEH 1. 9.77/11	Z IK			
テーマIV		により、オームの法則、抵抗	古の直光	が同敗の糾り	ち キルレナ	ッフ 6			
電気・電子工学実験		により、オームの伝則、私 則を理解するとともに、計?			• •	-			
	得す		WHH 'S HO		• · • • • · • •	- ' '			
レポート整理及び課題		のレポートの提出を完了さ	せる。			5			
習	まと	めの演習問題を解く。							
						計30			
		験を行い、かつ、提出物を							
		験態度 (30%)、②レポー							
		①、②の項目について各 1二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、							
関連科目		算出する。また、正当な理 科目では材料学、電気回路							
		H こ にがけず、電気回路 I 、電気回路Ⅱ、電子回路							
		Ⅰ、計測工学Ⅱ、材料学特				,.			
教科書、副読本	プリント	教材を配布する。							

科目名		担当教員	学年	単位	開講時数	必修·選択			
応用数学	II	原井 敬子		1	前期	N 165			
(Advanced Mathe	ematics II)	(非常勤)	4	専門科目	2時間	必修			
授業の概要	フーリエ糸	L 吸数は特に、波に関	<u> </u> 係する現績	】 象を解析する					
	フーリエ糸	7ーリエ級数の基本的な性質と編微分方程式への応用について論じる。							
		匚学などでよく用い			も言及し、別	定数係数線形			
		分方程式の解法への応用などを論じる。							
授業の進め方	講義を中心	しとするが、理解を	深めるたる	めの問題演習	目も行う。				
到達目標	_	エ級数の意味および	その性質	を理解し、基	本的な計算	支術を修得す			
	ること。	ス変換の意味および	この卅近:	た エ田 毎辺 1 一 甘	★的か針曾t	出法な攸但士			
	ること。		ての注負で	と垤胖し、苤	(半四)(よ司 昇1	又附と修行り			
学校教育目標との関係		門知識を学ぶための	基礎的学	力や技能を備	前えた技術者	を育成する。			
		講義の	内容	<u> </u>					
項目			3	標		週			
ラプラス変換	ラプラス変	換の定義と概念を理	解するこ	と。		2			
ラプラス変換の性質	ニプニュ亦	換 のいくつかの性質	ナエ田名のよ	ファ 1,		0			
/ / / 八及映ッ江貝	フノフス変	関のハマンがの生質	を理解 9	る こと。		2			
ラプラス逆変換と逆	ラプラス逆	変換の意味を理解し	、その技	法を習得する	ること。	2			
変換の公式				, , , ,					
 定数係数線形微分方									
足数係数線形械分分	定数係数線	形微分方程式への応	用を習得	すること。		2			
122. () /// 12.	フーリー幻	数の定義と概念を理	砂→ステ	ا		3			
フーリエ級数	7 7 - MX	奴り足我こ 帆心で生	カキッ 公 二	C 0		J			
フーリエ級数の性質	フーリエ級	数の性質を学び、パ	ーセバル	の等式を学習	習する。	2			
とパーセバルの等式									
偏微分方程式とフー	フーリエ級	数の偏微分方程式へ	の応用を	理解すること	<u>L</u> 。	2			
リエ級数						計 15			
						計 19			
学業成績の評価方法	/ = / / /	得点と、授業態度・			是出状況から	評価する。			
		試験と課題等の比率			melds 3 3				
関連科目		Ⅲ」は物理や専門科目				·			
	る。この科目 ための基礎	目での学習内容が、 ^々 とかる	7饭子首9	の奴子で多	への母門件	コと垤胜りる			
教科書・副読本		こなる。 郎、石原 繁『基礎	解析学	(改訂版)』	(裳華房)				
			74, 11 4						

科目名		担	旦当教員	Į	学	年	単位	開講時数	必修·選択
応用数学 Ⅲ		斉藤	純一(常	(勤)	4		2	通年	必修
(Advanced Mathematics II							専門科目	2時間	wa - Ald A)
授業の概要	積分ある	3年までに学んできた数学を基礎として、複素変数の関数とその 積分について学習する。実変数から複素変数への拡張はきわめ ある。複素変数の関数は広く工学の分野で応用される。特に流体 制御工学・電気工学系で必要となる.							
授業の進め方	講義	を中心と	とするか	、理解	を深め	りる	ための問題	寅習も行う。	
到達目標	する ②複 する	①複素関数の意味およびその微分法を理解し、基本的な計算技術 すること。 ②複素関数の意味およびその積分法を理解し、基本的な計算技術 すること。							技術を修得
学校教育目標との関係	高度 る。	な専門知	田識を与	学ぶため	の基礎	楚的	学力や技能	を備えた技術	者を育成す
		講	義	の	内	容	•		
項目				目			標		週
複素数の定義と複素平面 および複素数の極形式	複素	数および	バ複素平	革面の定	義と根	既念	を理解するこ	こと。	3
n 乗根	複素	数のnョ	乗根の意	意味を理	解し,	そ	の求め方を	習得すること	. 3
数列・級数・関数 および正則関数	複素	数による	る数列と	級数お	よびュ	三則	関数につい	て理解する。	3
コーシー・リーマンの方 程式	コー	シー・リ	ーマン	の方程式	の定	義と	: 概念を理解	!すること。	3
基本的な正則関数	各種	の正則関	関数の性	上質を学	ぶこと	- 0			3 計15
複素変数関数の積分とコ ーシーの定理		変数に。 ること。	よる関数	枚の積分	法お。	よび	ジューシーの	定理の意味を	理 2
コーシーの積分表示		・シーの利 ができる		示の意味	とその	の応	用を習得し	、具体的に積	3
テイラー展開・ローラン 展開		ラー展開 こと。	絹・ロー	ーラン展	開の意	意味	を理解し、	具体的に計算	3
極と留数の定義および留 数の求め方	極と	留数の気	営義を 理	関解し、	実際に	二留	数を計算でき	きること。	3
留数定理	留数	定理の意	意味を理	関解し,	基本的	りな	計算技術を習	習得すること 。	, 2
留数の応用	留数	(をいろV	いろな計	十算に応	用する 	5技	術を学ぶ。		2 計15
学業成績の評価方法	なお	、定期記	式験と誰	課題等の	比率を	4	況から評価で : 1 とする。		
関連科目	目で		この科目	目での学	習内額			での基礎とな する数学や多	
教科書・副読本	矢野	健太良	『、石 原	繁『	基礎	解	析学(改訂席	坂)』(裳華房))

科目名	担当教員	学年	単位	開講時数	込修∙選択			
応用物理 II (Advanced Physics II	大士殿季廸 (党勘)	4	2 専門科目	通年 2時間	必修			
授業の概要	各工学コースの専門科目を学		 須となる基	· · · · · · · · · · · · · · · · · · ·	トふ、フ			
	自然現象の原理・法則の学習							
授業の進め方	講義が中心となる。理解を深							
】到達目標 	こと。	・力学に関して微分方程式やベクトル解析を用いた方法について理解する こと。						
学校教育目標との関係	高度な専門知識を学ぶためのる。	の基礎的な	学力や技能を	を備えた技術者	音を育成す			
	講義の	内容	<u>\$</u>					
項目	目		標		週			
速度と加速度	ベクトルと速度、加速度、極層	座標、等遠	東円運動につ	いて理解する。	2			
運動の法則	運動の法則,重力,万有引力に	こついて	里解する。		1			
微分方程式	物理で用いる代表的な微分方程	呈式につい	いて解き方を	学ぶ。	2			
振動	単振動、減衰振動、強制振動な	よどについ	って理解する	٥	2			
	演習 (中間試験)				1			
仕事とエネルギー	仕事、運動エネルギー、線積分理解する。)、保存力	Jと位置エネ	ルギーについ	2			
エネルギー保存則	力学的エネルギー保存則、位置							
回転運動	質点の回転運動、角運動量保存 演習	字則につい	いて理解する	0	2			
	供日				計15			
質点系の運動(1)	重心、重心に対する運動方程式							
質点系の運動(2)	力のモーメント,角運動量,回ついて理解する。	山転の連盟	切 力程式,	連 男重保仔則(2			
剛体の運動(1)	慣性モーメント, 剛体のつり合する。	か、回転	云軸周りの運	動について理解	平 3			
	演習(中間試験)				1			
剛体の運動(2)	剛体の平面運動について理解す	トる。			3			
慣性力	遠心力やコリオリの力などの情	-	ついて理解す	る。	3			
	演習				1			
					計15			
 学業成績の評価方 4	回の定期試験の結果、2回程度	の課題等	により評価	する。定期試験	 険と課題等			
	出いた。 比は8:2である。また,成績							
	1学年:「物理I」、第2学年:	_		_				
	4 学年 : 「応用物理 II 」、第 4 ・ 4 学年 : 「物理学特論 I ・ II 」	5 字年:	応用物理実	.験」				
	科書:原 康夫著『第4版 物	理学基礎	』(学術図書	出版社)				

科目名		担当:	数 員	学年	単位	開講時数	ıVs	修·選択
				7*	1		ىرى:	- K-1/\
応用物理実験		大古殿秀穂		4	専門科	前期		必修
(Physics Experiment))		(非常勤)			2 時間		~
授業の概要	自	然現象の法則を	実験を通し	て理解し、	実験データ		理を	 学ぶ。実
	験	を通じて物理的]思考力の養	成をはかん	るとともに、	実験レポー	トのる	まとめ方
	を	修得する。						
授業の進め方	実	験指導書により	、必要に応	じて解説	を聞きなが	ら、自主的に	実験	を行う。
到達目標		自然現象の法則 実験報告書の書				り扱い方法を	学ぶ	こと。
学校教育目標との関係	_	践的技術教育を				木を備う 新	1.1/	"ŧø"
于仅数自口标CVIXIK		創造・開発に粘					UV	0 42
			<u>美</u> の	内 容		, 40		
項目		нгэ	<u>~ ···</u> 目	., _	<u>'</u> 標			週
概要説明	~ ,	の授業の進め方		め割羊の田		ルナの配当す	ス	1
	_ '	71文米 70 连07 万	、有劝奴丁	、映左がれ	X 9 10 X V 11 C .	20、人为中的几分。	o 0	1
右の 14 テーマのうち	• 7	水の粘性係数						2
6 テーマについて実験		気体の比熱比						2
を行う		気体の体膨張 固体の線膨張						2
(1テーマ 2 週)	• 3	ヤング率						2
		ボルダの振子	上 本 坦 広 仕・	≠ Lil.				2
		半導体の電気抵 ガイガーミュラ			線の測定			2
	• [LCR 回路	74 / 4 /	1000	//// V 181//L			
		驯性率						
		回折格子 電子の比電荷						
		ニュートンリン	グ					
	•	レンズの焦点距	雜					
	レ	ポートのまとめ						2
								計 15
								1
学業成績の評価方成	績に	は6回のレポート	、の提出状況	2と内容な	どにより、	総合的に評価	する	
法	位追	認試験は行わな	۲۷ <u>،</u>					
関連科目 第	1 学	左年:「物理 I 」、	第2学年:	「物理Ⅱ」	、第3学年	:「物理Ⅲ」「	応用	物理I」
		年:「応用物理						
		・ 吉田卯三郎・	武居文助・橘	芳實・武	法居文雄 著	「六訂 物理	学美	験」(三
(1)	堂)							

科目名	担当教員	学年	単位	開講時数	必修·選択			
数値解析 I (Numerical Analysis I)	大貫 貴久 (常勤) 1 後期 専門科目 2時間 必							
授業の概要	ロボットなど複雑な形状、構造を設計、解析するためには、数値計算の手法が要となる。本講義では、数値計算の基礎となるプログラミングの知識と基礎的数値計算手法について学ぶ。							
授業の進め方	前半は、プログラミングの基礎知識に関する講義・演習(主に、アルゴリズム) と平行して、パソコンによるプログラミング演習(VBA)を行う。後半は、初めの数値解析について講義を行い、あわせてプログラミング演習を行う。							
到達目標	①アルゴリズムの基礎を理解する ②数値計算の基礎を理解する ③非線形方程式、数値積分の数値							
学校教育目標との関係	高度な専門知識を学ぶための基礎的	内学力や打	技能を備えた	た技術者を育り	成する。			
	講 義 の 内 容							
項目	目標				週			
1. コンピュータとプログ ラミング	ハードウエアとソフトウエアにプログラミング言語とその特徴に				1			
2. アルゴリズムとフロー チャート	アルゴリズムについて理解を深るフローチャートを用いた記述方法 構造化プログラミングの概念を要 基本三構造を理解する	去を理解す	-る		3			
3. VBA の文法	オブジェクト指向を理解する 変数の概念を理解する 変数、変数型宣言、代入文による 繰り返し文によるプログラミング 条件判断文によるプログラミング	ブを行える	。 ようになる)	3 \$\$			
4. 数値計算と誤差	数値解析の概念と誤差について野	里解する			1			
5. 数值積分	区分求積法、台形公式、シンプン 数値積分のプログラミングを行う			ふを理解する	3			
6. 非線形方程式の解法	ニュートン法、区間縮小法、はる 非線形方程式のプログラミングを			ズムを理解で	する 4			
					計 15			
基本2回の定期試験とプログラム課題・提出物で評価を行う。定期試験とプログラム課題・提出物の評価の割合は1:1とする。ただし、プログラム課題、学業成績の評価方法 提出物に関しては、口頭試問による理解度の確認も含めて評価を行う。また、規定プログラム課題の早期解決者や、より高度な課題の解決者には、規定プログラム課題・提出物の50%を上限に加点を行い評価する。								
関連科目	数値解析Ⅱ、工業力学、材料力等設計法Ⅰ~Ⅲ、ゼミナール、卒業		熱力学、流	花体力学、機材	成力学、機械			
教科書・副読本	独自テキスト、プリント							

設計報図Ⅲ	科目名	担当教員	学年	単位	開講時数	必修·選択	
(Design & Drawing III)			, ,			210 211	
授業の概要	· ·		4	_		必修	
接業の概要 構想図をスケッチにより作成し、これに基づいて組立図・部品図をCADにより完成させる。実技能力の向上を図る。	(Design & Diawing in)		お無事を			ナー・シュー・ナーフ	
第二次の他を り完成させる。実技能力の向上を図る。 各人に与えられた条件のもとに二軸三段の平歯車減速装置を設計する。図面に対する理解度の確認をする。 ちえられた条件を満たす設計を行う。これより、製作図である部品図を描く能力をつける。平行して CAD の実際的な操作を習得する。設計書・構想図・組立図・部品図のつくり方やまとめ方を身につけさせる。 学校教育目標との関係 実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの"の創造・開発に粘り強く挑戦できる技術者を育成する。 講義の内容 選座仮法塗率と中心距離の設計 歯を強の設計 歯を発の設計 歯を発の診に対してある おおまままな おおまままな おままままな おままままな おままままな はな はな はな はな はな はな はな							
接業の進め方	授業の概要				租业区•前市区	& CAD ICI	
接薬の進め方 に対する理解を深める。また、中間および期末テストを実施し、各機械要素に対する理解度の確認をする。 「会するな条件を満たす数計を行う。これより、製作図である部品図を描く能力をつける。平行してCADの実際的な操作を習得する。設計書・構想図・組立図・部品図のつくり方やまとめ方を身につけさせる。 学校教育目標との関係 実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの"の創造・開発に粘り強く挑戦できる技術者を育成する。 「項」		り元成させる。美权能力の円』 	こを図る。	•			
に対する理解度の確認をする。		各人に与えられた条件のもとし	こ二軸三	段の平歯車	三減速装置を設計	十する。図面	
写達目標	授業の進め方	に対する理解を深める。また、	中間お	よび期末ラ	テストを実施し、	各機械要素	
到達目標 能力をつける。平行して CAD の実際的な操作を習得する。設計書・構想図・組立図・部品図のつくり方やまとめ方を身につけさせる。 学校教育目標との関係 実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの"の創造・開発に粘り強く挑戦できる技術者を育成する。 現 目		に対する理解度の確認をする。					
製立図・部品図のつくり方やまとめ方を身につけさせる。 学校教育目標との関係 実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの"の創造・開発に粘り強く挑戦できる技術者を育成する。 現 目 目 度 見 選		与えられた条件を満たす設計を	を行う。	これより、	製作図である音	『品図を描く	
学校教育目標との関係 実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの"の創造・開発に粘り強く挑戦できる技術者を育成する。	到達目標	能力をつける。平行して CAD	の実際的	Jな操作を	習得する。設計	書・構想図・	
学校教育目標との関係		組立図・部品図のつくり方やる	ミとめ方:	を身につけ	けさせる。		
学校教育目標との関係							
京田 日 日 原発に粘り頭く挑戦できる技術者を育成する。 「	学校教育目標との関係					い"もの"	
項目 博文 「	, , , , , , , , , , , , , , , , , , , ,	の創造・開発に粘り強く挑戦で	できる技術	析者を育成	えする。		
項目 博文 「			rh 7	<u> </u>			
一軸三段平歯車減速装置の設計 歯を振うの設計 歯を軸受の設計 歯を軸受の設計 歯を軸受の設計 歯を軸受の設計 歯を軸受の主導 歯車名 歯車名 歯車名 歯車名 歯車名 歯車名 の手が がいます は	項 日		Y 3 名			温	
世の設計 歯車工学概論 モジュールと歯数 軸と軸受 動を軸受 動を軸受 動車名部の計算 歯車名部の寸法 設計書の作成 機型図(概略図)の作成 組立図と部品表の作成、 CAD (' '		1示		<u> </u>	
歯車工学概論 モジュールと歯数 軸と軸受 玉軸受の計算 歯車の強度計算 歯車を部の強度計算 歯車を部の対法 設計書の作成 構想図(概略図)の作成 組立図と部品表の作成、 CAD 組立図と設計書の見直 し 別上の結果から構想図をスケッチにより作成 動車名(上)の部品製作図の作成 歯車箱(上)、CAD 歯車箱(上)、CAD 歯車箱(上)、CAD 歯車箱(上)、CAD 歯車箱(上)、CAD 歯車箱(下)、CAD カラー・オイルゲージなど小物 学業成績の評価方法 関連科目 数科書・副等木 数科者「実数出版 機械製図」,機械設計法Ⅰ・Ⅱ、「目刊工業新聞社 根本 数科書・副等木 数科者「実数出版 機械製図」,機械設計法Ⅰ・Ⅱ、「目刊工業新聞社 根本							
世の世の地でである。							
軸と軸受 玉軸受の計算 歯車の強度計算 歯車名部の可法 設計書の作成 構型図(概略図)の作成 組立図と部品表の作成 (CAD により組立図を作成する。 設計の全体的な整合性について考察する。			+				
 玉軸受の計算 歯車の強度計算 歯車箱 歯車名部の寸法 設計書の作成 構型図(概略図)の作成 組立図と部品(製作)図 の作成 組立図と部品表の作成、 CAD 組立図と設計書の見直 し の形成 組立図と設計書の見直 し の作成 利立図と設計書の見直 し の部品製作図の作成 大出力軸の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 対力の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯車の部品製作図の作成 大出力側歯での部品製作図の作成 大出力側歯での部品製作図の作成 大出力側歯で成 大出力側歯での部品製作図の作成 大出力側歯での部品製作図の作成 大出力側歯でがより残りの部品製作図の作成 対力・イルゲージなど小物 対力・イルゲージなどの・ ・・オイルゲージなどの・ ・・ボール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							
歯車の強度計算 歯車名 設計計算の結果から設計書を作成 以上の結果から構想図をスケッチにより作成 諸書の作成 構想図(概略図)の作成 計15 組立図と部品(製作)図の作成 設計の全体的な整合性について考察する。 計15 組立図と部品表の作成、CAD 組立図と設計書の見直し し 部品製作図、CAD 歯車箱(上)、CAD 歯車箱(下)、CAD 対力軸の部品製作図の作成 大出力側歯車、CAD 軸受ふたの部品製作図の作成 大出力側歯車、CAD 軸受合、CAD 対フー・オイルゲージなど小物 大出力側歯車の部品製作図の作成 軸受合の部品製作図の作成 を含めの部品製作図の作成 を含めの部品製作図の作成 大出力側歯車の部品製作図の作成 学業成績の評価方法 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より決定する。成績不良者に対する追試は行わない。 関連科目 設計製図 I・II、機械設計法 I・II およびロボット工学実習 I ~IVの基礎となる科目 教科書・副誌本 教科者「実教出版機械製図」、機械設計法 I・II,「目刊工業新聞社、根本			1				
歯車箱 歯車各部の寸法 設計書の作成 構想図(概略図)の作成 組立図と部品表の作成、 CAD 組立図と部品表の作成、 CAD 組立図と設計書の見直 し 部品製作図、CAD 歯車箱(上)、CAD 歯車箱(上)、CAD 歯車箱(下)、CAD 人出力側歯車、CAD 対フー・オイルゲージなど小物 関連科目 と表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表			巨成				
歯車各部の寸法 設計書の作成 構想図(概略図)の作成 組立図と部品(製作)図 の作成 組立図と部品表の作成、 CAD 組立図と設計書の見直 し				より作成			
議想図(概略図)の作成 組立図と部品(製作)図 の作成 組立図と部品表の作成、 CAD により組立図を作成する。 設計の全体的な整合性について考察する。 歯車箱(上)の部品製作図の作成 人出力軸の部品製作図の作成 大出力側歯車の部品製作図の作成 歯車箱(下)、CAD (大田) (大田) (大田) (大田) (大田) (大田) (大田) (大田)	—		, , , , - ,	31 7 11 794			
##想図(概略図)の作成 組立図と部品(製作)図 の作成 組立図と部品表の作成、 CAD 組立図と設計書の見直 し 部品製作図、CAD 歯車箱(上)、CAD 歯車箱(上)、CAD 歯車箱(下)、CAD 人出力側歯車、CAD 大出力側歯車、CAD 軸受台、CAD 軸受台、CAD 軸受台、CAD 軸受台、CAD 軸受台、CAD 軸受台、CAD 軸受台、CAD 軸受台、CAD 軸受台、CAD 執力ラー・オイルゲージなど小物 は 関連科目 お科書・副誌本 教科者「実教出版 機械製図」,機械設計法 I・II、「日刊工業新聞社 根本							
組立図と部品(製作)図の作成 組立図と部品表の作成、CAD						計 15	
組立図と部品表の作成、CAD 組立図と設計書の見直し 歯車箱(下)の部品製作図の作成 歯車箱(下)の部品製作図の作成 入出力軸の部品製作図の作成 入出力軸の部品製作図の作成 軸受ふたの部品製作図の作成 軸受かたの部品製作図の作成 軸受台の部品製作図の作成 軸受台の部品製作図の作成 軸受台の部品製作図の作成 も		CADにより組立図を作成する。					
CAD 歯車箱(上)の部品製作図の作成 組立図と設計書の見直 歯車箱(下)の部品製作図の作成 人出力軸の部品製作図の作成 入出力側歯車の部品製作図の作成 歯車箱(下)、CAD 軸受ふたの部品製作図の作成 協車箱(下)、CAD 軸受ふたの部品製作図の作成 入出力側歯車、CAD CAD により残りの部品製作図の作成 社力側歯車、CAD ロの部品製作図の作成 大出力側歯車、CAD 大出力側歯型・CAD 軸受台、CAD なる力ー・オイルゲージなど小物 学業成績の評価方法 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より決定する。成績不良者に対する追試は行わない。 関連科目 設計製図I・II、機械設計法I・II およびロボット工学実習I~IVの基礎となる科目 教科書・副誌本 教科者「実教出版機械製図」、機械設計法I・II、「日刊工業新聞社 根本	の作成	設計の全体的な整合性について	「考察す	る。			
組立図と設計書の見直 し 部品製作図、CAD 歯車箱(上)、CAD 歯車箱(下)、CAD 歯車箱(下)、CAD 歯車箱(下)、CAD 大出力側歯車の部品製作図の作成 軸受もの部品製作図の作成 CAD により残りの部品製作図の作成 大出力側歯車、CAD 軸受かた、CAD 軸受かた、CAD 軸受かた、CAD 軸受かた、CAD を対するとでは、では、では、では、では、では、では、では、では、では、では、では、では、で	組立図と部品表の作成、						
し	CAD	歯車箱(上)の部品製作図の作成					
部品製作図、CAD 歯車箱(上)、CAD 歯車箱(下)、CAD 入出力軸、CAD 入出力軸、CAD 入出力側歯車、CAD 軸受ふた、CAD 軸受かた、CAD 軸受かた、CAD 軸受から、CAD をする。CAD 対力・オイルゲージなど小物 世界成績の評価方法 関連科目 製工・II、機械設計法 I・II、「日刊工業新聞社 根本	組立図と設計書の見直	歯車箱(下) の部品製作図の作品	戈				
歯車箱(上)、CAD 軸受ふたの部品製作図の作成 歯車箱(下)、CAD 軸受台の部品製作図の作成 入出力軸、CAD CAD により残りの部品製作図の作成 軸受ふた、CAD 軸受台、CAD 軸受台、CAD 計15 学業成績の評価方法 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より決定する。成績不良者に対する追試は行わない。 関連科目 設計製図 I・II、機械設計法 I・II およびロボット工学実習 I ~IVの基礎となる科目 教科者「実教出版 機械製図」、機械設計法 I・II,「目刊工業新聞社 根本	l	入出力軸の部品製作図の作成					
歯車箱(下)、CAD 軸受台の部品製作図の作成 入出力軸、CAD CAD により残りの部品製作図の作成 入出力側歯車、CAD 計15 軸受台、CAD 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より決定する。成績不良者に対する追試は行わない。 関連科目 設計製図 I・II、機械設計法 I・II およびロボット工学実習 I ~IVの基礎となる科目 教科者「実教出版 機械製図」、機械設計法 I・II,「日刊工業新聞社 根本	部品製作図、CAD	入出力側歯車の部品製作図の作	F成				
 入出力軸、CAD 入出力側歯車、CAD 軸受ふた、CAD 軸受ふた、CAD 軸受台、CAD カラー・オイルゲージなど小物 学業成績の評価方法 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より決定する。成績不良者に対する追試は行わない。 関連科目 設計製図Ⅰ・Ⅱ、機械設計法Ⅰ・Ⅱおよびロボット工学実習Ⅰ~Ⅳの基礎となる科目 教科者「実教出版機械製図」、機械設計法Ⅰ・Ⅱ、「日刊工業新聞社 根本 	歯車箱(上)、CAD	軸受ふたの部品製作図の作成					
 入出力側歯車、CAD 軸受ふた、CAD 軸受台、CAD カラー・オイルゲージなど小物 学業成績の評価方法 関連科目 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より決定する。成績不良者に対する追試は行わない。 関連科目 数科者「実教出版機械製図」、機械設計法Ⅰ・Ⅱ、「目刊工業新聞社 根本 	' '						
軸受ふた、CAD 軸受台、CAD カラー・オイルゲージな ど小物		CADにより残りの部品製作図	の作成				
軸受台、CAD カラー・オイルゲージなど小物 計 15 学業成績の評価方法							
カラー・オイルゲージなど小物 計15 学業成績の評価方法 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より決定する。成績不良者に対する追試は行わない。 関連科目 設計製図 I・Ⅱ、機械設計法 I・Ⅱ およびロボット工学実習 I ~IVの基礎となる科目 教科者「実教出版 機械製図」、機械設計法 I・Ⅱ,「日刊工業新聞社 根本							
ど小物 計 15 学業成績の評価方法 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より決定する。成績不良者に対する追試は行わない。 関連科目 設計製図 I・Ⅱ、機械設計法 I・Ⅱ およびロボット工学実習 I ~IVの基礎となる科目 教科者「実教出版 機械製図」、機械設計法 I・Ⅱ,「日刊工業新聞社 根本							
学業成績の評価方法 課題提出物の完成度(最重要)、授業態度、および 4 回の定期試験の結果より 決定する。成績不良者に対する追試は行わない。 設計製図 I・II、機械設計法 I・II およびロボット工学実習 I ~IVの基礎と なる科目 教科者「実教出版 機械製図」、機械設計法 I・II,「日刊工業新聞社 根本							
字業成績の評価方法 決定する。成績不良者に対する追試は行わない。 関連科目 設計製図I・II、機械設計法I・IIおよびロボット工学実習I~IVの基礎となる科目 教科者「実教出版機械製図」、機械設計法I・II,「日刊工業新聞社根本	ど小物		Let 300. 200 - 1	٠٠٠ و يو سي	. —		
対しては、 対しには、 対	学業成績の評価方法	決定する。成績不良者に対する	ら追試は	行わない。			
教科書・副誌木 教科者「実教出版 機械製図」,機械設計法 I・Ⅱ,「日刊工業新聞社 根本	関連科目		・Ⅱお	よびロボッ	ノト工学実習 I ~	−IVの基礎と	
	## 하는 ## ###		,機械設	:計法 I ·	Ⅱ,「日刊工業新	所聞社 根本	
	教科書・副読本 						

科目名	担当教員	学年	単位	開講時数	必修·選択			
	担ヨ教員	子午			火修・選択			
機械設計法 II (Machine Design II)	松田 礼 (非常勤)	4	2 専門科目	通年 2時間	必修			
(Wachine Design II)		- ボフ			テナー 、ケロラが:) ァ			
	機械を設計するには、力学、電気加えて、特置を構成する様々な機							
授業の概要	加えて、装置を構成する様々な機械要素の用途や原理を理解する必要がある。本講義では、機械を設計するために必要な各種機械要素に関する用途、力学							
	的原理、規格、及び選定に必要な				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	教科書を使った講義を中心とする	5。内容に	こよって、ヨ	理解を深める	ためのプリ			
授業の進め方	ント等を配布する。							
	① 2万歩ナベアグラン・124の加速・中田1 ~ 25.31)・ソエンサポコルツ							
		① 3年次までに学習した力学の知識を応用して、設計に必要な基礎計算がで						
	きる。 ② 基礎的な装置の種類や原理を	平田 布忍 1 一	別作士スト	で心西な燃塩	最悪を発定			
到達目標	できる。	生作し、る	KIF Y J L	て必安な版制	女がでどた			
21XE R IM	③ 設計仕様を満たすために必要	な機械要	素を規格が	ら調べ、適り	Jな選定がで			
	きる。							
	実践的技術教育を通じて、工学的				い"もの"			
学校教育目標との関係	の創造・開発に粘り強く挑戦でき	くる技術者	首を育成する	5.				
	講義の内	容						
項目	目	模	Ę.		週			
1. 機械設計の基礎	(1) 機械設計の概要				2			
	(2) 強度計算の基礎(荷重形式、計	F容応力と	:安全率)		1			
2. 軸と軸受	(1) 動力に表のなめの軸にない。 に関	引ナフ 乱煙	5		2			
2. 靶 2 靶文	(1) 動力伝達のための軸とキーに関する計算 (2) 転がり軸受の予圧と剛性、潤滑方法							
	(3) ハウジングの設計と密封装置	17714			2 2			
3. 歯車の設計	(1) 歯の強度計算、各部寸法の設計	ŀ			2			
	(2) かさ歯車、ウォームギアの設計	トに関する	計算		1			
			IE / La					
4. 巻掛け伝動装置	(1) ベルト伝動の種類(平ベルト、	V ~)V	、、歯付き~	ベルト)	2			
	(2) 各種ベルトの選定方法				3			
5. ブレーキ、及びばね	(1) ブレーキの種類と力学的原理、	ブレーキ	一設計に関っ	よる計算 しょうしょう	2			
と緩衝装置	(2) ばねの種類と用途、及び選定力				2			
	(3) 振動の基礎と種々の緩衝装置				2			
6. ボールねじ、及び直				京理	2			
動転がり案内と送り取動機構	(2) ボールねじと直動転がり案内の		川性		2			
り駆動機構	(3) 送り駆動機構の設計に関する計	「异			3			
					計 30			
	4回の定期試験の得点、課題提出、	授業の出	は席状況等に	こよって評価				
1 7K//N/2 * 7 H IIII / J IA	크다크 (毎日 5月 日 - ロ - ロ - ロ - ロ - ロ - ロ - ロ - ロ - ロ -	ы т	— 刘k _1 . 32/	++4M1 324 -				
関連科目	設計製図Ⅱ・Ⅲ、ロボット工学実 機械設計法Ⅰ 他	買Ⅱ・Ⅲ、	工 <u>兼</u> 刀字	、材料刀字」	• 11 、			
	教科書: 林洋次 監修、「機械設計	1 、「機桶	找設計 21. :	実教出版				
▶教科書・副読本	参考書:兼田、山本 共著、「基礎相		_ :					

科目名	担当教員	学年	単位	開講時数	必修·選択		
材料力学Ⅱ (Strength of Materials II)	宮川 睦巳(常勤)	4	1 専門科目	前期 2 時間	必修		
授業の概要	機械や構造物に使用される部材のされる。そのためには、部材内部に						
	要となり、機械や構造物の設計に						
		続き、ねじり、組合せ応力、座屈、ひずみエネルギーについて、基礎的な諸					
授業の進め方	を通じて、基礎力と応用力を養う。 教科書を使った講義を中心に行う。		報を変める	ために演習を	あり えわる		
到達目標	①ねじりモーメント (トルク) と						
到達日標	②組合せ応力における応力とひずる				許する。		
	③ひずみエネルギーの取り扱いにつ	ついて理解	解する。				
	④座屈について理解する。						
学校教育目標との関係	高度な専門知識を学ぶための基礎的	内学力やお	技能を備えた	上技術者を育り	成する。		
· 西 日	講義の内		fi .		\H		
項目	目	標	ž.		週		
3年次のまとめ	材料力学Iの復習による基礎知識を	学ぶ			1		
ねじり	軸に作用する外力と応力の関係につい	-			1		
	軸に発生する変形、ねじり角とねじ	り応力の関	関係を学ぶ		1		
組合せ応力	組合わせ応力とモールの応力円(斜	断面に生じ	じる応力) を	を学ぶ	1		
	組合わせ応力とモールの応力円(任			を学ぶ	2		
	組合わせ応力における応力とひずみい 弾性係数間の関係について学ぶ	万美術を言	子か		1 1		
71 197 2 19) - 1 - wy	de como a filores a como	z. 117. 50			
ひずみエネルギー	ひずみエネルギー(単純引張、圧縮: カスティリアノの定理を学ぶ	および単純	心せん断)る	と字ふ	2		
	マクスウェルの定理を学ぶ				1		
座屈	偏心軸圧縮荷重を受ける短柱を学ぶ				1		
建 加	長柱の座屈と限界荷重を学ぶ				2		
					計 15		
	合計2回の定期試験および授業中に	宝施士で	小テフトヤ	・トアド言甲旦百み、こ	総合的に判		
学業成績の評価方法	告計2回の定期試験の点数および投票中に 断する。定期試験の点数および小テ						
関連科目	材料力学 I 、材料力学特論、材料、ご 学実習 I ・Ⅱ・Ⅲ・Ⅳ、卒業研究	L業力学、	機械設計沒	ķΙ•Ⅱ•Ⅲ,	ロボット工		
教科書・副読本	黒木剛司郎著『材料力学』(森北出版	₹)					

科目名	担当教員	学年	単位	開講時数	必修·選択		
機械力学 I (Mechanical Dynamics I)	宮川 睦巳(常勤)	4	1 専門科目	後期 2時間	必修		
授業の概要	このような振動を防止し、問題をいる。そこで機械力学 I では機械	近年、機械が高速化、高精度化すると機械振動は機械の性能低下につながる。 このような振動を防止し、問題を解決することも振動を学ぶ一つの目的となっている。そこで機械力学 I では機械振動学の基礎理論について学ぶ。初歩的な知識から出発して、多くの身近な題材を例題とした振動の基礎を学ぶ。					
授業の進め方	教科書を使った講義を中心に行う	う。また、理	解を深める	ために演習を	・取り入れる。		
到達目標	① 1自由度系の自由振動と強制 ② 振動の防止(振動の絶縁)を ③ ラプラス変換による振動計算	理解する。					
学校教育目標との関係	高度な専門知識を学ぶための基礎	性的学力や	技能を備えた	た技術者を育り	成する。		
	講義の	为 容					
項目	目	村	票		週		
総論	振動問題を解く上での基礎事項を	学ぶ			1		
1 自由度系の振動	衝撃入力を受ける1自由度系を学	1自由度系(減衰なし/あり)を学ぶ 7 衝撃入力を受ける1自由度系を学ぶ 力入力/変位入力を受ける1自由度系の強制振動を学ぶ					
振動の防止	振動絶縁、基礎絶縁について学ぶ				3		
ラプラス変換による振 動計算	ラプラス変換を用いた1自由度系の	の振動の解	法について	ぶ	4		
					計 15		
学業成績の評価方法	合計2回の定期試験および授業中に の点数および課題の評価の比率は			合的に判断す	る。定期試験		
関連科目	材料力学Ⅰ、材料力学Ⅱ、機械力等 法Ⅰ・Ⅱ・Ⅲ、ロボット工学実習				学、機械設計		
教科書・副読本	青木繁著『機械力学』(コロナ社)						

科目名		担当教員	学年	単位	開講時数	必修・選択
機構学 (Mechanism of Machir	nery)	鈴木 拓雄 (常勤)	4	1 専門科目	前期 2 時間	必修
授業の概要	機械にり」をとは、本科目	に目的とする動き 構成する必要がも 機械にとって最も は、従来の機構を とを目的とする。	らる。こ <i>の</i> ら理想的が と学ぶこと	りからくりのこ な動きをさせる	とを「機構」 & 6機構を選び出	と呼ぶ。機構学 す学問である。
授業の進め方	1	中心とし、理解を		ための動画の脚	や写や演習問題	 を行う。
到達目標		背の種類と実用例? 背解析を理解する	を理解する	5		
学校教育目標との関係	高度な	:専門知識を学ぶた	こめの基础	遊的学力や技 能	とを備えた技術	者を育成する。
	講	義の	内 容			
項 目		1.00 1110 1110 11	目	標		週
ガイダンス		授業の進め方の	理解			
機構とは何か		機構の意味と概念	念の理解			1
機構学における基礎用語	<u>.</u>	機械と機構の理が基礎と対偶の理が機構の自由度の語	解			1 1 1
平面リンク機構の種類と	:特徵	4節リンク・回道 グラスホフの定義 平行リンク機構 平面機構の自由	理の理解 の理解			1 1 1 1
機構の解析		機構の解析とは 瞬間中心の定理 変位解析と速度 仮想仕事の原理	解析		里解	1 1 1 1
各種機構		ロボットに使用	されてい	る基礎的な機構	冓の理解	2
						前期 計 15
	2回の定って評価	E期試験の得点、調 iする。	 題提出、	授業の出席状	況ならびに取り)組み姿勢によ
関連科目	L業力学	, ロボット工学3	≷習Ⅰ・Ⅰ	Ⅱ・Ⅲ, 設計集	^{提図Ⅱ・Ⅲ}	
教科書、副読本	冷森康-	・著「ロボット機構	講学」コロ	コナ社		

된 교 성	42 V #45 E	兴左	出上	885 華 □土 米৮	.v /d \c2.4	+0	
科目名	担当教員	学年	単位	開講時数	必修·選	八	
熱力学 I (Thermodynamics I)	石澤 静雄(非常勤)	4	1 専門科目	前期 2時間	必修		
授業の概要	熱力学は熱 (エネルギ) に関する形態変化と移動に関する知識と利用方法を						
	体系化した学問であり、その基						
	いえる。この授業では、未来社					「可	
	欠となる熱力学の基礎的な知識	版を学び	、基礎力と凡	5月力を養う	0		
授業の進め方	講義を中心とするが、理解を浴	ぞめるた	めの問題演習	習や小テスト	を適宜行	う。	
到達目標	① 熱、エネルギ、仕事の意味	とそれら	の間の定量	的な関係を理	里解できる	<u></u>	
	٤.						
	② 気体の状態方程式について	理解でき	きること。				
***************************************		+ ~ + 11 . W	L A LLAGA H	# > 1. ELZI::-#z	2 		
学校教育目標との関係	高度な専門知識を学ぶための基	と 礎的字	力や技能を係	開えた技術者	を育成する	る。	
	講義の内	容					
項目	目標					周	
ガイダンス	講義の概要や関連科目とのつた理解する。	よがり、	熱力学の工学	学的事例につ	いて 1		
熱とはなにか	熱と温度との関係、熱エネルキ	の量を	則る尺度(仕	事量)、熱エ	ネル 3		
	ギの使用量を測る尺度(仕事率	🗵 の定	義やそれらの	の相互関係に	つい		
	て理解する。						
熱量と比熱	熱量と比熱について理解する。	ロナッ			2		
熱力学の第一法則 内部エネルギとエンタ	熱力学の第一法則について理解 内部エネルギとエンタルピにつ		細士ス		3		
ルピ	内部エイルヤとエングルとにす	ハ・(垤)	149 る。		3		
理想気体の状態方程式	理想気体の状態方程式について	理解す	る。		3		
					計	15	
学業成績の評価方法	定期試験の結果 (80%) と課題などの提出状況とその内容 (20%) により評価を行う。また、学習意欲と学習態度により減点を行う場合がある。						
関連科目	「物理 I」、「物理 II」、「物理III」が基礎となる。また、基礎数学 I 、基礎数学 II 、 微分積分、解析学基礎などで学んだ数学的知識を利用する。					Π,	
教科書・副読本	教科書:JSME テキストシリース	で『熱力	学』日本機構	戒学会			
ᅏᄺᄅᇑᇞᅲ	2ATI目・UDMID / TATV グーク	・ 』がバノノ	1 1 H /1-1/X//	л <u>Г</u> Д			

科目名	担当教員	学年	単位	開講時数	必修·選択
流体工学 I (Fluid Mechanics I)	田村 恵万(常勤)	4	1 専門科目	前期 2 時間	必修
授業の概要	私たちのまわりを見渡すと、空ちており、私たちは流体の中で II、III」で学んだことをもとに 流体工学は重要である。ここでする。	暮らし して、沢	ている。第1 忘れのさまざ	、2、3学年 まな現象を5	三の「物理 I 、 里解する上で
授業の進め方	教科書および配布するプリント ための小テスト・問題演習・誤				里解を深める
到達目標	①流体の物理的性質について理 ②流れの基礎式を利用して、流 と。 ③基礎的な流れの現象について	体の基理解で	本的問題にき		
学校教育目標との関係			力や技能を値	備えた技術者	を育成する。
		容			\m_
項 目 ガイダンス	目標講義の概要や関連科目とのつな	ふ い	身近れ落体/	カ羽角につい	週 1
ルイタマヘ	講義の概要や関連科目とのつる 解する。	いり、	オルな流体(ク党家に"フレ゙	で理 1
流体の物理的性質	単位系ならびに流体の物理的性	質につ	いて理解する	5 .	1
流体の静力学	流体の圧力およびマノメータに			- 0	3
壁面に及ぼす流体の力	壁面に及ぼす流体の力やその圧	力の中	心について理	里解する。	2
流体運動の基礎1	流れの状態や連続の式について	理解す	る。		2
流体運動の基礎 2	ベルヌーイの定理やベルヌーイ	の定理	を応用したネ	流体の速度・	流量 4
	の測定について理解する。				
運動量の法則	運動量の法則について理解する	0			2
					計 15
学業成績の評価方法	2回の定期試験の得点(80%)と 状況・出席状況を含む授業への取				
関連科目	「物理 I」、「物理 II」、「物理Ⅲ」が	基礎とな	さる。		
	第2学年以降の機械工学系科目				
## * 1 * 1 * 1 * 1 * 1 * 1	第4学年 ロボット工学実験Ⅱ	N. II	+		
教科書・副読本	教科書:『図解はじめての流体力学	字』科学			

科目名	担当教員	学年	単位	開講時数	必修·選択			
ロボット工学 I (Robotics I)	源 雅彦(常勤)	4	1 専門科目	後期 2時間	必修			
授業の概要	制御工学,計測工学,電気・電子ロボット工学の基礎過程として、	ロボットを製作し、制御するためには様々な要素技術(材料力学、機構学制御工学、計測工学、電気・電子工学、情報工学など)を学ぶ必要があるロボット工学の基礎過程として、ロボットを構成するセンサ、アクチュエタ、機構についての解説から初め、ロボットを制御するために習得すべき基理される。						
授業の進め方	配布するプリントを使った講義が習も適時行う。	5中心とた	よるが、理り	解を深めるた	めの問題演			
到達目標	 ロボットを構成するセンサやア 運動伝達機構の原理と力学特性 ロボットの座標系および座標変ができる。 	きについて ご換を理解	理解する。 とし、運動学	に関する問題	夏を解くこと			
学校教育目標との関係	実践的技術教育を通じて、工学的の創造・開発に粘り強く挑戦でき				、い"もの"			
	講義の内	容						
項目	目	標	Į.		週			
1. ガイダンス 2. センサの原理 3. アクチュエータ 4. ロボット機構 5. 機構の運動伝達 6. 座標変換と回転行列 7. DH 記法 8. 運動学	講義の進め方や評価方法について記ロボットで用いる各種センサの原理ロボットで用いるアクチュエータのロボットアームの機構について理解ロボットの機構に関する力学特性をできる。 座標変換および回転行列について理解する。ロボットアームの運動学を理解し、	里と使用フ フ原理と他 解する。 と理解し、 里解する。	関連した誤	理解する。 果題を解くこ	2 2			
学業成績の評価方法	「定期試験」「授業中の問題演習」「出 1) に評価する。 第2学年 ロボット工学実習 I	席状況を	含む授業態	〔度〕を、総合	計的(6:3:			
関連科目	第 3 学年 工業力学 ロボットコ 第 4 学年 制御工学 I ロボッ	卜工学実習	習Ⅲ メカ	トロニクス				
教科書・副読本	参考書:小川鉱一,加藤了三: "初めて 松日楽信人,大明準治: "わか							

科目名	担当教員	学年	単位	開講時数	必修·選択				
ロボット工学実習Ⅲ	田村、根本、大貫、鈴木 _拓	4	2	後期	必修				
(Practice in Robotics III)	(常勤) 4 専門科目 4時間 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
授業の概要	ッキロボットを製作する。これに 設計製図Ⅲの平歯車減速機から構 バッテリーから電力供給される値	倒壊した家具などを持ち上げるような災害救助などに利用可能な自走式ジャッキロボットを製作する。これは、設計製図Ⅱのパンタグラフ式ジャッキ、設計製図Ⅲの平歯車減速機から構成される自走式車両機構である。搭載したバッテリーから電力供給される直流モーターの動力により、ジャッキ部と車両部分を駆動・制御する。これまでに設計製図ⅡとⅢで設計製図してきた応							
授業の進め方	クラスを8班に構成し、班毎にこさらに2つから3つの班を合わせ性加工・板材の切断加工・フライにより半期(後期)を通じて全てた後、全員で組立、運転を行う。	せて 1 ユ イス加工 ての実習	ニットとし、 ・旋盤加工な を体験する。	各ユニット 坂材を、ロー 全ての部品	が板材の塑 -テーション Lを作り上げ				
到達目標	 旋盤・フライス盤・ボール盤 シェアリングなどの板材加工 手仕上げが加工の基本である 直流モーター出力・回転数、ジャッキの持ち上げ能力を評 	の範囲 ことを 歯車列	・加工精度な 理解する. の速度伝達は	さどを理解す	る。				
学校教育目標との関係	地域産業の発展に貢献するため、 って果敢に挑戦できる技術者を育			し、設定した	:課題に向か				
	講義の内	容							
項目	目		標		週				
ガイダンス 除去加工 切削加工 旋盤加工 フライス盤加工 ボール盤 鋸盤 せん断(プレス)加工 切断加工 塑性加工 手仕上げ ロボット組立、調整	・実習内容の概要、班編成、製作す グラフ式ジャッキと直流モーター 構成される)に関する説明等。ク ループ1台のロボットを製作する ・軸、ねじ棒、軸継手、などの外野 歯車・軸受・軸継手などのはめる ・板材の外周端面加工(表面の粗仕 ・ねじ加工(めねじの下穴、めねり ・定尺材料からの粗取り加工など ・板材の切断加工 ・板材の曲げ加工 ・タップ、ダイスによるねじ切り、 ・自走式ジャッキロボットの組立る	- 、平歯: ・ラス全 る。 ド (おおの あい部の: 上げ、た ご加工な	車変速機から体を8グルー いじ)およびい仕上げ(あせ上げ加工、 による面取、	っなる車両部 −プに分け、 内径切削加コ らさと公差) 平行度と直角 ▼加工など	分で 1グ 二 角度)				
学業成績の評価方法	作品を完成させ、提出物を全て提出 能の習熟度③製作作品④提出物に る。	ついて	担当教員によ	こる採点の平	均で評価す				
関連科目	ものづくり実習、基礎製図、設計 実習Ⅰ、Ⅱ、機械設計法Ⅰ、Ⅱ	製図 I 、	Ⅱ、Ⅲ、機	械工作法、口	1ボット工学				
教科書・副読本	テキストを配布する。 機械製図、機械工作法								

科目名	担当教員	学年	単位	開講時数	必修·選択				
ロボット工学実験Ⅱ	奥平、田村、 2 通年 、								
(Experiments in									
Robotics Π)									
授業の概要	材料力学・機械力学、熱・流体力								
	分野について、基礎的な実験を通	重して学 て	バ、その現績	象を記述した	理論の確認				
	を行う。								
授業の進め方	┃ ┃ 4 班編成で実施し、ローテーショ	ンにより	1 年を43	旺に分けて実	ミ験を行う。				
	担当教員の指示により、班員間に	こて実験を	行う。結	果は、各人が	バレポートと				
	してまとめ、担当教員とのディス	スカッショ	ンによりま	里解を深める	0				
到達目標	① 材料力学、機械力学ついて理	解するこ	と。						
	② 熱・流体力学について理解す	ること。							
	③ ロボットを制御するための基		-						
	④ 電気回路・電子回路の基礎を								
学校教育目標との関係	実践的技術教育を通じて、工学的				い"もの"				
	の創造・開発に粘り強く挑戦でき	る技術者	で育成する	5.					
	<u> </u> 講義の内	容							
項目			票		週				
ガイダンス	学習の目的、概要、注意事項の理	解。レポ	ートの書き	方について					
	する。								
テーマ I	 座屈試験、曲げ試験、振動の基本	かまり	 み行う		6				
材料力学・機械力学実験	一	~FJ.& /CW	(611)						
	****	2 - 2 - 2		=) ~ ++ ~++ //	·				
テーマⅡ	熱起電力, 流体の基本物性など熱	および流	体力字に関	する基礎的	な実 6				
熱・流体力学実験	験を行う。 								
テーマVI	 産業用ロボットの実際の教示と掉	作につい	ンで学習する	 3	6				
ロボット制御実験	ロボット工学実験Iを踏まえ、さ			-					
これ、ケードの呼火吸入	る。	5100) v > (101) lm	h(c > ()					
	°。 2足歩行ロボットの制御について	学習する							
		•	~						
テーマIV	R-L 回路、R-C 回路、R-L-C 回路0	り基本的な	な実験を行	う。	6				
電気・電子工学実験									
 レポート指導	L レポート指導を行う。				5				
. 4. 1.1H-44	· · · · · · · · · · · · · · · · · · ·								
					=1 ==				
					計 30				
	全ての実験を行い、かつ、提出物								
	状況および実験態度(30%)、②								
学業成績の評価方法	実験分野ごとに①、②の項目について各 10 点満点で評価し、上記の割合で重								
1	みをつけ評価点を算出する。また、正当な理由による欠席の場合、補習を行								
		-,		0) (///11 -> /// 🗀					
	う。								
明/中切 口	う。 4年専門科目では、材料力学Ⅱ、	機械力学	≱I、ロボ:	ット工学I、	熱力学 I・				
関連科目	う。 4年専門科目では、材料力学Ⅱ、 Ⅱ、流体工学Ⅰ・Ⅱ、5年専門科	機械力学	≱I、ロボ:	ット工学I、	熱力学I・				
関連科目 教科書・副読本	う。 4年専門科目では、材料力学Ⅱ、	機械力学	≱I、ロボ:	ット工学I、	熱力学I・				

科目名	担当教員	学年	単位	開講時数	必修·選択			
ゼミナール	ロボット工学コース	4	2	通年	必修			
(Seminar)	4 _{専門科目} 2 時間 必							
授業の概要	高専教育の総まとめとしての名として各研究室に配属され、卒				の予備段階			
授業の進め方	ガイダンスを行い、希望、調整 ら直接指導を受けながらゼミナ				指導教員か			
到達目標	①卒業研究に備えた基本事項の ②研究力、応用力、専門知識の							
学校教育目標との関係	地域産業の発展に貢献するためかって果敢に挑戦できる技術者			有し、設定し	た課題に向			
7 ⁺ 11 ⁺ erbre polo-	講義の内容				\E-			
研 究 室 奥平研	テ ー パワーエレクトロニクス入門	マ			週			
平村研 相根源 大笠 新研 新川山 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	流体の計測に関する基礎についたがの計測に関する基礎についた動歯車装置の基礎と応用ロボット制御および視覚インタ塑性加工と材料の変形挙動に関ロボット制御に関する基礎につい、災害時被災者探索ロボットに関係を発展を発生を発展を発展を発展を発展を発展を発展を表現を表現して、大力の対象を表現る。まままままままままままままままままままままままままままままままままままま	フェース]する基礎 って]する研究			30 週			
学業成績の評価方法	絶対評価、出席状況30%、取	り組み 7	0 %					
関連科目	コース内専門科目および一般科目を含めた1年次〜4年次の学習科目全般、 卒業研究							
教科書、副読本	各指導教員の指示による							

科目名	担当教員	学年	単位	開講時数	必修·選択
流体工学Ⅱ (Fluid MechanicsⅡ)	田村 恵万(常勤)	4	1 専門科目	後期 2 時間	選択
授業の概要	私たちの身の回りは、空気や水 ている。ここでは「流体工学 I 流れへ適用した問題を解決する	」で学ん	レだ知識をも	とにして実際	
授業の進め方	教科書および配布するプリント ための小テスト・問題演習・詩			いとなるが、ま	里解を深める
到達目標	 管内の流れの基礎について 管路を流れる流体のエネル 流体機械における基礎的な 	ギ損失に流れの	こついて理解 現象について	て理解できる	こと。
学校教育目標との関係			力や技能を係	聞えた技術者	を育成する。
	講義の内	容			ı
項目	目標				週
ガイダンス レイノルズ数 管内流 管内流れの圧力損失1 管内流れの圧力損失2 流体機械における流れ 物体のまわりの流れ	講義の概要や関連科目とのつな レイノルズ数や相似則について 円管内の層流、乱流について理 管摩擦について理解する。 管路抵抗について理解する。 流体機械における流れの基礎に 流れの中の物体に働く揚力、扩	理解す 2解する。 こついて	る。 。 理解する。		1 2 3 2 3 2 2 2
学業成績の評価方法	 2回の定期試験の得点(80%)と 状況・出席状況を含む授業への取	• .		. 13711. 1910.	_ 0
関連科目	「物理 I」、「物理 II」、「物理Ⅲ」が 第2学年以降の機械工学系科目、 第4学年 ロボット工学実験Ⅱ	「流体力]学 I 」		
教科書・副読本	教科書:『図解はじめての流体力:	学』科学	学図書出版		

科目名	担当教員	学年	単位	開講時数	必修·選択		
熱力学Ⅱ	石澤 静雄(非常勤)	4	1	後期	選択		
(Thermodynamics I			専門科目	2時間			
 授業の概要	 熱力学は熱 (エネルギ) に関	月十ス形育		 と関する知識	 -利用方法を		
以来の似安	体系化した学問であり、その						
	いえる。この授業では、「熱						
	な知識を学び、基礎力と応	_		IIIA E O E (= MI)	2 1 ·> \(\text{\text{TWCH2}}\)		
 授業の進め方	講義を中心とするが、理解			2羽の小テフト	な海ウ伝え		
投来の進め方	神我を中心とするが、理解	と休める	ためか月可起作	は白でかんへい	を適且117。		
到達目標	①気体の等圧、等温、等積、	新執索	上の関係式を	用いて 気体の	つ状能変化に		
	関する基礎的な計算ができ		0.2 MM. 4.6	713. ()(11.	が心臓炎性で		
	②基礎的なサイクルのなす	-	熱効率につい	ヽて理解できる	こと。		
学校教育目標との関係	高度な専門知識を学ぶため						
		•					
	<u>」</u> 講 義 の 内	容					
項 目			 標		週		
ガイダンス	講義の概要や関連科目との	つかがり		マナス	1		
理想気体の状態変化	理想気体の4つの状態変化						
2.心人(中少人)总文门	び、温度、圧力、体積の相				4		
熱力学の第二法則	熱力学の第二法則について			v ₀	2		
サイクル	サイクルの熱と仕事の関係						
サイクルとその仕事	基礎的なサイクルのなす仕			理解する。	3		
カルノーサイクル	カルノーサイクルについて				2		
エントロピ	エントロピの物理的な意味				2		
					-1		
					計 15		
学業成績の評価方法	定期試験の結果(80%)と課題などの提出状況とその内容(20%)により評価						
	を行う。また、学習意欲と学習態度により減点を行う場合がある。						
関連科目	「粉珥」「物珥Ⅱ」「粉珥Ⅲ」が甘ス牀しセンス きゃ 甘ス牀粉や」 甘ス牀粉や田						
	「物理 I」、「物理 II」、「物理Ⅲ」が基礎となる。また、基礎数学 I 、基礎数学Ⅱ、 微分積分、解析学基礎などで学んだ数学的知識を利用する。						
教科書・副読本	教科書 : JSME テキストシリ	ーズ『熱	力学』日本榜	幾械学会			

田村恵万、中屋秀樹、字田川貞介、高崎和之 名 専門科目 集中 選択 接来の概要	科目名	担	 !当教員	学年	単位	開講時数	必修·選択
休業中を中心に、5日以上、企業や大学・研究所などで「業務体験」を行う。 学校で学んだ内容を活用し、現場の技術者たちの仕事を観察・体験して、自身の能力向上と、		宇田川真	介,高崎和之	4		集中	選択
学校で学んだ内容を活用し、現場の技術者たちの仕事を観察・体験して、自らの能力向上と、勉学・連路の指針とする。マッチングを重視した事前・事後指導を行い、学生の企業操作、実習を支援する。	授業の概要	各コースの	特色を持った第	実践的な	「ものづくり」	人材を育成する	るため、夏季
	,	休業中を中	心に、5日以上	こ、企業や	大学・研究所	などで「業務体	:験」を行う。
後指導を行い、学生の企業選択・実習を支援する。 設別会や企業探索、志望理由作成、実書、報告書作成・発表の順で進める。 設計者としての自覚と、技術や業務を理解し、キャリアを意識させること。 学校教育目標との関係							
授業の進め方 説明会や企業探索、志望理由作成、実習、報告書作成・発表の順で進める。 技術者としての自覚と、技術や実務を理解し、キャリアを意識させること。							レた事前 · 事
到達目標 技術者としての自覚と、技術や業務を理解し、キャリアを意識させること。 学校教育目標との関係 豊かな教養、技術者としての倫理観を身につけさせ、社会に貢献できる広い、視野を持った技術者を育成する。 環 日 個 1. インターンシップ説明会特別区・企業・大学等 2. インターンシップ申込書の作成 企業探索 面談 志望理由 インターンシップ申込書を完成させる。 指示物や WEB サイトで企業を探索したり、比較する。 担当教員と面談し、アドバイスを受ける。 1 記望理由を、教員の指導のもと、書き上げる。 6 3. 説明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 4. インターンシップの諸注意 実習値前にインターンシップにおける注意を受け、礼 2 (後・マナー等を考える。 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 5 日 (実働 30 時間) 以上、実施する。 3 0 以上 7 人クターンシップ報告書の作 インターンシップ報告書を作成する。内容には企業秘密等を記載しないように考慮のうえ完成させる。 発表に参加し、発表および質疑を行う。 2 計6 0 以上. 学業成績の評価方法 ①事前・事後指導、②5 目 (実働 30 時間) 以上の実習 (インターンシップ)を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。							T ->//:->
学校教育目標との関係 提野を持った技術者を育成する。 豊かな教養、技術者としての倫理観を身につけさせ、社会に貢献できる広い 提野を持った技術者を育成する。 項目 調理 1. インターンシップ説明会 特別区・企業・大学等 インターンシップの説明会に参加し、インターンシップ事業に応じて、数回、実施される。 インターンシップ申込書を完成させる。 掲示物や WEB サイトで企業を探索したり、比較する。 2. インターンシップ申込書を完成させる。 掲示物や WEB サイトで企業を探索したり、比較する。 2. 担当教員と面談し、アドバイスを受ける。 志望理由を、教員の指導のもと、書き上げる。 1 3. 説明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 4. インターンシップの諸注意 後・マナー等を考える。 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 5 日 (実働 30 時間)以上、実施する。 5 日 (実働 30 時間)以上、実施する。 5 日 (実働 30 時間)以上、実施する。 6 インターンシップ報告書を作成する。内容には企業秘密等を記載しないように考慮のうえ完成させる。 第を記載しないように考慮のうえ完成させる。 発表会に参加し、発表および質疑を行う。 8 インターンシップ教告書の作成 ①事前・事後指導、②5 日 (実働 30 時間)以上の実習 (インターンシップ)を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。							
視野を持った技術者を育成する。							
講 義 の 内 容 1					見ど身につけて	さて、任会に貝牌	11 できる広い
1. インターンシップ説明会特別区・企業・大学等		光判で打つ			虚		
1. インターンシップ説明会 特別区・企業・大学等 と手続きの流れを理解する。各インターンシップ事業に 応じて、数回、実施される。 インターンシップ申込書を完成させる。 掲示物や WEB サイトで企業を探索したり、比較する。 担当教員と面談し、アドバイスを受ける。 志望理由 お韻明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 を望理由を、教員の指導のもと、書き上げる。 6 保険加入の説明を受け、理解して加入する。 1 を	- F		- 親 ○ 3 · · · · · · · · · · · · · · · · · ·				' E
1. インターンシップ説明会 特別区・企業・大学等 インターンシップの説明会に参加し、インターンシップ事業に応じて、数回、実施される。 インターンシップ申込書を完成させる。 担当教員と面談し、アドバイスを受ける。 志望理由 1 3. 説明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 4. インターンシップの諸注意 5. 学生による企業訪問・連絡 実習直前にインターンシップにおける注意を受け、礼儀・マナー等を考える。 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 2 6. インターンシップ報告書の作成 実習先で、インターンシップを実施する。 5目(実働30時間)以上、実施する。 5目(実働30時間)以上、実施する。 30以上 7. インターンシップ発表会 発表会に参加し、発表および質疑を行う。 8 8. インターンシップ発表会 発表会に参加し、発表および質疑を行う。 2 学業成績の評価方法 6と記載しないように考慮のうえ完成させる。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 2 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。				Н	惊	:	
### と手続きの流れを理解する。各インターンシップ事業に応じて、数回、実施される。	1 インターンシップ部	阳仝	インターンジ	ップの鉛	田今に会加し	インターンババ	
2. インターンシップ申込書の作成 応じて、数回、実施される。 企業探索 面談 志望理由 指示物や WEB サイトで企業を探索したり、比較す 6 3. 説明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 4. インターンシップの諸注意 実習直前にインターンシップにおける注意を受け、礼儀・マナー等を考える。 学生による企業訪問・連絡 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 3 0 以上 7・インターンシップ報告書の作成 第を記載しないように考慮のうえ完成させる。 8・インターンシップ発表会 発表会に参加し、発表および質疑を行う。 2 計6 0 以上・学業成績の評価方法 ①事前・事後指導、②5日(実働 30 時間)以上の実習(インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。							
2. インターンシップ申込書の作成 インターンシップ申込書を完成させる。 掲示物や WEB サイトで企業を探索したり、比較する。 担当教員と面談し、アドバイスを受ける。 志望理由を、教員の指導のもと、書き上げる。 6 3. 説明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 4. インターンシップの諸注意	内加匹 显术 八丁	.1	**		-	• • > > +>	
成 企業探索	2. インターンシップ申	込書の作			-	る。	
 直談 志望理由 記望理由を、教員の指導のもと、書き上げる。 3. 説明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 4. インターンシップの諸注意 実習直前にインターンシップにおける注意を受け、礼 儀・マナー等を考える。 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 6. インターンシップ 実習先で、インターンシップを実施する。 5日 (実働 30 時間) 以上、実施する。 3 0 以上 7. インターンシップ報告書の作成 発表会に参加し、発表および質疑を行う。 2 計6 0 以上. 学業成績の評価方法 ①事前・事後指導、②5日 (実働 30 時間) 以上の実習 (インターンシップ)を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。 			·			- 0	交す 6
志望理由を、教員の指導のもと、書き上げる。 6 3. 説明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 4. インターンシップの諸注意 実習直前にインターンシップにおける注意を受け、礼 儀・マナー等を考える。 2 5. 学生による企業訪問・連絡 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 3 0 以上の第30時間)以上、実施する。 5 日 (実働 30 時間)以上、実施する。 4 インターンシップ報告書の作成 学表会に参加し、発表および質疑を行う。 2 計6 0 以上. 学業成績の評価方法 ①事前・事後指導、②5 日 (実働 30 時間)以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。	企業探索		*				
3. 説明会(保険加入) 保険加入の説明を受け、理解して加入する。 1 4. インターンシップの諸注意 実習直前にインターンシップにおける注意を受け、礼 食 ・マナー等を考える。 学生が事前に企業訪問して、インターンシップの初日に ついての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 3 0 以上 で ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	面談		担当教員と	面談し、	アドバイスを	受ける。	1
4. インターンシップの諸注意 実習直前にインターンシップにおける注意を受け、礼儀・マナー等を考える。 2 5. 学生による企業訪問・連絡 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 2 6. インターンシップ 実習先で、インターンシップを実施する。5日(実働30時間)以上、実施する。インターンシップ報告書を作成する。内容には企業秘密等を記載しないように考慮のうえ完成させる。 8 7. インターンシップ発表会 発表会に参加し、発表および質疑を行う。2計60以上・ 学業成績の評価方法 ①事前・事後指導、②5日(実働30時間)以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。	志望理由		志望理由を	、教員の	指導のもと、	書き上げる。	6
4. インターンシップの諸注意 実習直前にインターンシップにおける注意を受け、礼儀・マナー等を考える。 2 5. 学生による企業訪問・連絡 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 2 6. インターンシップ 実習先で、インターンシップを実施する。5日(実働30時間)以上、実施する。インターンシップ報告書を作成する。内容には企業秘密等を記載しないように考慮のうえ完成させる。 8 7. インターンシップ発表会 発表会に参加し、発表および質疑を行う。2計60以上・ 学業成績の評価方法 ①事前・事後指導、②5日(実働30時間)以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。							
 5. 学生による企業訪問・連絡	3. 説明会(保険加入)		保険加入の説	明を受け、	、理解して加え	入する。	1
 5. 学生による企業訪問・連絡		=± >> =±	eta 222 eta 1/21.				
 5. 学生による企業訪問・連絡 学生が事前に企業訪問して、インターンシップの初日についての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 6. インターンシップ 実習先で、インターンシップを実施する。5日(実働30時間)以上、実施する。 インターンシップ報告書の作成 等を記載しないように考慮のうえ完成させる。 8. インターンシップ発表会 発表会に参加し、発表および質疑を行う。 2計60以上. 学業成績の評価方法 ①事前・事後指導、②5日(実働30時間)以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。 	4. インターンシップの	諸汪蒠				る圧意を受け、	孔 2
ついての打ち合わせを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。 6. インターンシップ 実習先で、インターンシップを実施する。 5日 (実働 30 時間) 以上、実施する。 7. インターンシップ報告書の作成 (本記載しないように考慮のうえ完成させる。 8. インターンシップ発表会 ※表会に参加し、発表および質疑を行う。 ※表会に参加し、発表および質疑を行う。 ② 計60 以上. 学業成績の評価方法 ①事前・事後指導、②5日 (実働 30 時間) 以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。	5 労生による要計問	. 油效				ことのプログロ	17 0
6. インターンシップ 実習先で、インターンシップを実施する。 5日 (実働 30 時間) 以上、実施する。 以上 3 0 以上 7. インターンシップ報告書の作成 インターンシップ報告書を作成する。内容には企業秘密等を記載しないように考慮のうえ完成させる。 8 8. インターンシップ発表会 発表会に参加し、発表および質疑を行う。 2 計60 以上. 学業成績の評価方法 ①事前・事後指導、②5日 (実働 30 時間) 以上の実習 (インターンシップ)を総合的に見て、「合・否」で評価する。単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目 (キャリアデザイン) など。	0. 子生による住業的向	• 理船	-				
6. インターンシップ実習先で、インターンシップを実施する。 5日(実働30時間)以上、実施する。30 以上7. インターンシップ報告書の作成インターンシップ報告書を作成する。内容には企業秘密等を記載しないように考慮のうえ完成させる。88. インターンシップ発表会発表会に参加し、発表および質疑を行う。2 計60以上。学業成績の評価方法 単位認定に必要な書類は、実習機関が発行する「インターンシップ)を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。関連科目各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。						7日は、电四・17月	
7. インターンシップ報告書の作成 5日(実働30時間)以上、実施する。 以上 7. インターンシップ報告書の作成 インターンシップ報告書を作成する。内容には企業秘密等を記載しないように考慮のうえ完成させる。 8. インターンシップ発表会 発表会に参加し、発表および質疑を行う。 2 計60以上。 学業成績の評価方法 ①事前・事後指導、②5日(実働30時間)以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。)	4 (11.0	П 42 С.Д°		
7. インターンシップ報告書の作成 5日(実働30時間)以上、実施する。 以上 7. インターンシップ報告書の作成 インターンシップ報告書を作成する。内容には企業秘密等を記載しないように考慮のうえ完成させる。 8. インターンシップ発表会 発表会に参加し、発表および質疑を行う。 2 計60以上。 学業成績の評価方法 ①事前・事後指導、②5日(実働30時間)以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。	6. インターンシップ		実習先で、イ	ンターン	シップを実施 [、]	する。	3 0
成						-	以上
成							
8. インターンシップ発表会 発表会に参加し、発表および質疑を行う。 2 計60以上. 学業成績の評価方法 ①事前・事後指導、② 5 日(実働 30 時間)以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。		告書の作					必密 8
計60以上. 学業成績の評価方法	成		等を記載しない	いように	考慮のうえ完成	成させる。	
計60以上. 学業成績の評価方法		A			i. i zareka :	· >-	_
以上.	■ 8.インターンシップ発	表会	発表会に参加	し、発表は	および質疑を行	付う。	
学業成績の評価方法 ①事前・事後指導、②5日(実働 30 時間)以上の実習(インターンシップ)を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、「インターンシップ報告書」および「指導記録簿」である。 関連科目							
を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、 「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。							以上.
を総合的に見て、「合・否」で評価する。 単位認定に必要な書類は、実習機関が発行する「インターンシップ証明書」、 「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。	学業成績の評価方法	事前・事行	後指導、② 5 日	(実働 30	時間) 以上の)実習(インター	-ンシップ)
「インターンシップ報告書」および「指導記録簿」である。 関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。		·総合的に見	見て、「合・否」	で評価す	·る。		
関連科目 各コースの専門科目や、文化・社会系選択科目(キャリアデザイン)など。							
		「インターンシップ報告書」および「指導記録簿」である。					
教科書、副読本 学校側で用意する「インターンシップガイド」等を活用する。	関連科目 名	・コースの専	専門科目や、文件	化·社会系	選択科目(キ	ヤリアデザイン	かなど。
教科書、副読本 字校側で用意する「インターンシップガイド」等を活用する。	***************************************	4±/m/ m =	*	× . ×	-0.13 / 10. Into	2 X III 1- 7	
	教科書、副読本 字	・牧側で用意	まする 1インタ	ーンシップ	ノガイド」等を	ど店用する。	

科目名	担当教員	学年	単位	開講時数	必修·選択				
工業英語	永井誠(常勤)、		1	後期					
(Technical English)	鈴木光晴(非常勤)	4	専門科目	2 時間	選択				
, , , , , , , , , , , , , , , , , , , ,	L学及び科学分野の語彙·表現を習得し、リーディング及びライティングにお								
授業の概要		いて活用する練習をする。また、工学及び科学分野の文章を読む・書くための							
	大法(複合文構造)を習得する。								
	教科書の演習問題を使用して語彙	を表現を	学び、プリ	ント教材を使	 更用して文法				
授業の進め方	構造を学ぶ。								
	工業英語検定4級及び3級程度の)工業英語	· ·力。						
到達目標			., 00						
	ᅕᄲᇭᇕᅩᆝᇬᄱᇬᄼᇄᇬᆝᆖᄦ	ヤキーヘフェル	い、一点ハ	0 + 2 + 1	コーシュナロ				
	産業のグローバル化に伴い、国際				でざる表現				
学校教育目標との関係	力やコミュニケーション力を備え	た技術者	「ど肎成する	5 。					
	5tt 24 o	<i></i>							
7	講義の内		Lauri		\mathrew{\text{mathrew}}				
項目	目		標		週				
	以下の各テーマに関する語彙・	表現を学	び、演習問	題を解く。ま	きた、				
	随時文法問題とリーディング/	´ライティ	ング練習を	と行う。					
1 Reading Numbers	「数を読む」								
2 Natural Numbers	「自然数」				1				
3 Different Kinds of	「いろいろな数」				1				
Numbers	3 3 3 3 3 3 3				1				
4 The Pythagorean	「ピタゴラスの定理」								
Theorem					1				
5 The Calculus	「微積分学」								
6 Vectors	「ベクトル」				1				
7 Mechanics	「力学」				1				
8 Global Warming	「地球温暖化」				1				
9 Elements and Atoms					1				
10 Electricity and	「元素と原子」				1				
Magnetism	「電気と磁気」				1				
11 The Big Bang	「ビッガバン」								
12 The Formation of	「ビッグバン」				1				
Stars	「生りが以」				1				
13 The Formation of	「惑星の形成」				1				
Planets					-				
14 Near-Earth Objects	「地球近傍小天体」				1				
15 Black Holes	「ブラックホール」 1								
10 Diack Holes	計15								
	定期試驗7割 参加保温 9 割	(小テス)	、 指名占	提出物堂2	l e				
学業成績の評価方法	定期試験 7 割、参加状況 3 割(小テスト、指名点、提出物等その他)から 総合的に評価する。								
	総合英語IV、英語選択科目								
関連科目									
料料 司法士	Basic English for Engineers a	nd Scient	tists(金星	. 堂)					
教科書・副読本				/					

科目名	担当教員	学年	単位	開講時数	必修·選択			
機械力学 II (Mechanical Dynamics II)	宮川 睦巳 (常勤)	5	1 専門科目	前期 2時間	必修			
授業の概要	このような振動を防止し、問題を いる。そこで機械力学Ⅱでは機械 は3年次に引き続き、2自由度系	近年、機械が高速化、高精度化すると機械振動は機械の性能低下につながる。 このような振動を防止し、問題を解決することも振動を学ぶ一つの目的となっている。そこで機械力学IIでは機械振動学の理論について理解を深める。4年次では3年次に引き続き、2自由度系の振動、多自由度の振動、連続体の振動を学ぶことで、より深く振動について学ぶ。						
授業の進め方	教科書を使った講義を中心に行う	う。また, 理	解を深める	ために演習を	取り入れる。			
到達目標	 2自由度系の自由振動と強制 多自由度系の振動を理解する 連続体の振動(弦の振動, 構する。 	00		はりの曲げ抜	長動)を理解			
学校教育目標との関係	高度な専門知識を学ぶための基础		技能を備えた	上技術者を育り	成する。			
	404	为 容)IFI			
項目		ا	票		週			
回転体の振動	回転体の危険速度について学ぶ 不釣り合いによる励振を受ける扱 回転体の釣合せを学ぶ	 動を学ぶ			3			
2自由度系の振動	固有振動数および固有振動モート カ入力/変位入力を受ける2自由	-	•	\$ `	4			
多自由度系の振動	多自由度系の自由振動/強制振動	かについて	学ぶ		4			
連続体の振動	弦の振動,棒の縦振動,棒のねじ	り振動、は	よりの曲げ振	受動について:	学ぶ 4 計 15			
学業成績の評価方法	合計2回の定期試験および授業中に の点数および課題の評価の比率は			合的に判断す	る. 定期試験			
関連科目	材料力学Ⅰ、材料力学Ⅱ、機械力学 法Ⅰ・Ⅱ・Ⅲ、ロボット工学実習				学、機械設計			
教科書・副読本	青木繁著『機械力学』(コロナ社)							

科目名	担当教員							
過渡現象論 (Transient Analysis)	奥平 鎮正(常勤)	5	1 専門科目	前期 2 時間	必修			
授業の概要	機械系や電気電子回路の過渡的7 理論を修得する。また、機械系の を学ぶ。							
授業の進め方	理解を深めるために講義だけです。	なく演習を	を多く取り	入れる。課題	の提出も課			
到達目標	①定数係数線形微分方程式の解の ②質量をもつ物体、機械抵抗、 と。 ③電気抵抗、コンデンサ、インタ ること。 ④機械系と電気系の類似性を理解 ⑤機械系を電気系に置き換えて、	バネからた ダクタから 解すること	なる機械系(っなる電気[こ。	の過渡現象を 回路の過渡現	解析するこ			
学校教育目標との関係	高度な専門知識を学ぶための基礎	的学力や担	支能を備えた	た技術者を育り	成する。			
	講義の内	容						
項目	目		標		週			
【前期】 ガイダンス 及び線形微分方程式 単エネルギー機械系 無損失複エネルギー機械 有損失複エネルギー機械 (中間試験の解答・解説 電気系と機械系の路 電気ネルギー回路 無損失複エネルギー回路 無損失複エネルギー・解説 無損失複エネルギー・解説	横系 質量をもつ物体と機械抵抗からなる機械系の過渡現象解析 質量をもつ物体とバネからなる機械系の過渡現象解析 質量をもつ物体とバネ、機械抵抗からなる機械系の過渡現象解析 質量をもつ物体とバネ、機械抵抗からなる機械系の過渡現象解析 電気系と機械系の類推関係の理解 機械系との対応を考慮した R-L回路、R-C回路の過渡回路解析 機械系との対応を考慮した R-L-C回路の過渡回路解析 機械系の過渡現象解析 電気系と機械系の過渡現象解析 電気系と機械系との対応を考慮した 電気系は表して表して表して表して表して表して表して表して表して表して表して表して表して表							
学業成績の評価方法	2回の定期試験の得点と課題の提出状況から総合的に決定する。定期 成績の評価方法 験得点と課題提出点の比率は7:3とする。必要に応じて追試験を実施 る。							
関連科目	第4~第5学年の制御工学、	メカトロ	ニクス、電	這気機器制御	工学			
教科書・副読本	教科書:使用しない 参考書:「過渡現象の基礎」	(森北出版	(),吉岡芳	夫・作道訓え	工 共著			

科目名		担当教員	学年	単位	開講時数	必修·選択
計測工学 I (Measurement Engineer	ing I)	冨田 宏貴 (常勤)	5	1 専門科目	前期 2時間	必修
授業の概要	は, 部品の 計測技術の	りにおいて,精度 り寸法や機器の性能 は産業現場で必要 ² 没・方法,測定機器 講義する.	を測定し 不可欠でな	, 正しく評価 ある. 本講義	西することが では, 計測の	重要である. D基礎となる
授業の進め方	講義を主	とした授業を行う.	授業中0	の演習は適宜	実施する.	
到達目標	②基本的 ③各種測	差の原理の理解と, な測定器の構造が理 定の原理が理解でき	里解できる きること.	ること.		
学校教育目標との関係	高度な専 る。	門知識を学ぶため	の基礎的	学力や技能	を備えた技術	対者を育成す
	講	義 の 内	容			
項 目		目 標				週
授業の概要説明						1
基本単位と組立単位	単位の仕続	組みについて学習で	する.			1
単位系	絶対単位	系と工学単位系につ	ついて学習	習する.		1
次元と次元解析	単位と次	元の関係,次元を月	用いた運動	動解析につい	て学習する.	1
偏位法と零位法		と間接測定につい 零位法について学習		5.		2
測定と誤差		義と系統誤差につい 統計的意味につい ^っ				1 1
誤差の法則		の性質と扱い方に~ ラムと誤差曲線に~				2
誤差伝播の法則誤差		における誤差伝播り に関する演習を行っ		学習する.		2
長さ測定における誤差		における誤差要因! 原理について学習っ		学習する.		2
計測工学の応用と実例	計測工学	に関する応用例や領	実用例につ	ついて学習す	う.	1 計 15
び 試	授業態度と 験の2回を					出席状況およ
関連科目	門科目全般					
著		械工学講座21「 ,穂苅久,愛原惇 コロナ社			3川富市	

科目名		担	当教員		学年	単位	開講時数	必修	·選択
センサ工学 I						1	前期		
(Sensor Technology	I)	大畠	覚(非常勤)	5	専門科目	2 時間	必	修
授業の概要		-					が使用されて		
						k講義では基	本的なセンサ	ナの種類	真や工
授業の進め方		りな使用法、				ト n 講美など	生める 必要!	- 広じっ	て小テ
10米の進めり		講義と単元ごとに行う確認プリントにより講義を進める。必要に応じストおよび追試を行う。							(71.)
到達目標		センサの種							
		センサの基							
学校教育目標との関係		高度な専門知	田識を学ぶ	ための	の基礎的]学力や技能	を備えた技術	青者を育	ず成す
	る。	講	義		т 2				
· · · · · · · · · · · · · · · · · · ·					内	字 			' 田
項 目 センサ概論	セン	<u>目</u> /サとはセン		標 基本な	・理解す	<u>ス</u>			
光センサの概要	光さ	マンサの概要	更の理解						1
□フォトダイオード・フ □オトトランジスタ	フォ	トトダイオー	ード、フォ	トトラ	ランジス	タの原理の理	里解		1
CdS、赤外線センサ		S、赤外線セ					- o E-m 1 -		1
磁気センサとは ホール素子の原理		itセンサの個 -ル素子の原					ての原理と応	用	1 1
その他の磁気センサ						いての理解			1
温度センサとは		ミセンサの種							1
サーミスタの原理 熱電対の原理		-ミスタの原 重対の原理と			4				$1 \\ 1$
湿度センサ		ミセンサの応		/1T					1
超音波センサ		音波センサの			~ ~ TH 477				1
圧力センサ		音波発信/5 コセンサのF				の動作原理			1 1
センサ特性(まとめ)		ノサ特性の理		 		*/ #/ I F // N / E			1
									計 15
									fT .I.b
									計 15
									п 10
 学業成績の評価方法	运 柴 岩	作 山 市、		0/0 章	1. 題担山	た 100/- □	三期試験を 8	0%のH	マダイ
	アチルア		小ルで 10	· /0 ,	r,咫]正山	172 1070, 凡	□対1040次任 0	U70VJ [J ∓ C
関連科目	電気に	電気回路,電子回路及び専門科目,基礎科目							
		,			,				
教科書・副読本	教科書	書:谷腰欣言	『センサ	ーのし	くみ』	((株)電波新	聞社)		
	その他	也プリントを	分併用して	行う。					

科目名		担当教員	学年	単位	開講時数	必修·選択	
制御工学Ⅱ (Control Engineering Ⅱ)	笠原 美左和(常勤)	5	1 専門科目	後期 2時間	必修	
授業の概要	さ ⁺ 数	別御工学は、ロボット等に せるのに必要な理論である (周波数応答)の特性、開 こついて学ぶ。	。この授	業では、周	波数領域にお	ける伝達関	
授業の進め方	講	らまた として、理解を深	めるため	に演習を多く	く取り入れる。		
到達目標	2 3	① 制御要素の周波数応答について理解する。② むだ時間を含む制御系の周波数応答について理解する。③ 開ループ周波数応答から閉ループ周波数応答を導くことができる					
学校教育目標との関係	高月る。	高度な専門知識を学ぶための基礎的学力や技能を備えた技術者を る。					
		講義の	内 容				
項目		目		標		週	
ガイダンスと時間応答の行	复習	むだ時間要素、一次遅れ の理解の確認	要素、_	次遅れ要素	のステップ応	答 2	
基本制御要素の周波数応答	答	比例・積分・微分要素のボード線図、ナイキスト線図を書いて、特性を理解すること					
一次要素の周波数応答		一次進み要素、一次遅れ要素のボード線図、ナイキスト線図 を書いて、特性を理解すること 一次要素の組み合わせで構成される系のボード線図、ナイキ 2					
一次要素の組み合わせで される系の周波数応答							
(前期中間試験の解答・解 二次要素(共振系)の周 応答)							
むだ時間要素の周波数応答 むだ時間要素を含む制御;		むだ時間要素のボード線 むだ時間要素を含む制御				1 が 1	
周波数応答 開ループ周波数応答と閉 プ周波数応答の関係 (前期期末試験の解答・解		書けること ニコルス線図を用いて、 波数応答を導くことがで			から閉ルーブ	2	
(137777777141 (42(17)71)						計 15	
学業成績の評価方法出	席・扌	受業態度(10%)と課題(30	0%)、試験	験(60%)に	より評価する) ₀	
関連科目口	ボッ	ボット制御工学など					
教科書、副読本副	読本	: ①「演習で学ぶ現代制御	理論」	森北出版			

科目名	担当教員	学年	単位	開講時数	必修·	選択
メカトロニクスⅢ (Mechatronics Ⅲ)	西海 孝夫 (非常勤)	5	1 専門科目	後期 2 時間	必	修
授業の概要	ロボット・NC工作機械・各種自					
	信号や検出信号を利用して、動					
	る油空圧によりメカトロニクス 焦点をあて、その原理・機構や					
	例について学習する。	刚仰仏(こういく子の	, C C D (C, 1)	水ベノよル	心川事
授業の進め方	配布資料を使用した講義を中心	とする。				
到達目標	①メカトロニクスに不可欠な油	空圧の	基礎知識を習	引得する。		
	②機械的エネルギーと流体エネ				る。	
	③油圧機器の内部構造と原理を	建解し	、油圧制御	とは何かにつ	ついて音	習得す
	る。	N. 11 1 -		1. 1. 2. 111. 2	I.u.	" >
学校教育目標との関係					新しい	, "£
	の"の創造・開発に粘り強く挑		の技術有を再	放りる。		
		容			1	
項 目						週
油空圧とは何か?	油空圧の歴史、特質、機械の基 身近な応用事例について理解する		(エネルギー	一・動力・効	率)、	1
油圧の基礎	油圧の原理、作動油の性質、油	の力学、	油圧機器に	ついて理解で	する。	3
油圧ポンプ	油圧ポンプの概要、ピストンポ ついて理解する。	ポンプ、	ベーンポン	プ、歯車ポン	プに	2
油圧バルブ	油圧バルブの概要、圧力制御弁 理解する。	产、流量	制御弁、方[向制御弁につ	かいて	2
油圧アクチュエータ	油圧アクチュエータの概要、液解する。	由圧シリ	ンダ、油圧 [×]	モータについ	て理	2
油圧アクセサリ	油圧システムの付属品として、 ター、熱交換器などについて理解		ク、アキュ、	ムレータ、フ	イル	1
油圧の基本回路	油圧回路の構成、圧力制御回路	、シーク	アンス回路に	ついて理解	する。	2
油圧サーボシステム	油圧サーボ機構を用いて行う位 て理解する。	位置・角	度制御、速原	度制御などに	つい	2 計15
学業成績の評価方法	定期試験の成績と平常点 (演習問る)	題、出席	席状況、受講	態度)を総合	合的に記	
関連科目	メカトロニクス I・Ⅱ、ロボット センサ工学、制御工学 I・Ⅱ、流			工学Ⅰ・Ⅱ、	計測工	.学 I 、
教科書・副読本	小波倭文朗,西海孝夫:油圧制御 講義時にプリント配布	『システ	ム(東京電桥	幾大学出版局)	

科目名	担当教員	学年	単位	開講時数	必修·選択					
ロボット工学Ⅱ	7-700	, ,	2	通年	212 1071					
(Robotics II)	源 雅彦 (常勤)	5	専門科目		必修					
(Robotics II)	12) 2 Hall the 1 Hall the 1 - 7 2 3				. Lok 144: 324					
	ロボットを製作し、制御するため									
授業の概要	制御工学、計測工学、電気・電子工学、情報工学など)を学ぶ必要がある。									
1271 - 1962	順運動学および逆運動学、動力等			る理論を基礎	にして、ロ					
	ボット制御理論を習得できるよう									
授業の進め方	配布するプリントを使った講義が	5中心とた	なるが、理解	解を深めるた	めの問題演					
1久米の 座の方	習も適時行う。									
	① 動力学および逆動力学を理解	ノ、関連す	トる問題を角	罹くことができ	きる。					
到達目標	② ロボット制御に関する基礎理語	扁を理解し	ノ、関連する	る問題を解くこ	ことができ					
	る。	る。								
■ 学校教育目標との関係	実践的技術教育を通じて、工学的	り知識・お	技術の基本:	を備え、新し	い"もの"					
子仅教育自信との関係	の創造・開発に粘り強く挑戦でき	る技術者	音を育成する	5 。						
	講義の内	容								
項目	目	標	E		週					
1. ガイダンス	講義の進め方や評価方法について記	说明する。			1					
2. ヤコビ行列	ヤコビ行列の概念について理解する	るとともに	こ、関連する	る問題を解く						
	できる。									
3. 特異姿勢	特異姿勢および可操作性の概念につ	ついて理解	解するとと	もに、関連す	る問 3					
	題を解くこができる。									
4. 逆運動学	逆運動学の概念について理解すると	とともに、	関連する同	問題を解くこれ	がで 4					
	きる。									
5. 静力学	ヤコビ行列を用いた静力学の概念を	と理解する	るとともに	、関連する問題	題を 3					
	解くこができる。									
					計 15					
6. 動力学と逆動力学	ラグランジュ法およびニュートン	オイラー	法を用いた	動力学の概念	念お 5					
	よび逆動力学の概念について理解で	けるととも	らに、関連 [・]	する問題を解	くこ -					
	とができる。									
7.パラメータ同定	ロボットアームのパラメータ同定に	ついての村	既念を理解で	する。	1					
8. 移動ロボット	脚機構や二足歩行ロボットの原理は	さよび、車	輪移動型口	エボットの原ヨ	理と 2					
	オドメトリについて理解する。									
9. サーボシステム	サーボシステムの制御について理解	军する。			1					
10. 駆動部設計と制御	モータ駆動部の設計と制御手法につ	ついて理角	解する。		2					
11. アームの制御	基礎的なアームのフィードバック制			る。	$\frac{1}{2}$					
12. 軌道制御	基礎的な軌道フィードバック制御と				1					
13. ロボット制御事例	ロボット制御事例での具体的な制御				1					
					計 15					
W W 1844	「定期試験」「授業中の問題演習」「出	席状況を	含む授業能	(度)を、総合						
学業成績の評価方法	1) に評価する。		= 500,000	· ·····						
	第2学年 ロボット工学実習 I									
	第3学年 工業力学 ロボットコ	L学実習]	Ⅱ メカト	ロニクスI						
関連科目	第4学年 制御工学 I ロボッ				機構学					
	第5学年 制御工学Ⅱ ロボッ									
	参考書:小川鉱一,加藤了三: "初めて									
教科書・副読本	松日楽信人, 大明準治: "わか									
ATTENDATION OF THE PROPERTY OF	川村貞夫: "ロボット制御入門				-					
	かり見入・ せかり 1回呼入门	, ~ ~								

科目名		担当者	学年	単位	開講時数	必修·選択		
ロボット工学実習IV (Practice in Robotics IV		笠原・堀(常勤)、 て熊・吉田 (非常勤)	5	2 専門科目	前期 2 時間	必修		
授業の概要	るよう 作する よる制 ログラ	4年次のロボット工学実習Ⅲにおいて製作した、倒壊した家具などを持ち上げるような災害救助などに利用可能な「自走式ジャッキロボット」の制御回路を製作する。モータドライバ、センサ回路、手動コントローラ、組み込みマイコンによる制御回路の製作を通して、ロボット製造におけるエレクトロニクスと制御プログラムの領域での包括的な技能の習得を目指す。 2 グループ編成で実施し、ローテーションによりそれぞれの実習を行う。						
授業の進め方	 1. 1クタドを製作される。 たる。 はたる。 構築する。 	2クループ編成で実施し、ローテーションによりそれぞれの実習を行う。 1. 1グループの中の各班で1台の自走式ジャッキロボットに対して、各自がモータドライバ、センサ回路、手動コントローラ、組み込みマイコンによる制御回路を製作し、自走させるまでの実習を体験する。全ての回路やプログラムを組み上げた後、各自、自走の確認を行う。 2. もう1グループ中の各班で1リンク系ロボットの製作、フィードバック制御を構築する。						
到達目標	(2) セ (3) 手! (4) 組	1) モータドライバ:モータドライバ回路の構成や仕組みを理解する 2) センサ回路:ライントレース用とエンコーダ用の回路の構成・仕組みを理解 3) 手動コントローラ:手動と自走の制御切り替えなどにより信号制御 4) 組み込みマイコンによる制御回路の製作						
学校教育目標との関 係		域産業の発展に貢献するため、課題探求能力を有し、設定した課題に向かって 敢に挑戦できる技術者を育成する。						
講 義 の 内 容								
項目			目	標		週		
ガイダンス テーマ I 自走式ジャッキロボッ する実験	トに関	・実習内容の概要 ク系ロボット」? ・モータドライバ 計、製作する。組 自走させるまで ムを組み上げた	を制御する 回路、セン lみ込みマィ の実習を体	のに必要な回 サ回路、手動 イコンによる は な験する。全て	路に関する説明 コントローラを 引御回路を製作 の回路やプログ	月等 1 を設 にし、		
テーマⅡ 1リンク系ロボットの 験	制御実	・モデル状態フィットと制御回路を う。						
学業成績の評価方法	原則、製作作品を完成・動作させ、かつ提出物を全て提出することを必須とする。①出席状況および実習態度(40%)、②加工技能の習熟度(20%)、③製作作品(20%)、④提出物 [レポート等](20%)で評価する。具体的には、実習分野ごとに①~④の項目について各 10 点満点として、上記の割合で重みをつけ評価点を算出する。評価は、評価点の平均によって行う(10 点満点評価)。また、正							
関連科目 教科書,副読本	当な理由による欠席の場合、補習を行う。 第1学年:ものづくり実験実習、基礎製図、基礎電気工学 第2学年:設計製図I、機械工作法、材料学、電気回路I、電子回路I 第3学年:設計製図II、機械設計法I、工業力学、材料力学I、電気回路II、 電子回路II 第4学年:設計製図II、機械設計法II、材料力学II、機構学、メカトロニクスII、 ロボット工学I、制御工学I、ロボット工学実習III 第5学年:ロボット工学II、制御工学II、センサ工学I、ロボット制御工学 プリント教材等を必要に応じて配布する。							

⊘ □ 5		N/ (-	277.71.	BB 545 64 W/	\						
科目名	担当教員	学年	単位	開講時数	必修·選択						
ロボット工学演習	 瀬山 夏彦 (常勤)	5	2	通年	必修						
(Seminar on Robotics)	横山 友彦 (市到)	5	専門科目	2 時間	北市						
Is all a limit and	物理、機械工学、電子工学等の	ュ 基礎的な問	」 問題の復習	と高度な問題	- 夏の演習を行						
授業の概要	う。										
	前期は関連科目の先生方に基礎	的な練習問	問題を作って	て頂き、学生	諸君にその						
授業の進め方	問題を解いてもらう。後期は更に	高いレベル	レ及び応用	の演習をして	頂く。						
	□ ①前期は就職試験、編入試験に	備えた機構	献丁学 雷·	子丁学の基礎	が復習						
到達目標	②後期は少しレベルの高い機械		–								
当技数本口無しの問	実践的技術教育を通じて、工学										
学校教育目標との関					V, 80)						
	係 の創造・開発に粘り強く挑戦できる技術者を育成する。 ************************************										
講義の内容											
項 目 目 I I I I I I I I I I I I I I I I I	標				週						
【則期】 工業力学演習	 静力学,運動学,動力学				1						
□ 工業力子便管 □ 材料力学演習	耐刀字, 運動字, 動刀字 はりの曲げ, ねじり				$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$						
■ 材料刀子便音 ■ 電気・電子回路演習	はりの曲り, ねしり 回路全般										
■電気・電子凹路側督 ■機械工作法演習	四路宝版 切削・研削				1 1						
材料学演習	奶削・切削 結晶構造,平衡状態図										
機械設計法演習	福田博垣、平関仏態凶 ねじと歯車				1						
機械設計伝便音 メカトロニクス演習	ねしこ圏里 機械と電子のアナロジー				1						
■	機械と电子のアアロシー 4節リンク				1 1						
制御工学演習	フィードバック回路				1						
- - - - - - - - - -	フィートハック回路 1自由度の固有振動数計算				1						
機械力学演習	1日田及の回有振動級計算 2自由度振動系				1						
	2日田及派勁ポ ベルヌーイの定理										
→ 九子寅百 - 熱力学演習	熱力学第2法則とサイクル										
前期末試験					1						
11/17/91/17 12 (10)/					計 15						
					H1 10						
過渡現象演習	若干機械工学にウエイトを置い	て演習を	して頂く。	進路がほぼ	確定 1						
過渡現象演習	している時期なのでさらに高度な		-								
計測工学演習	ふさわしい実力をつけて頂く。				1						
機械力学演習					1						
センサー工学演習					1						
機械工作法演習					1						
一般力学演習					1						
流体力学演習					1						
環境工学演習					1						
生産工学演習					1						
工作機械工学演習					1						
アナロジー演習					1						
切削加工演習					1						
研削加工演習					1						
学年末試験					1						
					計 15						
学業成績の評価方法	毎回の演習(30%)と試験(4	0%) كا	ンポート (3 0 %)							
関連科目	これまで学習したすべての科目										
教科書・副読本	あらかじめ関連の先生方に問題を	作って頂き	きます。								

科目名		担当教員	学年	単位	開講時数	必修	·選択	
卒業研究 (Graduation Thesis)	ロボット工学コース 教員(常勤)	5	8 専門科目	通年 8 時間	业	必修	
授業の概要	の調	 専本科 5 年間にわたる一 査・実験考察など検討を通 的研究、開発、発表能力を	じて、倉					
授業の進め方	自主的 卒業	ミナールに引き続き研究室 的に学習、実験、研究を行 論文にまとめ、さらに卒業	テうこと 終研究発	を重視し 1	年間の最後に			
到達目標	_	「究力、応用力、専門知識の向上 「察力、表現力の啓発						
学校教育目標との関係	って	産業の発展に貢献するため 果敢に挑戦できる技術者を	育成す		「し、設定し7	た課題	に向か	
	請		容				ı	
研究室		<u> テー</u>					週	
奥平研 田村研 根本研 源研 大丁原研 笠原研 金魚木 (拓) 研 蛤木 (拓) 研 堀 河 河 河 田村	脈差口塑階応災二	ニアモーターカー駆動用イ が流ならびに衝撃波の挙 が歯車装置の応用と設計・フ と加工のための変形予以 と別に変形ではからのの設計、の と別になるがあるのでは、 の関係をは、 の関係をは、 のでは、	に 製 エ お 作 ー よ で 考 す 裏 る の り し に し に し に し に し に し に し に し に し に し	る研究 の製作と研究 材質予測に した材料の解 研究 解析	: 関する研究 3析		計·30	
学業成績の評価方法	絶対	寸評価、取り組み 40%、 卒	工業論文	30%、研究	発表 30%		ні 30	
関連科目	コー	-ス内専門科目および一般	科目を含	含めた 1 年次	☆5 年次の学	学習科	目全般	
教科書、副読本	各指	á導教員の指示による						

科目名		 担当教員	学年	単位	開講時数	必修·選択		
数値解析Ⅱ		大貫 貴久(常勤)		1	後期	選択		
(Numerical Analysis II)		人貝 貝久 (吊期)	5	専門科目	2 時間	迭灯		
授業の概要	法が られ るた	ボットなど複雑な形状、構造必要となる。数値解析方法とるが、正しい条件を与えないめには、有限要素法の仕組み要素法の仕組みを理解するこ	として工業 いと正しい を理解す	美的に優れ 、答えを算 る必要があ	た有限要素法 出しない。正	がよく用い しく使用す		
授業の進め方	有 生全 通じ て	有限要素法の仕組みを理解するために、有限要素法の基礎を学びつつ、学全員が異なった形状の物体の解析(式展開、手計算)を行い、個別諮問をじてプログラムを作成する。プログラミングの作成、計算結果・検討を通て有限要素法の理解を深める。						
到達目標	限要	式展開、手計算を元に基本プログラミングや計算などの検討を通じて、 要素法の原理を理解する。						
学校教育目標との関係		な専門知識を学ぶための基礎	性的学力や	や技能を備え	えた技術者を	育成する。		
-	請					\ \		
項 目		目 標				週		
ガイダンス・有限要素法と	:は	有限要素法の概要と要素分割	の概要に	ついて理解	きする	1		
問題の設定 (境界条件)		解析図形の問題設定(境界条	(件)を理	解する[演	習]	1		
三角要素		三角要素の節点座標と変位の)関係を理	解し、算出	ける	1		
ひずみ		変位とひずみの関係を理解し	、算出す	る(Bマト	リックス)	1		
応力とひずみの関係 (平面応力、平面ひずみ)		ひずみと応力の関係を理解し	/、算出す	る(Dマト	リックス)	1		
節点力		応力と節点力の関係を理解し	/、算出す	-る (B ^T マ	トリックス)	1		
剛性マトリックスKとプ ラミング	゚ログ	Kマトリックスを算出するフ	プログラミ	ングを行う		3		
全体の剛性マトリックス T プログラミング	`K	全体の剛性マトリックスTF TKマトリックスを算出する				3		
解の算出と連立方程式		連立方程式の解法について理 解析図形の結果の算出と検討			ジョルダン法)	2 計 15		
学業成績の評価方法		ロ頭試問による理解度の確認 行う。また、より高度な課是 の50%を上限に加点を行い	夏の解決者			出物で評価を		
関連科目		数値解析 I 、工業力学、材料 機械設計法 I ~Ⅲ、ゼミナー	斗力学 I 、		产、流体力学、	機械力学、		
教科書・副読本		独自テキスト、プリント						

科目名	担当教員	学年	単位	開講時数	必修·選択			
材料力学特論 (Advanced Strength of Materials)	内山 豊美 (非常勤)	5	1 専門科目	後期 2時間	選択			
授業の概要	第3、4学年の材料力学では主に 曲げ・ねじり負荷を受ける場合に ひずみ)を考察したが、それらに あった。材料力学特論においてに て解説をする。また、はりの複雑	こついて、 t部材を 1 t力学的取	部材に生 次元的と 扱いが複雑	ずる内力と変 見なして解析 雑な2次元的	形(応力と したもので			
授業の進め方	主に、教科書を使った講義・例是 演習を行う。	Eに、教科書を使った講義・例題を中心に行う。また、理解を深めるための 資習を行う。						
到達目標	① 円筒、回転円板、球殻の基礎 ② 平板の基礎方程式を理解し、 ③ 弾性破損の法則を理解し、実 ④ はりの複雑な問題の解析法を	応力や変 際の問題	形を求めら に適用でき	っれる。 きる。				
学校教育目標との関係	高度な専門知識を学ぶための基础	き的学力や	P技能を備え	えた技術者を	育成する。			
	講 義 の 内 容							
項目	目標				週			
円筒, 球殼, 回転円板 平板	内外圧を受ける厚肉円筒の応力と変 内圧または外圧だけを受ける厚肉F 組み合わせ円筒,焼ばめ 回転円板 厚肉球殻 長方形板の一軸まわりの曲げ				1 1 1 1 1			
	互いに直交する二方向への曲げ、無対称荷重を受ける円板の曲げ― 軸対称荷重を受ける円板の曲げ― 軸対称荷重を受ける円板の曲げ― 軸対称荷重を受ける円板の曲げ―	-基礎方和 -等分布在	呈式 苛重を受け	る円板	1 1 1			
弾性破損の法則	弾性破損の法則 弾性破損の法則——具体例への適所	Ħ			1 1			
はりの複雑な問題	組合せはり、鉄筋コンクリートはり連続はり――三モーメントの式曲りはりの応力とたわみ)			1 1 1			
					計 15			
学業成績の評価方法	2回の定期試験および授業中に行 試験40%、期末試験40%、演習20			 行う。各々の	重みは中間			
関連科目	材料力学Ⅰ、材料力学Ⅱ、材料、☐ 工学実習Ⅰ・Ⅱ・Ⅲ・Ⅳ、卒業研究		機械設計	法Ⅰ・Ⅱ・Ⅲ	[、ロボット			
教科書	黒木剛司郎著『材料力学』(森北出	版)						

科目名		担	当教員	3	学年	単位	開講時数	必修·選択
材料学特論		, <u> </u>	- 4.2	•		1	前期	- :- :
(Advanced Materials		重田	征男	(非常勤)	5	専門科目	2時間	選択
Science)								
	金属	材料の機材	戒的性	質は、成分の	みならず紅	吉晶構造、糾	1織に大きく依	女存する。本
授業の概要		では、第2学年で学んだ結晶構造を基に、材料の変形挙動、強度について学						
			要な鉄道	鋼材料、非錚	材料、およ	にび、軽量、	高強度材料の	う特性につい
		学ぶ。	,1 /	は を無業を	中としたさ	ノ スシ	- 深めるための	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
授業の進め方		音、ノリ、 等も行う。		関つ に講義を	(中心とする	つか、理解を	(保めるため)	フ痶省、小フ
				結晶面とその		いて表示方法	去を理解する	
如本口種	②金属材料の変形機構を理解する ③金属材料の強化機構を理解する							
到達目標	_							
		鋼の焼入性と焼戻しを理解する)種々の合金の種類と特徴を理解する						
		度な専門知識を学ぶための基礎的学力や技能を備えた技術者を育成する。						
学校教育目標との関係	1.450	3, 3, 3,	,, , ,			- CIAC - DIA - C	-2411 6 2 177	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	請	義	の	内 容	ř			
項目			目	·····································	票			週
1. ミラー指数		結晶面と	:そのフ	方向を表示、	読み取りて	きるように	なる	2
2. 金属材料の塑性変形機構 金属のすべり変形による機構を理解する					1.5			
o 45 B 1#34 o 1 75		1. 1. 11	6.6. g				_	
3. 結晶構造の欠陥		点欠陥、	線欠降	备(転位)、 i	面欠陥につい	ハて理解す	る	1. 5
┃ 4. 転位とすべり変形機構	Ē	起告に	- z 士 /	べり変形につ	いて珊鈿子	- Z		2
4. 料证と 9 、9 发加烟	t	₩四1111.(こよ	\D91	へり変形につ	いく理解り	ବ		2
5. 金属材料の強化		加工硬化	1. 約界	『 強化』 固溶	強化、析出	強化。その位	也の強化機構	につ 2
		いて理解		1 22/10/ 12/10/	діст и ш	MIC (C -> 1	E-> 3A E MIT	
		,•	, , –					
6. 鉄鋼材料		主要な鋭	垰鋼材 料	斗の分類と特	徴について	理解する		2
日 併知の佐魚!っこ・・	Am				•			
7. 鉄鋼の腐食とステンレ	/ 入鋼	腐食のメ	マカニス	ズムとステン	レス鋼の分	類と特徴に	ついて理解す	- る 2
8. 非鉄材料		アルミー	- 占). 4	△☆お→炒ァ	权县⊭进	けおりてついっ	てるの揺絽 1.:	学 丛
O. 91 29/1/1/1/1		アルミニ 質につい			、牲里傳定	内を作に、フトト	てその種類と	諸性 2
		貝にフV	C 产生产	开 フ ´ω				
								計 15
		基本2回	の定類	期試験の平均	得点により	評価を行う	。ただし、理	
学業成績の評価方法							で、授業ノート	
		10 点満点	点で加.	点し評価に反	映する。			
PRINTED IN		材料学、	ロボッ	ット工学実習	I ~Ⅲ、□	ボット工学	実験I、設計	製図 I ~IV、
関連科目		材料力学	ž I • 1	Ⅱ、材料力学	特論、ゼミ	ナール、卒	業研究	
		教科書:	打越二	二彌、「図解樹	幾械材料」、	東京電機大	:学出版局、¥:	3, 150
教科書・副読本		その他:	配布に	プリント				
L								

科目名		担当教員	学年	単位	開講時数	必修·選択		
計測工学I		冨田 宏貴	5	1	後期	選択		
(Measurement Eng		(常勤)		専門科目	2時間			
授業の概要		測工学Iに引き続 ニおいては、計測技						
		-ねいては、前側が 側技術の習得を目標			ヒ加えなから	再我で11(い)		
15半の光上十	# 光々 プリリ	・ 1 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 H- H- D	y 등 기기) . L \ 가는 수는 / -	b++			
授業の進め方	講義を土とし	ンた授業を行う。 授	業中の	便省は週14.5	 長触する。			
到達目標	_	よについて理解・習		-	 1			
		②部品の形状や表面性状について理解・習得できること。 ③実践的な計測技術について理解・習得できること。						
学校教育目標との関係	高度な専門知	高度な専門知識を学ぶための基礎的学力や技能を備えた技術者を育成する。						
	講義	の内						
項目		目標				週		
授業の概要説明	本講義の	概要について説明				1		
比較測長器	各種比較	各種比較測長器の測定原理について学習する。						
		・機械的拡大機構 ・光学的拡大機構						
		拡大機構						
	・流体式	拡大機構						
角度の測定	角度測定	器の測定原理につ	いて学習	引する。		2		
表面あらさの測定	表面あら	さの測定方法や評	価法につ	ついて学習す	る。	2		
平面度及び真直度の測定	定 平面度及	び真直度の測定方	法につい	いて学習する	0	2		
真円度の測定		測定方法ついて学		→ W 7 2		2		
	調和解析	などのデータ処理	伝につい	いて字習する	0			
計測工学の応用と実例	計測工学	に関する応用例や	実用例に	こついて学習	する。	1		
						計 15		
		、定期試験を総合						
	び授業態度と定期試験の評価比率は3:7とする。定期試験は中間試験と期末							
	試験の2回を実施する。 専門科目全般							
教科書・副読本	書名:新編機械工学講座21「計測工学」							
	著者:下田茂、穂苅久、愛原惇士郎、高野英資、長谷川富市							
	出版:(株)コ	ロナ社	版:(株)コロナ社					

科目名		担	当教員	学年	単位	開講時数	必修·選択
センサ工学II (Sensor Technology	П)	大畠 覚	(非常勤)	5	1 専門科目	後期 2時間	選択
授業の概要	生活い な加え いて	になくては 速度センサ, 学修する。	、自動車、など ならないもので , ジャイロセン	ごある。オ ゚サ, モー	k講義ではロ -ジョンセン	ボットの姿勢 サなどの原理	勢制御に必要 埋と応用につ
授業の進め方		と単元ごと! および追試:	に行う確認プリ を行う。	リントに	より講義を込	進める。必要1	こ応じて小テ
到達目標	_	①センサの原理と応用回路について理解する ②センサがどのようにロボットの制御に役立つのかを理解する					
学校教育目標との関係	る。		識を学ぶための		学力や技能	を備えた技術	ド者を育成す
項目	iii		<u>の内</u> 目	容 標			
ロボットのセンシングを センシング回路 棚要 加速度センサの原理 加速度センサーの回路 ジャイイロセンサーのの は受けてロセンサーのの応 はでするでである。 はでは、 はでは、 はでは、 はでは、 はでは、 はでは、 はでは、 はでは	支術	セ加加加がジジジ方GP軸ンボンンでである。 セン速度度度イイイセSセサッサのようである。 ロロローンのようである。 ロロローンのようである。 ロロローンのようである。 できることである。 できるである。 できるである。 できるである。 できる。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるである。 できるであるである。 できるであるである。 できるである。 できるであるである。 できるであるである。 できるであるである。 できるであるであるである。 できるであるであるである。 できるであるである。 できるであるであるである。 できるであるであるであるである。 できるであるであるであるであるであるであるであるであるであるであるであるであるである		その復習のでは、 では、 では、 では、 では、 では、 では、 では、	と理解 理解 理解 で理解 で理解 理解 理解 生理解 生理解 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	こついての概	要 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	評価す	る。	:況を 10%, 認 路及び専門科目			E期試験を 8	0%の比率で
37112 23201	波新聞	生) と, ジャ	サ工学 I で使用 イロ、モーシ 併用して行う。				

1\		TH 기사	**** ==		ı	兴大))	日日 = 井 四十 火/	V (%)35.10
科目名		担当	i教員			学年	単位	開講時数	必修·選択
制御工学Ⅲ (Control EngineeringⅡ)		木村	軍司(淳	非常勤)	5	1 専門科目	後期 2 時間	選択
授業の概要	るのに	必要な理	!論であ	る。こ	この授	業では、		る目的にそっ 習により、制 学ぶ。	
授業の進め方	演習に	重点をお	いた授	業を行	テなう	0			
到達目標	② 制征	即系の定常	常特性は	こつい	て理解	解するこ		ついて理解で	すること
学校教育目標との関係	高度な	度な専門知識を学ぶための基礎的学力や技能を備えた技術者を育成す							育成する。
		講	義	の	内	容			
項目					目		標		週
【後期】 ガイダンス		授業の流	 売れ <i>の</i> ぼ	里角至.	基礎	 数学力(複素数	· ・プラス変換	等) 2
及び複素数、ラプラ	ス変換	の確認					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
一次系の時間応答(課題		一次系の	-						$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
二次系の時間応答(課題 インパルス応答と安定性						Tき過ぎ こついて	量の理解の理解		1
特性方程式と安定性		特性方程							1
フルビッツの安定判別法		ラウス・	・フルヒ	ニッツ	の方法	去を用い	た安定判別	法の理解	1
後期中間試験の解答・解	説	/-> 길녹 /-> =	四十二	علام جلم	*士 古 1	3* 4		学の理 類	$\begin{array}{c c} 1 \\ 2 \end{array}$
制御系の定常特性外乱による定常偏差		定常位置 外乱に 』					常加速度偏 の理解	左の埋幣	1
別が乱によるた吊偏左 制御対象のモデル化と設	計演習	PI 制御(山州左	_ (/ 以子仏	~ / / 工 刀十		1
	127 日	PID 制征		裈					1
後期期末試験の解答・解	説								1
		0 🗆 6 d		A . 7. / E	⊢ı⇒	# F O 141	Halloma, A	νω Λ 461-24-E	計 15
学業成績の評価方法			点と課題					総合的に決定 必要に応じ	
関連科目		電気電子	子・制御	即系専	門科目	及び卒	業研究		
教科書・副読本		参考書:	:「制御	工学」	(下世	5・奥平) コロナ社	(4年次に則	構入済)

科目名		担当教員	学年	単位	開講時数	必修·選択			
システム制御工学				2	通年				
(System Control		笠原 美左和(常勤)	5	 ■ 専門科目	2時間	選択			
Engineering)				守门付日	乙时间				
授業の概要		システム制御理論は、古具		では設計が	難しかった多	多変数制御シ			
	ス	テムの設計に有効に利用で	できること	:が知られて	いる。この理	見代制御理論			
	0)	基礎的事項について講義す	ける。						
授業の進め方	課		を毎に 内容	を説明した。	あと 演習を	·行う			
汉本•7/2077	HZN		K#(C 1/1	E 101.71 07C)C\ REC	11 20			
到達目標	動	的システムの本質は状態力	方程式によ	る表現(状態	態空間表現)	によってそ			
	0)	理解が深まる。連続時間系	系について	、状態空間表	表現を理解し	、可制御性、			
	可	「観測性、内部安定性、状態フィードバックなどの基本事項を修得す							
	喜	」 度な専門知識を学ぶため	の基礎的な	学力や技能を	を備えた技術	子を育成す			
于 大秋日日	る		V) AS WELL	T// \ X L		1-11 2 11 19%)			
	۵								
· 百 日		講義の	内	· 		' 国			
項 目 ガイダンス		建業士列 公会事項など	ナエ田布のシュ	<u>標</u>		週			
現代制御理論の概要		講義方針・注意事項など			田船とよる	$\begin{array}{ c c }\hline 1\\1 \end{array}$			
状態方程式の導出		制御理論の発展と現代制御理論の概要について理解させる。 状態システム方程式と出力方程式の導出ができる。							
状態方程式の解法		状態方程式の解法を理解する。							
状態遷移行列の導出		状態遷移行列の導出法を理解する。 状態遷移行列の導出法を理解する。							
固有値・固有ベクトル		座標変換行列・対角座標	-	マンジ 固有値	固有ベクト	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$			
		が導出できるようにする。			, 凹巾 フィ	,,			
状熊図		状態図が理解できるよう				1			
可制御・可観測とその条	- 件	可制御性、可観測性を理	-			2			
双対性の定理	~ 1 1	双対性の定理について理				1			
前期試験		答案の返却及び解説	11 (6 00			1			
安定性について		安定性について判断でき	 る。			2			
極配置		極配置について理解し、	- •	- ドバック制	御と極配置の	_			
•		係について理解する。							
最適レギュレータの設計	+	最適レギュレータの設計	法について	て理解する。		2			
オブザーバの設計		オブザーバの設計法につ				1			
Matlab を用いた設計実	習	Matlab を用いて制御設計	·を行う。			4			
後期試験		答案の返却及び解説				1			
						計30			
学業成績の評価方 出	席•	授業態度 (10%)と課題 (3	30%)、試験	験(60%)に	より評価する	<u></u>			
法									
関連科目ロ	ロボット制御工学など								
# 위 클	±±⊥	① 「沙切~~ 丛 >>+口 /\. 4-1/	en rm ≥A.	木ルコロビ					
教科書、副読本 副	読本	:①「演習で学ぶ現代制征	即理論」	森北出版					
教科書、副読本副	読本	に:①「演習で学ぶ現代制征	卸理論」	森北出版					

科目名		担当教員 学年 単位 開講時数 必				必修·選択	尺	
ディジタル信号処理 (Digital Signal Proces		大内 康裕 (非常勤)	5	1 専門科目	前期 2 時間	選択		
授業の概要		タル信号処理の基礎的な理 関する技術を習得する.	1解を深	め,通信や詞	記録,解析な	どに必要な	な	
授業の進め方	教科書 演習を	や配布資料を用いた講義を 行う.	中心と	する. また,	より理解を	深めるため	め	
到達目標	②雑音)ディジタル信号処理の基礎的な概念を理解する ②雑音除去および信号検出を理解する ③フーリエ変換による周波数解析を理解する						
学校教育目標との関係		に践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"も の創造・開発に粘り強く挑戦できる技術者を育成する。						
_	1	講義の内	容			1	_	
項 目 アナログとディジタル	ディジ	目 ジタル信号処理を学ぶためり	ァアナロ	標が信号して	シュジタル信。	週 号の 1		
)) µ y e y 1 y y w		ついて理解する	C	グ信号とソ	イングル語			
AD 変換の概要	AD 変	AD 変換に必要な標本化など基礎的な概念を理解する						
信号処理に用いるフィルタ	信号処	理に用いられるフィルタの	概念を	理解する		1		
雑音の除去 (加算平均)		から雑音を除去し信号を検 均について理解する	出する	手法について	て概念を学び	, 1		
雑音の除去 (移動平均)	移動平	均を用いた雑音の除去につ	いて理解	解する		1		
周期性と自己相関	自己相	関関数の性質を学び、周期	の検出:	を理解する		1		
相互相関関数	相互相	関関数の性質を学び、周期	の検出:	を理解する		1		
フーリエ級数展開	フーリ	エ解析の基礎としてフーリ	工級数	展開を理解す	する	1		
離散フーリエ変換	ディジ	タル信号の周波数分析とし	て離散	フーリエ変割	ぬを理解する	2		
高速フーリエ変換	高速フ	ーリエ変換を理解する				2		
Z変換	線形シ	ステムの周波数特性として	Z変換	を理解する		2		
自己回帰モデル	自己回	自己回帰モデルによるスペクトル解析を理解する						
		請						
字单成绩(/):梁価方法		て期末試験の得点,およで なに評価を行う.	が平常点	(レポート,	出席率,講	義態度)。	ょ	
関連科目	₩. ∡\ →-	次国英切 F□ - 11 - 2 - 2		. /⇒ □ 4n +w ¹	(本古香地)	·짜미마르		
教科書・副読本	教枓書:	江原義郎『ユーザーズ デ	インタバ	/信号処理』	(果尽電機大	字出版局))	

科目名		 担当教員	学年	単位	開講時数	必修·選	星択	
アクチュエータエ	*			1	後期	ع دا ت	21/	
(Actuator Engineeri	-	堀 滋樹 (常勤)	5	□ □ □ ■ 専門科目	2時間	選抄	7	
 授業の概要	ロボッ	 トを代表とするメカトロ	ュニクス	 の機械シス [*]	 テムの駆動!	は空	気圧	
12.7.071%.9.		王式、電気式のアクチュ						
		チュエータの基礎的な内			テ う。			
授業の進め方	資料等	を必要に応じて配布する	講義を「	中心とする。				
到達目標	O	的なアクチュエータの基 上げられるアクチュエー		- • - 0	枚、制御を理	解する。		
学校教育目標との関係		技術教育を通じて、工学 ・開発に粘り強く挑戦で				しい"も	の"	
		講義の内容						
	D 113	1 目	標				调	
			1724					
ガイダンス		授業の概要および進め	方、評価	両方法につい	ての説明。	}	1	
アクチュエータの種類		空気圧式、油圧式、電	気式に対	大別し、それ	ぞれの特徴	を学ぶ。		
空気圧式アクチュエー	タ	空気圧シリンダの原理	や構造、	特徴につい	て理解する。	}	1	
油圧式アクチュエータ		油圧式サーボモータの動作原理を学習する。						
電気式アクチュエータ								
DC サーボモータ	電気式アクチュエータの中で基本的モデルとなるDCサーモータの動作原理や構造、種類、制御について理解する。					2		
AC サーボモータ		同期電動機と誘導電動機の原理や利用について学ぶ。					2	
ブラシレス DC サー	ボモータ	ブラシレスDCサーボモータの動作原理について学ぶ。					1	
ステッピングモータ		パルス信号で駆動する 類や動作原理、特性に			ッピングモー	タの種	1	
ソレノイド		電磁石吸引力を用いた	ソレノ~	イドの構造と	動作原理を	学ぶ。	1	
超音波モータ		超音波モータの原理や	特徴を理	里解する。			1	
演習							2	
その他のアクチュエー。	タ	新しい技術や原理のア 方を学ぶ。	クチュ	エータについ	って、仕組み	や使い	3	
		力を子ぶ。					計 15	
学業成績の評価方法		験の得点、授業態度と出						
	メカトロ 制御工学	ニクスⅠ・Ⅱ・Ⅲ、ロホ Ⅰ・Ⅱ	デットエ:	学概論、ロオ	ボット工学 I	• п • п	Ι,	
		<u>Ⅰ・Ⅱ</u> :谷武士,深谷健一 共著「メ	カトロニ	- クス入門 森	北出版、			
		監修,田中泰孝,都筑順一,			,	械」コロ	ナ社,	
	アクチュエ	クチュエータシステム技術企画委員会編「アクチュエータ工学」養賢堂						

科目名		担当教員	学年	単位	開講時数	必修·選技	択		
マイクロコンピュータ (Microcomputer Engin		生方 俊典(常勤)	5	1 専門科目	後期 2時間	選択			
授業の概要		JなマイコンであるH8 、コンピュータの心臓 。		•					
授業の進め方	講義を	講義を中心として、理解を深めるために演習を取り入れる。							
到達目標	②演算装 ③マイコ	DH8の動作を理解し、簡単なアセンブラが組める。 ②演算装置を理解する。 ③マイコン業界で必要となる知識を習得する。							
学校教育目標との関係	の創造・	実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの の創造・開発に粘り強く挑戦できる技術者を育成する。							
	講	義の内	容						
項目		目	標			週			
【後期】 1. ガイダンス 2. H8の動作とアセン 3. 各種組合せ回路 4. 演習 (中間試験の解答・解説 5. CPUの構造 6. PIC 7. 国家試験の解説 8. 演習 (期末試験の解答・解説)	授業内容の概略を訪 マイコンの動作 ロード命令,加算命 2の補数回路,半加 演習問題を解く ALU PICの概略 情報処理技術者試験 演習問題を解く	i令など l算器,	レジスタ,』	ALU	1 1 1 1 2 2 2 1 1 1	1 1 2 2 1 1 1 2 2 1 1		
学業成績の評価方法		2回の定期試験の得点と、授業中に実施する演習問題・授業への参加状況から総合的に決定する。							
教科書・副読本		電子回路							

科目名		担当教員	担当教員 学年 単位 開講時数 必何						
ロボット制御工学 (Robot Control Engine		田口 幹(非常勤)	5	2 専門科目	通年 2時間	選択			
授業の概要		デットやマニピュレー 構義を行う。	タの制御	に必要な基本	本的知識、各種	重制御手法に			
授業の進め方	資料を必	必要に応じて配布する	講義を中	心とする。					
到達目標		①移動ロボットの機構や運動学、経路生成、制御について理解する。 ②マニピュレータの制御に関する基礎知識を習得する。							
学校教育目標との関係	実践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの創造・開発に粘り強く挑戦できる技術者を育成する。								
	講	義 の 内	容						
項目		目	票			週			
移動ロボット 機構と運動学 経路生成 制御	移動口	と運動学について学習する。 ロボットで用いられる経路生 りな制御システムの構成につ				1 1 1			
マニピュレータ 運動制御と現代制御 運動方程式と状態方程式 逆動力学と順動力学 パラメータ同定 安定論・構造論と制御	運動力逆動力多リン	自動機械からロボット、ロボットの運動制御、現代制御理論を学習。 運動方程式と状態方程式、非線形系の線形近似、3次元空間内運動方程式の導出。 逆動力学とその解法、順動力学とその解法について学習する。 多リンク機構のパラメータとその同定法、逆動力学と仮想パラメータを理解。 線形時不変系の解と可制御・可観測性、リアプノフの安定論と非線形の安定性学習。							
位置/軌道制御	目標車	n道の与え方を学び、これに	沿った制御	方式を理解する。	,	計 15			
フィードバック制御	関節ご	ごとに独立なサーボ方式の制	御などを学	習する。		2			
トルク計算制御法	ロボッ	ットの逆運動学に基づく制御	を理解する。)		2			
適応制御	モデル	レ参照型適応制御や自己チュ	ーニング適	芯制御法などを	。 る学	2			
学習制御	ロボッ	ットの学習制御に関する基礎	知識につい	て理解する。		2			
力制御	インヒ	ピーダンス制御、ハイブリッ	ド制御など	について学習する	る。	2			
冗長	制御問	問題の定式化と解法、障害物	の種類と回	避、特異姿勢回達	避を理解。	2			
マスタースレーブ	極限化	乍業用ロボットで用いられる	遠隔操作技	術について学習~	する。	1 =+ 15			
学業成績の評価方法		定期試験の得点、授業態度と出席状況により総合的に評価する。							
関連科目		トロニクスⅠ・Ⅱ・ Ⅰ 制御工学Ⅰ・Ⅱ	Ⅱ、 ロボ :	ソト工学概論	(ロボット	工学Ⅰ・Ⅱ・			
教科書・副読本	副読	本 : 美多勉, 大須賀公 有本卓「ロボッ]」コロナ社,			

科目名		担	当教員			学年	単位	開講時数	必修·選択	
電気機器制御工学 (Electrical Machine Control)		奥平	鎮正	(常勤)		5	1 専門科目	後期 2 時間	選択	
授業の概要	ロボット の動作特					せるため	かに必要なな	電気機器、電	記力変換回路	
授業の進め方	理解を深す。	きめる	ために請	構義だり	ナでな	く演習る	を多く取り	入れる。課題	夏の提出も課	
到達目標	理解 ② 電気 DC-I ③ 電気	変圧器、直流電動機、交流電動機などの電気機器の動作原理と動作特性理解する。 電気機器に電力を供給するための電力変換回路(AC-DC 変換回路 DC-DC 変換回路)の動作原理と動作特性を理解する。 電気機器を制御するための電力変換回路の操作法を理解する。 践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの								
学校教育目標との関係							を育成す A		, e e	
		講	義	の	内	容				
項目					目		標		週	
【後期】 ガイダンス及び 電気回路・電気数学の 変圧器の動作特性 直流機の動作特性 後期中間試験の解答・解 三相交流と回転磁界 交流電動機の動作特性 半導体・電力用半導体素 AC-DC 変換回路の動作特 DC-DC 変換回路の動作特 電力変換回路による電動 後期期末試験の解答・解	復習説子特機説	学変直直 三秀?動整D電直・圧流流 相導型作流C 力流基器発電 交電・の回チ変電	礎の電動 流動N理路ョ換動電動機機 の機型解のツ回機 気作のの 基の半 動パ路制	数原動動 礎動導 作の(御学理作作 に作体 原動AC-1の、原原 つ原、 理作	理動理理 い理ダ と亰DC の	確認 時作等 動作の理作を では では では では では では では では では では では では では	解 の理解 、回転数制 回転磁界の トランジス 生 DC-DC 変	発生原理の理解 御法の理解 タ・MOSFE 受換回路)に	2 1 2 1 2 1 Tの 1 1 1 1 1 1 1 1 1	
学業成績の評価方法	言		点と課					総合的に決策 。必要に応じ		
関連科目				御工学	、メフ	カトロニ	クス、過渡	現象論		
教科書・副読本	-	· · · · · · ·			るパワ		クトロニク	スと電気機制	器」(オーム	

科目名		担当教員	学年	単位	開講時数	必修·	選択
人工知能 (Artificial Intelligenc	e)	堀 滋樹 (常勤)	5	1 専門科目	後期 2 時間	選	訳
授業の概要		、ロボットの知能化技術の こついて概説し、知能ロオ		-			
授業の進め方	資料	を必要に応じて配布する講	義を中	心とする。			
到達目標	_	工知能の基本概念を理解す 能ロボットに関する基礎知	-	習する。			
学校教育目標との関係		的技術教育を通じて、工学 造・開発に粘り強く挑戦で				LN'	'もの"
TE F	請		容 票			I	' 田
ガイダンス		目 材 授業の概要および進め方、		についての説明	 月。		週
人工知能の歴史		人工知能の歴史と新たな展	開につい	て学ぶ。			- 1
探索による問題解決		グラフによる探索問題の定 学習する。	式化やコ	ストを考慮し	た探索などにつ	かいて	1
知識表現と推論		命題論理や述語論理、融合	原理に関	する基礎を学ん	\$ <u>`</u> .		1
プロダクションシステム		プロダクションシステムや とフレーム表現、曖昧な知識				フーク	1
インテリジェントシステム		インテリジェントロボット ピューティングと階層的知的				、コン	1
ニューラルネットワーク		ニューラルネットワークの	基礎から	制御系への応	用を理解。		2
ファジィシステム		ファジィ論理、ファジィ集 ファジィ推論、ファジィ制御 ィ論理の応用について理解す	、ファジ				2
遺伝的アルゴリズム		遺伝的アルゴリズムの基礎 アルゴリズムとインテリジェ			ムと最適化、遺	量伝的	2
ニューロ・ファジィ・GA・A 合		融合システムの基本からニ 合、ファジィ理論と GA との				高の融	2
強化学習		強化学習の基礎から強化学 応用について学習する。	習と制御	系設計、強化	学習とシステ <i>』</i>	小制御	1
知能ロボットの実例							1 計 15
学業成績の評価方法		試験の得点、授業態度と出)	
у.	カトロ	ト工学概論、ロボット工学 コニクス Ⅰ・Ⅱ・Ⅲ					
教科書・副読本副		本位田真一 監修,松本一教,宮原 荒屋真二 著「人工知能概論」共立					昭晃堂

科目名	担当教員	学年	単位	開講時数	必修·選択				
	153秋泉	7-	1	後期	北杉 送八				
エネルギー工学 (Energy Engineering)	本田 康裕 (非常勤)	5	専門科目	2時間	選択				
授業の概要	工業熱力学を応用したエネルギー 問題との関わりを理解しつつ、そ			, , ,					
授業の進め方	板書を中心とした講義形式で実施を配布する.また,講義の理解を								
到達目標	 資源・環境問題とエネルギー 各種熱力学サイクルを理解し 実際のエネルギー変換システ 	,説明で	きる.						
学校教育目標との関係	高度な専門知識を学ぶための基礎	高度な専門知識を学ぶための基礎的学力や技能を備えた技術者を育成する.							
	講 義 の 内 容								
項目	目標				週				
エネルギー変換シス テムと資源・環境問題	人間生活で利用される主なエネル に資源・環境問題とのかかわりを5			機要と特徴	並び 1				
熱力学の基礎	エネルギーの形態,理想気体の状況 状態変化,熱力学第二法則とカル を学ぶ上で必要な工業熱力学の基础	ノーサイ	クルなど,		• •				
ガスサイクル		主要なガスサイクル(オットーサイクル,ディーゼルサイクル,サバ 1 テサイクル,ブレイトンサイクル)を理解する.							
熱機関の種類	各種熱機関の分類と仕組みを理解す	する.			1				
往復動式内燃機関	自動車をはじめとして,輸送用機 往復動式内燃機関について,その村				いる2				
ガスタービン及び ジェットエンジン	発電及び航空機に広く用いられる。 ンについて、その構造・種類・性能			バジェットエ	ンジ 2				
燃焼工学	燃料と燃焼反応、燃焼の形態、燃 テムに関連する燃焼工学の基礎に			ルギー変換	シス 2				
蒸気原動所のサイク ル	蒸気の熱力学的性質を理解し,ラ いて理解する.	ンキンサ	イクルとそ	の効率向上	につ 2				
各種エネルギー変換 システム	原子力,水力,風力,波力,燃料 一変換システムの概要を理解する.		電発電など	の各種エネ	ルギ 1				
まとめ	まとめの実施と、エネルギー工学動向を理解する.	に関する	トピックス	を紹介し, :					
学業成績の評価方法	2回の定期試験の結果を 70%, 出界評価を行う。追試験及び追課題は行			び提出課題を	計15 2 30%として				
関連科目	熱力学Ⅰ・Ⅱ								
教科書・副読本	教科書指定なし.【副読本】JSME テキスト 産業図書,大岩「わかりやすいガスタービン 動車エンジン工学」東京電機大学出版局,柳	」共立出版,	水谷「燃焼」	匚学」森北出版,	村山・常本「自				

科目名	担	.当教員	学年	単位	開講時数	必修・選択		
CAD・CAE 演習		拓雄 (常勤)	5	1	後期	選択		
(Exercises in CAD・CAE)				専門科目	2時間	<u></u>		
授業の概要	形状を (力学 ス)を	もつモデルに 的な解析) を ²	対して C 行う。CA	CAE(Computer E には有限要	Aided Engineer 素法解析ソフト	ing)により構造解析 の ANSYS (アンシ い,解析手法につい		
授業の進め方	講義と	パソコンによ	る演習を	中心とする。				
到達目標 学校教育目標との関係	②CAE きるよ 実践的	有限要素法(FEM: Finite Element Method)の基礎を理解する CAE による計算には誤差が含まれることを理解し、計算結果を自ら評価でるようにする。 践的技術教育を通じて、工学的知識・技術の基本を備え、新しい"もの" が創造・開発に粘り強く挑戦できる技術者を育成する。						
	が創垣	* 開発に枯り 義 の	四、	できる技術1 容	自を育成りる。			
- F	叶	我 ジ				\m		
項目		西米の光7-		標		週		
ガイダンス		授業の進めて				1		
有限要素法とは何か		有限要素法6	の概念の	理解		1		
はりのたわみ解析		はりのたわる FEM による。 理論解による (レポート1)	解析 る解析と	基礎 FEM との比	竣	1 2 1		
一軸引張試験の載荷条件 条件の相違による解析結 較	-	サンブナンの 載荷条件につ 拘束条件につ (レポート2)	1 2 2					
円孔を有する平板の解析	弾性力学の基礎 FEM による解析 理論解による解析と FEM との比較 (レポート3)				1 2 1			
学業成績の評価方法 3	つのレス	ポート課題提出	 	の出席状況な	よらびに取り組み	後期 計15 x姿勢によって評価		
					導への対応を評			
関連科目 工	業力学,	材料力学 I	• Ⅱ,設	計製図Ⅰ~Ⅲ				
教科書・副読本 C.	AD/CAE	研究会編「A	NSYS ⊥	学解析入門」	理工学社			

科目名	担当教員	学年	単位	開講時数	必修·選択
応用ロボット工学	根本 良三 (常勤)	5	2	通年	選択
(Advanced Robotics)			専門科目	2時間	
授業の概要	動力と運動を伝達する機構に 表面処理の採用法・転位歯車 について小型軽量化の手法を	正方式とに	はすば歯車方式の		
授業の進め方	動力を伝達し、運動方向を変 の手法を学習し、さらに実例	について	て組立図の制作を	を行う。	
到達目標	要求された条件を満たす設計図の制作ができる能力を養う	_	平行軸・直行	軸減速装置の	設計と組立
学校教育目標との関係	実践的技術教育を通じて、エの創造・開発に粘り強く挑戦				.w "もの"
	講義の	内	容		
項目	目		標		週
機械の原理 変速の原理 変速機構 原動力 動力 馬カーメンク 事かとと偶力 トム・ 一次 が変 を は で が が が が が が が が が が が が が が が が が が	て、より高性能な材質・表面処による小型・軽量化を試みる。 設計した装置の組立図をテク	7 ニカル >	スケッチにより、	、作成する。	計 15
標準はすば歯車 標準はすば歯車 歯直角方式 スラストと回転方向 やまば歯車 転位はすば歯車 強度と材質 加工と精度 その他	ば歯車方式を採用により平行軸設計した装置の組立図をテクニ	曲歯車減減ニカルスク	速装置を小型・『アッチにより、∕	軽量化する。 作成する。	計 15
学業成績の評価方法	課題提出物の完成度(最重要)、			の定期試験の	治果より決
関連科目	定する。成績不良者に対する追 設計製図Ⅰ・Ⅱ・Ⅲ、機械設計 となる科目			ト工学実習 I	~IVの基礎
教科書・副読本	教科者「実教出版 機械製図」 「日刊工業新聞社 根本良三著			そ」	

科目名		担当教員	学年	単位	開講時数	必修·選択
特別講義 (Special Lecture)	吉	田 喜一 (非常勤)	5	1 専門科目	後期 2時間	選択
授業の概要	技術の特徴	の講義を行う. 人類設 数と問題点を考察する.	できるカ	どけ日常生活	舌と関連させ	て講義をし
授業の進め方	全体として り入れる	(ビデオを利用して講家	をする. 信	簡単なもの ⁻	つくり, 実験	・測定も取
到達目標	現代技術を	·考察する眼を養う.				
学校教育目標との関係		所教育を通じて,工学的 開発に粘り強く挑戦でき				い"もの"
	講	義 の 内 容				
項目		目	標			週
オリエンテーション		日本機械学会100) 周年記念	念製作ビデ	才	1
子どもの遊びと技術1		紙ブーメランの製作	乍と飛行,	揚力の学	習	1
NHKアイデア対決ロボ	コン	2足歩行ロボット				1
中小企業と技術		荒川区及び城東地区				1
宇宙		重力と無重力,反射		定		1
動力の変遷	- 70. []	人間(自分)の動力				1
道具から機械、ロボット	への発展	技術発展のメカニス	44			1
最近の事故分析 技術と公害,環境		福島第一原発事故 二酸化窒素測定				1
子どもの遊びと技術2		□ □ 阪化至系例足 宙返りカミヒコー⇒	ニ ブメ	ラン紙コッ	プの制作	1
技術の定義		技術と科学、技術と				1
人類と核兵器		オバマ演説	- 12 10 1	XMC TT,	VET171 -1	1
現代の技術・職業教育		高専とは何か				1
経営者と技術者		本田宗一郎ビデオ				1
まとめ		, , ., , , , , ,				1
						計15
学業成績の評価方法		レポート(国立科学)に関してのレポート	しつ、レブ			
関連科目		これまで学んだ科目で				
教科書・副読本		参考文献として,「工 (エンゲルス,新日2 業」(マルクス,大月 「現代技術論」(中村 男,けい草書房)	▷出版), 書店),「□	「資本論第 L作機械の	1巻13章・ 歴史」(ロル)	機械と大工 ト,平凡社),

科目名	担当教員	学年	単位	開講時数	必修·選択
	12.400	1 1		前期	2.10 2.17
工業英語 (Technical English)	根木英彦(非常勤)	5	事門科目	2時間	選択
授業の概要	工学及び科学分野の語彙・表現を習得し、リーディング及びライティングにおいて活用する練習をする。また、工学及び科学分野の文章を読む・書くための文法(複合文構造)を習得する。				
授業の進め方	教科書の演習問題を使用して語彙・表現を学び、プリント教材を使用して文法構造を学ぶ。				
到達目標	工業英語検定4級及び3級程度の工業英語力。				
学校教育目標との関係	産業のグローバル化に伴い,国際 力やコミュニケーション力を備っ				できる表現
	講義の内	容 容			
項 目	目		標		週
Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5 Lesson 6 Lesson 7 Lesson 9 Lesson 11 Lesson 13 Lesson 14 Lesson 15 Lesson 16 Lesson 19 Lesson 19 Lesson 20	教科書各課の語彙・表現を学ぶ リーディング練習をする。また を行う。 「What Do Computers Do?」 「Sun Power in Fossil Fuels」 「California Energy Crunch」 「People and the Environmen 「Global Warming and the Gr 「What Is Threatening Our V 「Stay Healthy with Exercise 「International Space Station 「How Computers Work」 「Great Ideas - By Accident (「Great Ideas - By Accident (「How Old Is the Universe?」 「What Makes A Plant A Plan 「All about Dreams and Dr 「"Eco" Words」	nt」 reenhous Vater?」 」 」 」 」 」 」 」	法問題・ラ		
学業成績の評価方法 関連科目	定期試験 7 割、参加状況 3 割 総合的に評価する。 総合英語 V、英語選択科目			、提出物等そ	この他)から
教科書・副読本 Brush up Your Technical English(郁文堂)					