科目名		担当教員	学年	単位	開講時数	種別			
国語 II (Japanese II)		高野光男 (常勤)・矢口貢大 (非常勤)	2	2	通年 2時間	必修			
授業の概要	教材として気 り上げ、読解プ	ビ評のある標準的な作品を、論理的文章・文学的文章 り・表現力・思考力を高める。	・古典	などか	らバラン	スよく採			
授業の形態	講義								
授業の進め方	特色にも配慮し	D教材を中心にその周辺の様々な作品や事象も採り」 しつつ授業を進める。 行い自学自習の習慣を身につける。	こげると	ともに	、各教育、	コースの			
到達目標	2. 論理構成や 持つことができ 3. 伝統的な言	語りを意識し、登場人物の心情や場面の状況を理解して、小説を読み味わうことができる 論理構成や語句の意味を理解して評論の論旨を把握するとともに、論旨に対する自分の表 つことができる。 伝統的な言語文化としての日本の古典や漢詩・漢文学について理解を深める。 論理構成を意識しながら、600 字程度の文章を書くことができる。							
実務経験と授業内 容との関連	実務経験と授業内容との関連								
学校教育目標との 関係 B (コミュニケーション力) 総合的実践的技術者として、協働してものづくりに取り組んだり国際 社会で活躍したりするために、論理的に考え、適切に表現する能力を育成する。									
講義の内容									
項目		目標				時間			
自主学習	. 1	「「市民」のイメージ」を読む。	III. EEF 32-1	- (.l.		2			
小説の読解と鑑賞 評論の読解 2	1	「山月記」「少年というメカ」などを読解し、小説 環境論(「人類による環境への影響」)などを読解し				12 8			
計画の元件と		対する理解を深める。	、坑八	V)1/(1)[や課題に	8			
言語・表現Ⅰ		広告作品などを通して、日本語における文字・表記のあり方、その特質に ついて理解を深める							
伝統的な言語文化		伝統的な言語文化としての日本の古典文学や漢詩・ の読解・鑑賞を通して、日本の伝統的な文化への関	曷心を 沒	どめる。		6			
小説の読解と鑑賞	2	「夏の花」「ひよこの眼」などを読解し、人間のあ める。	り方に	対する	理解を深	10			
言語・表現Ⅱ		漫画や絵画などの映像作品を基に物語を創造するこ 像力、創造力を身に付ける。	とを通	して表	現力や想	6			
評論の読解 3		現代社会論(「南の貧困/北の貧困」・「忘れられるの〈不可能性〉)などを読解し、現代社会や国際社なものとする。	権利」) 会に対	・戦争する視	論(戦争 座を確か	10			
	1					計 60			
学業成績の評価方 法	前期・後期 10 %の比重で	末考査の得点、授業中のテスト・課題、授業への取 評価して算出する。状況により再試験を行うことも	組状況ある。	をそれる	ぞれ 60 %	、30 %、			
関連科目									
教科書・副読本	便覧」大修館総	教科書: 「高等学校現代文B 改訂版 (検定教科書)」 (三省堂),参考書: 「ビジュアルカラー国語 便覧」大修館編集部 (大修館書店),補助教材: 「ポイント整理 ブラッシュアップ常用漢字三訂版」 明治書院教科書編集部 (明治書院)							

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	小説の語りのあり方を理解し、場面や登場人物の心情の変化に注意しながら読むことができる。	小説の語りのあり方を理解し、場面の状況や登場 人物の心情に着目しなが ら読むことができる。	小説の語り手を意識して、 場面や登場人物に関心を もって読むことができる。	小説の語り、場面や登場人 物について理解できない。
2	評論文に書かれた内容を、 文章の構成や語句の意味 に注意しながら読み解き、 論旨を的確に把握できる。	評論文に書かれた内容を、 文章の構成に着目しなが ら論旨を把握することが できる。	評論文に書かれた内容に 関心をもって読み、論旨 を把握することができる。	評論の論旨を把握することができない。
3	古典作品を、その時代や 文化的背景に着目しなが ら読みを深め、言語文化 に対する関心を高めるこ とができる。	文化的背景に着目して読 み味わい、言語文化に興	古典作品を、その時代背景に関心をもって読み味わうことができる。	古典を読むための基礎的 な事項に則して、古典作 品を読み味わうことがで きない。
4	課題について、指定され た文字数で、論理構成を 工夫して文章を書くこと ができる。	課題について、指定された文字数で、論理構成に 注意して文章を書くこと ができる。	課題について、指定された文字数で、論理構成に 関心をもって文章を書く ことができる。	課題について、指定された文字数で、論理構成を 意識して文章を書くこと ができない。

科目名					担当教員		学年	単位	開講時数	種別
地理歴史 (Geogra	II phy & Hi	story II)	浜口記	滅至 (非常勤)	・菊池邦彦	(非常勤)	2	2	通年 2時間	必修
授業の概	要	ペリー来航を回 も過言ではない	画期と	する19世紀行ろう。国際的な	後半以降の な視点を堅	歴史は、世界史と日本 持することにより、現	ド史が7 Ⅰ代社会	で可分に	進行する。 する方策を	といって ご探る。
授業の形	態	講義								
授業の進	め方	講義を中心 る 予習、復習を行	とし、 行い自	時に年表や歴 学自習の習慣	史地図、特 を身に着け	定のテーマのレポー る。	トを作り	成する。		
到達目標		1. 歴史の時代 2. 歴史上の事 3. 歴史的事件 4. 現代に連な	区分を 件を 日 る 日本	原始・古代か 本や世界の地 と結果の因果 史・世界史上	ら現代まで 図上に落と 関連を、資 の画期を記	ごいうことができる。 こすことができる。 資料を基に述べること 説明することができる	ができ	る。		
実務経験 容との関	と授業内 連	なし								
学校教育 関係	目標との			技術者として	社会との関	て、産業界や地域社 わりを考える能力を			こ貢献する	ために、
					講義の内容	5				
項目			目標							時間
1. 歴史の	初めに		歴史的	的見方・考え方	方・基礎的知	田識を知る。目的・評	価方法	などを確	笙認する。	2
2. 幕末			1			での情勢を年表を作り		がら理解	する。	10
	3・明治維新と明治の文化 明治という時代を制度や戦争・文化の面から理解する。					12				
4. 大正			1			る、経済政治情勢を理				10
5. 昭和		III. ##	1			・国際情勢を中心に			VP	10
┃ b. 戦後 ┃	の日本と	世界		↑での朝駐戦急 理解する。	尹の諸影響	を中心に、占領下の日	14から	日本の	独立、	10
7. 1989	9 年から 1	991 年	1		革命・ソ連	崩壊と日本社会の転換	ぬを合わ	せて理	解する。	4
8. おわ	りに		現代	の日本社会の権	構造と問題	を考える。				2
										計 60
学業成績 法	の評価方	年4回の定 に評価する。	期試験	の成績を主と	し、提出物	・小テスト・授業への	の参加も	犬況など	を加味し、	て総合的
関連科目										
教科書・	副読本	教科書:「高等 ロムナード日本		日本史A 新 (浜島書店)	訂版 (検定	教科書)」佐々木 寛	司 他	(清水書	萨),副読	本:「プ
				評価	(ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	ē) t	票準的な到達レベル	の目安 (良)	ぎりぎりの到達レベルの目気	安 (可)	未到達	レベルの目安	(不可)
1	古代から)時代区分を原始 5現代まで 8 割 ことができる	以 古	史上の時代区 代から現代ま 言うことがで	で7割以	歴史上の時代区分を 古代から現代まで 6 上言うことができる	割以	古代か	の時代区分 ら現代まっ ことがでな	で6割以
2	界の地図	D事件を日本や 図上に8割以上 こができる。	:落 界	史上の事件を の地図上に 7 すことができ	'割以上落	歴史上の事件を日本 界の地図上に6割り とすことができる。	(上落	界の地[の事件を 図上に 6 割 とができな	割以上落 🛮
3	の因果関	事件の原因と結 関連を、資料を 以上述べること	:基 の: が に	史的事件の原 因果関連を、 7割以上述べ きる。	資料を基	歴史的事件の原因と の因果関連を、資料 に6割以上述べるこ できる。	を基 とが	の因果	事件の原因 関連を、資 以上述べる い。	資料を基
4	界史上の	車なる日本史・ D画期を 8 割以 ることができる。	【上 界	代に連なる日 史上の画期を 明することが	: 7割以上	現代に連なる日本 男 界史上の画期を 6 書 説明することができ	以上	界史上的	連なる日本 の画期を (ることがて	5割以上

シロク			で	12年度 ものつくり工学科		224 /	774 /T	77 -# a+ W	纤川
科目名			17	担当教員		学年	単位	開講時数	種別
公民 I (Civics I)			阿哥	部毅之 (非常勤)		2	2	通年 2 時間	必修
授業の概要	五	歴史を細かくみ	みる	の基本概念を理解した後、へ 。また世界の主な政治体制を をおさえてから、日本国憲》	を時事問題も絡めて研	催認する	る。後期	:明治憲	法・日本
授業の形態	צ'מל	講義							
授業の進め	か方	時解説する。		。ノートを必ず用意すること 自学自習の習慣を身に着ける。	•	て最新	折の時事	問題につ	いても随
到達目標		1. 現代の日本 できる。3. こ	と世 れら	上界が直面する諸課題を理解 の問題に対する解決方法を	できる。 2. 現代のE 提案できる。	日本と世	世界の社	会システ	ムを理解
実務経験と 容との関連	E授業内 なし 車								
学校教育目 関係	標との			生) 総合的実践的技術者とし、技術者として社会との関				こ貢献する	ために、
				講義の内容					
項目			目	標					時間
ガイダンス 民主政治の基本原理 民主政治の成立 基本的人権の確立 現代の民主政治 世界のおもな政治体制		並	-	習の目標、授業の進め方、記権思想の歴史と現代の人権の	•				20
日本国憲法 日本国憲	去の基本 憲法の制 人権の尊	原理 定と基本原理		自由権・社会権を中心に憲法における人権規定とその課題について理解する。					30
日本の政治	台機構		国	会・内閣・裁判所、三権分立	立の原則などを理解で	する。			10
国会と立 内閣と行 裁判所と 地方自治	亍政 と司法		地	方自治の意義と機構について	て理解する。				
<u> </u>	Н								計 60
学業成績の 法	D評価方	原則として定期 出および授業	期試への	験を4回実施する。定期試験参加状況を総合的に評価し、	験の成績に、前、後期 、その比率は 7:3 と	明2回の : する。	のノート	提出、夏	期課題提
関連科目									
教科書・副	訓読本	教科書: 「政治	台・)	経済(検定教科書)」 (東京	書籍)				
		I		評価 (ルーブリン	ック)				
到達目標	理想的な	到達レベルの目安 (優	E)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	岁(可)	未到達	レベルの目安	(不可)
	主要国の び人権犯 国憲法ル と理解し	の政治制度、お 獲得の歴史や日 こついてしっか し、かつ自らの	よ本り意	憲法が理解できる。	人権獲得の歴史や日 憲法をある程度理解 る。	本国	人権獲得	导の歴史 ^な 理解できな	や日本国
	見を持つ	つことができる。	0						

科目名		担当教員	学年	単位	開講時数	種別	
微分積分 (Calculus)		新人 A(常勤)・澤田一成 (常勤)・松本響 (非常勤/ 実務)・八木史江 (非常勤)	2	4	通年 4 時間	必修	
授業の概要	1変数の関数に ても最も重要な 通して、基本は	ご対する微分法及び積分法を学習する。微分法・積気 ☆基礎理論の1つである。前期は微分を、後期は積分 既念を理解するとともに、計算力を身につけ、微分	分法は数 分を扱う ・積分を	学だけ 。演習 と活用す	でなくエ [©] 問題を解 「る力をつ	学におい くことを ける。	
授業の形態	講義						
授業の進め方	講義を中心と 予習、復習を行	けるが、理解を深めるための問題演習を行う。 行い自学自習の習慣を身に着ける。					
到達目標	2. 微分の概念 3. 微分の計算 めることができ 4. 定積分・不	返限の概念を理解し、極限の計算ができる。 数分の概念を理解し、微分の計算ができる。 数分の計算を応用して与えられたグラフの接線・法線、曲線の概形、最大値・最小値などを求 っことができる。 定積分・不定積分の概念を理解し、積分の計算ができる。 定積分を用いて与えられた図形の面積や回転体の体積を求めることができる。					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						
		講義の内容					
項目		目標				時間	
数列とその和		総和記号 Σ を活用して、与えられた数列の話を求め 般項を求める際の活用方法を修得する。	うたり、	任意の	数列の一	12	
関数の極限		関数の収束・発散の概念を理解するとともに、極限 する。	関値を求	める方	法を修得	6	
導関数		導関数の概念を理解し、与えられた関数の導関数を	求める打	支術を修	修得する。	22	
微分の応用		微分法を利用して、与えられた関数のグラフの接続 修得するとともに、関数の増加や減少の状態を調べ ことにより、最大値・最小値を求める方法を修得す	・法線 く、関数 ける。	を求め のグラ	る方法を フを描く	20	
不定積分・定積分		不定積分、定積分の概念を理解するとともに、基本を計算する技術を修得する。	的な不	定積分	、定積分	20	
積分の計算		様々な定積分、不定積分を計算するために、置換積 る技術を修得する。	うか 、部	分積分	を活用す	20	
積分の応用		積分を利用して、図形の面積、曲線の長さ、立体の を修得する。	体積な	どを求	める技術	20 計 120	
学業成績の評価方 法	4回の定期試験 者には再試験	 鈴の得点(80%)と課題等の提出状況(20%)に を実施する場合がある。	こより評	価する	。なお、)	****	
関連科目	微分積分演習	・解析学基礎					
教科書・副読本	教科書: 「新 征 他 (大日本図書	数分積分 I」高遠節夫他 (大日本図書),副読本: 「新 書)	微分積	i分 I	問題集」	高遠節夫	

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	極限値の計算結果を、関 数のグラフを描く際に活 用することができる。	因数分解や約分だけでなく、ロピタルの定理等、適 切な手法によって、極限値 を求めることができる。	因数分解・約分等、基本的 な計算手法によって、極限 値を求めることができる。	
2	超越関数 (指数関数や三角 関数、対数関数) とそれら の合成によって構成され た関数の導関数を求める ことができる。		教科担当者の指示や教科 書を参照することにより、 初等関数の導関数を求め ることができる。	微分の概念が理解できない。
3	超越関数やそれらの合成によって構成された関数によって構成された関数に対して、その増減の様子を調べ、最大値・最小値、変曲点を求め、漸近線の有無を考慮して、グラフを描くことができる。	れる関数に対して、その 増減の様子を調べ、最大 値・最小値、変曲点を求め て、グラフを描くことがで	与えられた関数の導関数 を求めて、増減表を作る ことができる。	与えられた関数の増減の 様子を調べることができ ない。
4	公式、置換積分、部分積 分を適切に組み合わせて、 与えられた関数の定積分 や不定積分を求めること ができる。	法、部分積分法)によって、	原始関数を求める基礎的 な公式を利用して、与えら れた関数の定積分、不定積 分を求めることができる。	原始関数、不定積分、定積 分の概念が理解できない。
5	与えられた図形を x 軸の 周りに回転してできる立 体の体積を求めることが できる。	形の面積を適切に求める	与えられた関数と x 軸とで作られた図形の面積を求めることができる。	定積分の幾何学的な意味 が理解できない。

ショク			74 2 年度 ものフくリエ字や 		兴大	››‹ /ㅗ	BB =# p+ W/	1年 DII
科目名			担当教員		学年	単位	開講時数	種別
線形代数 (Linear A	i I Algebra I)	中村友哉 (非常勤)・八木史江 (非常勤)・臼井智 (非常勤)	,		2	通年 2 時間	必修
授業の概	要	工学の専門科目 て学ぶ。まず、 学ぶ。その後、 1次方程式への	を学ぶ上で必要不可欠な数学 楕円、双曲線、放物線など2 ベクトルの概念とその基本的 応用を学ぶ。	の知識・技能のうち、 次曲線の基本的な性質 な演算とその性質を学	「ベク 〔を学習 を習し、	トル」 し、不 行列の	と「行列」 等式の表 [*] 概念、その	につい す領域を の演算と
授業の形	態	講義						
授業の進	め方	講義を中心とす 予習、復習を行	るが、理解を深めるための間 い自学自習の習慣を身に着け	題演習を行う。 る。				
到達目標	:		x曲線の性質を理解し、不等式の表す領域を図示できる。 y トルや行列の演算が理解できる。					
実務経験 容との関	と授業内 連	なし						
学校教育 関係	目標との	限との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						
			講義の内容	<u> </u>				
項目			目標					時間
2次曲線	·		楕円、双曲線、放物線の基本 とともに、円と直線の交点や	的性質を理解し,グラ 円の接線を求めること	フを描 こができ	くこと	ができる	6
•			不等式や連立不等式の表す領	域を図示することがで	できる。			4
平面のベクトル 平面の・			平面のベクトルの概念を理解	し、和、差、定数倍、	内積の	計算が	できる。	8
線形独立と線形従属			ベクトルの線形独立と線形従 が線形独立か線形従属かを判		えられ	たべク	トルの組	2
空間のベ	クトル		空間のベクトルの概念を理解	し、和、差、定数倍、	内積の	計算が	できる。	4
直線、平	面、球の	方程式	ベクトルを用いて直線、平面、球の方程式を求め、これらを活用して図形 の問題を処理することができる。					8
行列の演			行列の概念を理解し、和、差、定数倍が計算できる。					4
行列の積	-		行列の積の性質を理解し、積の計算ができる。					4
転置行列	と逆行列		転置行列、逆行列の意味を理解し、与えられた2次正方行列の逆行列が求 められる。					6
消去法			ガウスの消去法を用いて連立	方程式、逆行列を求め	めること	ができ	る。	10
行列の階	数		基本変形を利用して行列の階	数を求めることができ	きる。			4
37 JU 1874			Det I. (= = 0.1) a relative late	I H . I . I . I . I . I . I . I . I . I			, ,	計60
法		4回の定期試験者には再試験を	の得点(80%)と課題等の 実施する場合がある。	提出状況(20%)に	こより割	4価する	。なお、)	成績不良
関連科目								
教科書・	副読本	教科書:「新藤他 (大日本図	線形代数」高遠・斉藤他 (大 書)	日本図書),副読本:	「新 紡	形代数	問題集」	高遠・斉
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目野	₹ (可)	未到達	レベルの目安	(不可)
1		線が描けて, 不等式 2 次曲線の方程式が導出 不等式の式変形ができる. 2 次曲線の方程: できる. できる. できる. しからない.				、不等式の	式を理解 の意味が	
2	ガウスの 連立1岁	の消去法を使っ [、] 欠方程式が解ける	で 逆行列の計算ができる. ・	内積の計算ができ, 行 基本的な計算ができ	f列の る.	ベクトな演算を	ルと行列の ができない	の基本的
				l .				

科目名		担当教員	学年	単位	開講時数	種別	
17日 11 物理 II		山内一郎 (常勤)	2	2	通年	必修	
(Physics II)					2時間		
授業の概要	専門科目を学。 を通して、物理	ぶ際に必須となる基礎事項を学ぶ。日常生活で経験で 里的思考力の養成をはかる。	する自然	現象の	原理・法則	側の学習	
授業の形態	講義						
授業の進め方	講義を中心とし 予習、復習を行	して、理解を深めるための問題演習を行う。 行い自学自習の習慣を身に着ける。					
到達目標	2. 熱と仕事、 について理解1	いろな運動、剛体のつり合い、圧力について理解し 理想気体の法則、気体の分子運動、熱力学の第一法 し、計算ができる。 質、波の干渉・回折・屈折・反射、音波の基本性質に	測およ	び第二	法則、熱力		
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 倫に関する知識をもち、工学的諸問題にそれらを応				内な技術	
		講義の内容					
項目		目標				時間	
ガイダンス		授業のガイダンスとこれまでの復習を行なう。				2	
斜面上の物体の運	動	斜面上においてある物体の運動を理解する。				2	
等速円運動		等速円運動の基本的事項を理解する。				2	
単振動		単振動について理解する。				2	
慣性力		慢性力について理解する。				2	
剛体に働く力		剛体に働く力と力のモーメントについて理解する。				2	
剛体のつり合い		剛体に働く力のつり合いについて理解する。				2	
力学に関する実験	または演習	力学に関する実験または演習により確認を行う。				2	
圧力		圧力について理解する。				2	
流体に働く力		流体に働く圧力と浮力について理解する。				2	
温度と熱		物体の温度と熱について理解する。				$\overline{2}$	
熱の仕事当量		仕事と熱の関係について理解する。				2	
熱量		熱容量と比熱について理解する。				2	
加里 固体の比熱		固体の比熱の測定方法について理解する。				2	
理想気体の法則		ボイル・シャルルの法則を理解する。				2	
产应X(件V)A积		ANTIN OTTOMORISEERRY S.				計 30	
気体の分子運動		 気体分子の運動と温度の関係について理解する。				2	
熱力学の第一法則		熱力学の第一法則について理解する。				2	
気体の体積変化と		気体の体積変化と仕事の関係について理解する。				$\frac{2}{2}$	
気体の熱力学過程		気体の4つの熱力学過程について理解する。				$\frac{2}{4}$	
		熱機関と熱力学の第二法則について理解する。				2	
		熱学に関する実験または演習により確認を行う。					
熱力学に関する実	- 映まには谀育					2	
波の基本性質		波の基本的性質を理解する。				4	
波の干渉	担っまり	波の干渉と重ね合わせの原理について理解する。				2	
反射による波の位		波の反射、定常波について理解する。				2	
平面や空間を伝わ		平面波、球面波の干渉を理解する。				2	
平面や空間を伝わ		平面波、球面波の回折、反射を理解する。				2	
平面や空間を伝わ	る波③	平面波、球面波の屈折、全反射を理解する。				2	
音波の基本性質		音波の基本的性質について理解する。				2	
						計 30	
						計 60	

学業成績 法	責の評価方	4回の定期試験の 価する。	得点を 80 %、授業への参加	□状況(取り組み、課題)を	: 20 %として、総合的に評
関連科目	1			論 I・物理学特論 II・工業力 応用物理 II・応用物理特論]学・ベクトルメカニクス・
教科書	・副読本			監修、小暮 陽三編集 (森 多喜 重明、岡田 克彦、	
			評価 (ルーブリ	ック)	
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	しい、圧力 く力につ	重動、剛体のつり合い、および流体に働いて応用問題をいて応る。	質点の運動、剛体のつり合い、圧力に加えて、流体に働く力を理解し、これらに関する問題を解くことができる。	質点の運動、剛体のつり合い、圧力について理解し、 基礎問題を解くことがで きる。	質点の運動、剛体のつり合い、圧力については理解できるが、簡単な計算ができない。
2	定、気体 学の第- 法則、熱	4、固体の比熱の測 の分子運動、熱力 一法則および第二 熱力学過程に関す 問題を解く事がで	熱と仕事、固体の比熱の測定、気体の分子運動、熱力学の第一法則および第二法則に加えて熱力学過程を理解し、これらに関する問題を解く事ができる。	熱と仕事、固体の比熱の測定、気体の分子運動、熱力学の第一法則および第二法則の意味を理解し、基礎問題を解く事ができる。	熱と仕事、固体の比熱の 測定、気体の分子運動、熱 力学の第一法則および第 二法則の意味は理解でき るが、簡単な計算ができ ない。
3	│ 回折・屈 および音	本性質、波の干渉・ 折・反射、定常波、 音波の基礎に関す 問題を解くことが	波の基本性質、波の干渉・回折・屈折・反射に加えて、 定常波について理解し、これらに関する問題を解く ことができる。	波の基本性質、波の干渉・ 回折・屈折・反射の意味を 理解し、それらの基礎問題 を解くことができる。	波の基本性質、波の干渉・ 回折・屈折・反射の意味は 理解できるが、簡単な計算 ができない。

科目名		担当教員	学年	単位	開講時数	種別	
化学 II (Chemistry II) 機械システム工学	コース	池田宏 (常勤)	2	2	通年 2時間	必修	
授業の概要	所属工学コース スにおいては	、の専門科目を学ぶために必要な化学の基礎学力を積 変質の状態図・反応熱・無機物質・結晶格子などが	髪わせる 特に重要	機械 要である	システム	匚学コー	
授業の形態	講義						
授業の進め方	講義を中心とし 予習、復習を行	て、演示実験と実験を適宜行う。理解を深めるた 行い自学自習の習慣を身に着ける。	めの問題	夏演習	適宜行う	0	
到達目標	1. 化学反応に 2. 平衡定数、 3. 有機化合物	おける反応熱や反応速度の化学計算ができる p H、酸化数の計算を行い、正しく実践できる の特徴や無機物質の結晶構造について理解できる					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				りな技術	
		講義の内容					
項目		目標				時間	
ガイダンス		化学の基礎学力を養うための心構えについて				2	
物質の三態		状態図から物質の状態変化について見積もり理解				2	
化学反応と熱		熱化学方程式を書き、ヘスの法則を活用して未知の		•	_	6	
化学反応の速さ		簡単な反応速度式を理解し、触媒と活性化エネルキめる	デーにつ	いても	埋解を深し	6	
化学平衡		平衡定数の計算ができるようにする					
演示実験:平衡移		平衡移動の法則について理解する					
酸・塩基と中和反	応	基本的な酸塩基の理解から p Hを求め、中和反応の量的関係を理解する				6 計 30	
酸化還元反応		酸化数を求めることができ、酸化還元反応につい	て理解す	ーる		4	
電池と電気分解		電池の構造と仕組みについて理解し、電気分解に	ついても	理解す	-る	4	
無機物質		基本的な状態図や相律について理解し、無機物質の子についても深く理解する)固体状	態であ	る結晶格	6	
実験:結晶格子模	型の製作	結晶格子模型を製作し、結晶格子について深く理解	解する			2	
有機化合物		有機化合物の特徴と分類を行い、異性体と命名法はできる	こついて	書き出	すことが	10	
高分子化合物		天然高分子と合成高分子の特徴と分類について理解	解する			4	
						計 30	
						計 60	
学業成績の評価方 法	定期試験(4回 習課題など)	団)70%、実験(2回・実験レポートを含む)2 □0%の比率で評価する。	0 % 、	^是 出物(宿題レポ	ート・演	
関連科目	化学 I、化学特	論 I、化学特論 II					
教科書・副読本		ナミックワイド図説化学」竹内 敬人 (東京書籍), :」小林淳哉 (実教出版)	副読本:	「Pro	fessional I	Engineer	

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	分子構造を理解し、熱化 学方程式から原子間の結 合エネルギーを導くこと ができる。	反応における物質量の変 化を正しく理解し化学平 衡の問題を解くことがで きる。	へスの法則を理解し、各 反応による熱量を正しく 求めることができる。	化学反応式を書くことが できず、熱量変化を理解 していない。
2	中和滴定反応における手順を理解し、指示薬の正しい選択ができる。また、電気分解における発生物質を正しく理解し電解液、電極板を正しく選択できる。	溶液の pH を導くことができる。またイオン化傾向を正しく理解し電池の構成を理解することができる。	中和の反応式を書くこと ができる。また、化学反 応式からその反応が酸化 か還元化を判断できる。	酸, 塩基、酸化, 還元の定 義を正しく説明できない
3	官能基を理解し有機化学 反応を正しく導くことが できる。	ベンゼン環を中心にする 芳香族および官能基の配 位による位置異性体を理 解できる。	炭化水素の飽和、不飽和 および立体構造を正しく 理解する。	炭化水素を正しく理解で きない。

科目名		令和2年度 ものつくり工学科 一般科目 ジラバス 担当教員	学年	単位	88 €# n± ₩#	種別	
化学 II		2 121.5	2		開講時数		
(Chemistry II)		池田宏 (常勤)	2	2	2時間	必修	
生産システム工学	コース						
授業の概要	所属工学コース スにおいては	スの専門科目を学ぶために必要な化学の基礎学力を 物質の状態図・反応熱・無機物質・結晶格子などが	逢わせる 持に重 男	。生産 要である	システム	Ľ学コー	
授業の形態	講義						
授業の進め方	講義を中心とし 予習、復習を行	中心として、演示実験と実験を適宜行う。理解を深めるための問題演習も適宜行う。 復習を行い自学自習の習慣を身に着ける。					
到達目標	1. 化学反応に 2. 平衡定数、 3. 有機化合物	学反応における反応熱や反応速度の化学計算ができる 衝定数、p H、酸化数の計算を行い、正しく実践できる 機化合物の特徴や無機物質の結晶構造について理解できる					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	D (基礎力) 総 と基礎的な理話	合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				りな技術	
		講義の内容					
項目		目標				時間	
ガイダンス		化学の基礎学力を養うための心構えについて				2	
物質の三態		状態図から物質の状態変化について見積もり理解で				2	
化学反応と熱		熱化学方程式を書き、ヘスの法則を活用して未知の				6	
化学反応の速さ		簡単な反応速度式を理解し、触媒と活性化エネルキ める	ーにつ	いても	埋解を深し	6	
化学平衡		平衡定数の計算ができるようにする					
演示実験:平衡移		平衡移動の法則について理解する					
酸・塩基と中和反	応	基本的な酸塩基の理解から p Hを求め、中和反応の量的関係を理解する					
酸化還元反応		 酸化数を求めることができ、酸化還元反応につい~	て理解す	ーる		計 30 4	
電池と電気分解		電池の構造と仕組みについて理解し、電気分解について			- る	4	
無機物質		基本的な状態図や相律について理解し、無機物質の子についても深く理解する	固体状	態であ	る結晶格	6	
実験:結晶格子模	型の製作	結晶格子模型を製作し、結晶格子について深く理解	解する			2	
有機化合物		有機化合物の特徴と分類を行い、異性体と命名法に できる	ついて	書き出	すことが	10	
高分子化合物		天然高分子と合成高分子の特徴と分類について理解	解する			4 ∌L 20	
						計 30	
学業成績の評価方 法	定期試験(4回 習課題など)	 国)70%、実験(2回・実験レポートを含む)2(10%の比率で評価する。) %、携	是出物(宿題レポ・	計 60 -ト・演	
」 <u>//</u> 関連科目		F論 I、化学特論 II					
教科書・副読本		ナミックワイド図説化学」竹内 敬人 (東京書籍),	副読本	ГРго	fessional I	Engineer	
37.11E H3MU'T.		小林淳哉 (実教出版)	Mahon La	. 110	10001011011	211001	

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	分子構造を理解し、熱化 学方程式から原子間の結 合エネルギーを導くこと ができる。	反応における物質量の変 化を正しく理解し化学平 衡の問題を解くことがで きる。	へスの法則を理解し、各 反応による熱量を正しく 求めることができる。	化学反応式を書くことが できず、熱量変化を理解 していない。
2	中和滴定反応における手順を理解し、指示薬の正しい選択ができる。また、電気分解における発生物質を正しく理解し電解液、電極板を正しく選択できる。	溶液の pH を導くことができる。またイオン化傾向を正しく理解し電池の構成を理解することができる。	中和の反応式を書くこと ができる。また、化学反 応式からその反応が酸化 か還元化を判断できる。	酸, 塩基、酸化, 還元の定 義を正しく説明できない
3	官能基を理解し有機化学 反応を正しく導くことが できる。	ベンゼン環を中心にする 芳香族および官能基の配 位による位置異性体を理 解できる。	炭化水素の飽和、不飽和 および立体構造を正しく 理解する。	炭化水素を正しく理解で きない。

						_		
科目名			担当教員		学年	単位	開講時数	種別
化学 II (Chemistry II) 電気電子工学コー		小林和也 (非常勤)			2	2	通年 2 時間	必修
授業の概要	所属工学コース ては酸化還元・	の専門科目を学ぶ 電池・電気分解な	ために必要 どが特に重	な化学の基礎学力 要である。	を養う。	電気電子	工学コー	スにおい
授業の形態	講義							
授業の進め方	方 講義を中心として、演示実験と実験を適宜行う。理解を深めるための問題演習も適宜行う。 予習、復習を行い自学自習の習慣を身に着ける。							
到達目標	1. 化学反応における反応熱や反応速度の化学計算ができる 2. 平衡定数、pH、酸化数の計算を正しく実践し、電池や電気分解の仕組みについて深く きる 3. 有機化合物の特徴や構造について理解できる							
実務経験と授業内 容との関連	なし							
学校教育目標との 関係	D (基礎力) 総介 と基礎的な理論	合的実践的技術者と aに関する知識をも	として、数学 ち、工学的	学・自然科学・自 諸問題にそれらる	らの専門 と を応用する	とする分 能力を育	野の基本的 所成する。	的な技術
			講義の内容					
項目		目標						時間
ガイダンス		化学の基礎学力を						2
物質の三態		状態図から物質の						2
化学反応と熱		熱化学方程式を書						6
化学反応の速さ		簡単な反応速度式をめる			ルギーにつ	ついても:	理解を深	6
化学平衡	- SI - N. HII	平衡定数の計算が						6
演示実験:平衡移		平衡移動の法則について理解する						2
┃酸・塩基と中和反 ┃酸化還元反応	CMD	基本的な酸塩基の理解からpHを求め、中和反応の量的関係を理解する酸化数を求めることができ、酸化還元反応式について理解する						$\frac{6}{4}$
■酸化速ル及心 ■電池と電気分解		電池の構造と仕組					いても細	6
		解する				JAPIC J	いても注	
実験:ダニエル型	電池と電気分解	ダニエル型電池を製また、電気分解の製	製作し、境 実験から電	現貝何について考 池との違いを考察	言祭する 琴する			2
無機物質		導体や半導体の結	晶構造につ	いて理解する				4
有機化合物		有機化合物の特徴できる	と分類を行	い、異性体と命名	法について	て書き出	すことが	10
高分子化合物		天然高分子と合成	高分子の特	徴と分類について	て理解する			4 ≢L co
 学業成績の評価方	定期試験(4回]) 70%、実験(2回・実験	レポートを含む)	20%,	提出物(宿題レポ、	計 60 ート・演
法	-	0%の比率で評価	する。					
関連科目		論 I、化学特論 II	14 /1 , 244 LL =		先/ =113+1-1	• [T	c . 1.	
教科書・副読本		ナミックワイド図記 」小林淳哉 (実教出	出版)	`	_{晋)} ,副読本	×: 'Pro	tessional I	ingineer
		評価	(ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優	標準的な到達レベル	の目安 (良)	ぎりぎりの到達レベル	の目安 (可)	未到達	レベルの目安	(不可)
学方程:	造を理解し、熱 式から原子間の ルギーを導くこ る。	結 化を正しく理解	解し化学平	へスの法則を理 反応による熱量 求めることがで	を正しく	化学反応できず、している	芯式を書ぐ 熱量変化 ない。	くことが とを理解
順を理解を理解を理解を理解を理解を選択が表示している。								
3 官能基 反応を できる。	を理解し有機化 正しく導くこと 。	学 ベンゼン環を中 芳香による位置 解できる。	官能基の配	炭化水素の飽和 および立体構造 理解する。	、不飽和 を正しく	炭化水 きない。	素を正しく	、理解で

科目名		で和 2 年度 もの フくりエ字科 担当教員		学年	単位	開講時数	種別	
 化学 II		池田宏 (常勤)		2	2	通年	必修	
(Chemistry II) 電子情報工学コー		,			_	2時間		
授業の概要	所属工学コース ては酸化還元	スの専門科目を学ぶために必要 ・電池・電気分解などが特に重	な化学の基礎学力を 重要である。	逢う。電	三子情報	工学コー	スにおい	
授業の形態	講義							
授業の進め方	予習、復習を行	して、演示実験と実験を適宜行 行い自学自習の習慣を身に着け	ける。	めの問題	題演習₹	適宜行う	0	
到達目標	1. 化学反応における反応熱や反応速度の化学計算ができる 2. 平衡定数、pH、酸化数の計算を正しく実践し、電池や電気分解の仕組みについて深く きる 3. 有機化合物の特徴や構造について理解できる							
実務経験と授業内 容との関連	なし							
学校教育目標との 関係		合的実践的技術者として、数4 論に関する知識をもち、工学的					的な技術	
		講義の内容	~					
項目		目標					時間	
ガイダンス		化学の基礎学力を養うための					2	
物質の三態		状態図から物質の状態変化に			I b D		2	
化学反応と熱		熱化学方程式を書き、へスの					6	
化学反応の速さ		簡単な反応速度式を理解し、める		ーにつ) (ソ <i>く</i> む)	埋孵を深	6	
化学平衡 平衡定数の計算ができるようにする 演示実験:平衡移動の法則 平衡移動の法則について理解する							$\frac{6}{2}$	
■ 酸・塩基と中和反		基本的な酸塩基の理解からpHを求め、中和反応の量的関係を理解する						
酸 温室と下福久 酸化還元反応	<i>.,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	酸化数を求めることができ、				:A+ 9 る	6 4	
電池と電気分解		電池の構造と仕組みについて 解する				いても理	6	
実験:ダニエル型	電池と電気分解	ダニエル型電池を製作し、環 また、電気分解の実験から電			2			
無機物質		導体や半導体の結晶構造につ	いて理解する				4	
有機化合物		有機化合物の特徴と分類を行 できる	い、異性体と命名法に	、異性体と命名法について書き出すことが 1				
高分子化合物		天然高分子と合成高分子の特	徴と分類について理解	解する			4 計 60	
学業成績の評価方 法	定期試験(4回 習課題など)	回)70%、実験(2回・実験 10%の比率で評価する。	ションポートを含む) 2() %、拼	是出物(宿題レポ		
関連科目	化学 I、化学特	テ論 I、化学特論 II						
教科書・副読本		ナミックワイド図説化学」竹I ビ」小林淳哉 (実教出版)	内 敬人 (東京書籍),	副読本	: Pro	fessional l	Engineer	
		評価 (ルーブリ	ック)					
	到達レベルの目安 (優	` '	ぎりぎりの到達レベルの目	(- /		レベルの目安	` ′	
学方程:	造を理解し、熱 式から原子間の ルギーを導くこ る。	結 化を正しく理解し化学平	反応による熱量を正	しく	化学反応できず、 している	応式を書。 熱量変化 ない。	くことが 比を理解 	
順を理解を理解を理解を理解を理解を選択が表示している。								
3 官能基 反応を できる。	を理解し有機化 正しく導くこと 。	学 ベンゼン環を中心にする が 芳香族および官能基の配 位による位置異性体を理 解できる。	および立体構造を正	飽和しく	炭化水; きない。	素を正し	(理解で	

科目名		担当教員	学年	単位	開講時数	種別			
保健体育 II (Health & Physi II)	cal Education	古川浩洋 (常勤)・小川広 (常勤)	2	2	通年 2 時間	必修			
授業の概要	個人的スポート に、自主的に国	ソや集団的スポーツの特性にふれ、各種の運動の実 又り組む態度を身につける。	践を通	して体	力を高める	るととも			
授業の形態	実験・実習	験・実習							
授業の進め方	なる。	基礎的体力を高めるとともに、各種目の基本技術を与 行い自学自習の習慣を身に着ける。	学びなか	らゲー	ムができる	るように			
到達目標	1. 主体的に授業へ取組むことができる。 2. 自己のとるべき行動を判断し、仲間と協力・協調する態度を身につけることができる。 3. バレーボール・バスケットボール・サッカー・水泳・柔道の基本技術を身につけ、体力を高ることができる。 4. ルールやマナーを守りながら、自ら安全に留意して行動できる。								
実務経験と授業内 容との関連	なし								
学校教育目標との 関係		ーション力) 総合的実践的技術者として、協働して とりするために、論理的に考え、適切に表現する能			取り組んだ	ぎり国際			
		講義の内容							
項目		目標				時間			
ガイダンス		学習の進め方、評価の仕方が理解できる				2			
体つくり運動		体つくり運動の理論と実技を学習する				2			
柔道 I		ガイダンス(歴史・施設と用具) 基本動作(姿勢・組み方と進退動作、崩しと体さり 対人技能(投げ技、固め技の攻撃と防御) 技能テスト	ばき、受	をけ身)		16			
水泳Ⅱ		ガイダンス、水慣れ クロール、平泳ぎ、背泳ぎ、バタフライ、水球 泳力テスト							
						計 30			
体力テスト		新体力テストを実施し、各自の体力が把握できる				4			
サッカーII		スローイング ゴールキーピング フォーメーション 技能テスト、ルールとゲーム				8			
バレーボールII		パスとトス レシーブフォーメーション スパイクの打ち分けとクイック・フェイント アタックフォーメーション 技能テスト、ルールとゲーム				8			
バスケットボール	· II	セットオフェンス マンツーマンディフェンス ゾーンディフェンス 技能テスト、ルールとゲーム				10			
						計 30			
						計60			
学業成績の評価方 法	ストまたはレス	且み約 50 %、②学習意欲と学習態度(服装・準備・ ポート等を約 20 %とする。	後片付	け等) 着	约 30 %、(3)技能テ			
関連科目	保健体育 I								
教科書・副読本		所高等保健体育 改訂版(検定教科書)」和唐正勝原 高校スポーツ 2019」高橋健夫ほか (大修館書店)	まか (大	修館書	店),副読	<u></u> 本: 「ス			

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	全ての授業で主体的に取 組んでいる。	主体的に授業へ取組んでいる。	基準以内であるが、授業へ の取組みが良くない。	基準を超えており、授業へ の取組みが悪い。
2	自己のとるべき行動を判 断し、仲間と協力・協調す ることができる。	仲間と協力・協調する態 度を身につけることがで きる。	教員の指示に従って、仲間 と協力・協調する態度を身 につけることができる。	仲間と協力・協調する態 度を身につけることがで きない。
3	基本技術を発展させた技 能を身につけ、日常生活 に応用して体力を高める ことができる。	け、体力を高めることが	教員の指示に従って、運動 の基本技術を身につけ、体 力を高めることができる。	運動の基本技術を身に付けることができず、体力を高めることができない。
4	ルールやマナーを守りな がら、自己及び仲間の安 全に留意して行動するこ とができる。		教員の指示に従って、ルールやマナーを守りながら、 安全に留意して行動することができる。	ルールやマナーを守るこ とができず、安全に留意 して行動することができ ない。

科目名		担当教員	学年	単位	開講時数	種別		
英語 II (English II)		海上順代 (常勤)・長森清 (常勤)・梶谷真衣 (非常勤)・川野真樹子 (非常勤)・福田浩之 (非常勤)	2	4	通年 4 時間	必修		
授業の概要	く・聞き・話す	国際的な話題など、様々なテーマを扱った基礎的ことの言語運用能力を総合的に伸ばす。英語を通ける態度を育成するとともに、情報や考えなどを的限力を養う。	じて、積	極的に	コミュニ	ケーショ		
授業の形態	講義							
授業の進め方	考えを英語でホ	江部科学省検定教科書を用いて、題材の主旨、書き手や話し手の意向を理解すると同時に、 終えを英語で表現する活動を行う。 で習、復習を行い自学自習の習慣を身に着ける。						
到達目標	1. 基礎的・基 2. 英語で読ん 3. 英語で書い	基礎的・基本的な語彙・構文・文法を理解できる。 英語で読んだり聞いたりして、情報や考えを理解できる。 英語で書いたり話したりして、情報や考えなどを理解できる。						
実務経験と授業内 容との関連	なし							
学校教育目標との 関係		ーション力) 総合的実践的技術者として、協働して とりするために、論理的に考え、適切に表現する能			取り組んが	ぎり国際		
		講義の内容						
項目		目標				時間		
■ New Discovery Lesson 1 Hot Spri in the World		世界の温泉と風呂についての英文を読解できる。 過去完了、節を伴う第3・4文型について理解でき	きる。			30		
Lesson 2 Simple tems?	Spelling Sys-	英単語のスペルについての英文を読解できる。 現在完了の受動態、部分否定、仮定法過去につい	て理解で	きる。				
Lesson 3 Living I	Dinosaurs?	恐竜の生き残りについて論じた英文を読解できる。 前置詞を伴う関係代名詞、関係副詞について理解できる。						
Lesson 4 Afri First Lady	ican-American	オバマ大統領夫人についての英文を読解できる。 知覚動詞、seem を含む構文、to 不定詞の否定、分 きる。	分詞構文	につい	て理解で			
Lesson 5 Broaden	Your Horizons	ホームステイについての英文を読解できる。 助動詞を用いた過去の推量、完了 to 不定詞、使役動詞について理解できる。						
Leson 6 The Gre Guernica	eat Sorrow of	ピカソのゲルニカについての英文を読解できる。 形式目的語を伴う第5文型、過去完了進行形、受動 詞 whose について理解できる。	動態の進	行形、	関係代名			
Lesson 7 Witho Brain	ut the Right	「脳の手術」についての英文を読解できる。 関係代名詞の非制限用法・関係副詞の非制限用法 について理解できる。	・強調構	文・同権	各の that	30		
Lesson 8 An Indution in the Sky	ıstrial Revolu-	「ドローン」についての英文を読解できる。 未来進行形・未来完了形・倒置について理解でき	る。			計 120		
学業成績の評価方	定期試験7割、	取組状況3割(小テスト、発表、提出物その他)	から総合	う的に言	平価する。			
法 関連科目								
	数彩書. 「N	Pigggrowy English Communication II . 在中間	/関欧尚) 声[1] :	5十. 「117	and Marri		
教科書・副読本	英単語・熟語	7 Discovery English Communication II」生井健一 3000」 (啓林館)・「Listening Pilot Level 2.5」金 丁新版)」 (文英堂)						

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	基礎的・基本的な語彙・構 文・文法を正確に理解で きる。	基礎的・基本的な語彙・構 文・文法を正確に理解で きる。	基礎的・基本的な語彙・構 文・文法を半分以上理解で きる。	基礎的・基本的な語彙・構 文・文法を理解できない。						
2	英語で読んだり聞いたり して、情報や考えを正確 に理解できる。	英語で読んだり聞いたり して、情報や考えをおお むね理解できる。	英語で読んだり聞いたり して、情報や考えを半分 以上理解できる。	英語で読んだり聞いたり しても、情報や考えを理 解できない。						
3	英語で書いたり話したり して、情報や考えを正確 に理解できる。	英語で書いたり話したり して、情報や考えをおお むね理解できる。	英語で書いたり話したり して、情報や考えを半分 以上理解できる。	英語で書いたり話したり しても、情報や考えを理 解できない。						

科目名				学年	単位	開講時数	種別	
微分積分演習 (Exercises in Cal	culus) 大	田将之 (非常勤)・松本響 (刻		2	1	後期 2 時間	選択	
授業の概要	「微分積分」の学 法・積分法の概念 力を養う。	習内容の理解を補うことを を理解し、基本的な計算力	目的とし、演習問題をを身につけるとともに	解くこ、微分	 とを通 }法・積	じて、関	数の微分 用する能	
授業の形態	演習							
授業の進め方	問題演習を中心に 予習,復習を行い	□行う. □自学自習の習慣を身に着け	-3.					
到達目標	1. 微分法の基本的な公式を活用して、与えられた関数の導関数が求められる。 2. 微分法を活用して、与えられた関数の増加や減少の状態を調査することができ、それに基づてグラフの概形が描ける。 3. 微分法を活用して、与えられた関数の極値や最大値・最小値が求められる。 4. 積分法の基本公式や部分積分法、置換積分法を活用して、与えられた関数の不定積分や定積が計算できる。 5. 積分法を活用して、与えられた図形の面積や立体の体積を求めることができる。							
実務経験と授業内 容との関連	なし							
学校教育目標との 関係		的実践的技術者として、数学 に関する知識をもち、工学的	J諸問題にそれらを応				的な技術	
	T	講義の内容	Š				-·	
項目		標	671 L > >) .) HENG	- 米里	INI. to De		時間	
微分の計算		関数を求める基本公式を理 できる。	解し、与えられた関数	の導関	数を求	めること	8	
微分の応用	微で	微分法を応用して、与えられた関数の増加や減少の状態を調査することができ、グラフを描くことができる。また、関数の極値や最大値・最小値を求めることができる。						
積分の計算	不	定積分を求める基本公式や た関数の不定積分や定積分			用して	、与えら	10	
積分の応用	積	分法を応用して、与えられる。			求める	ことがで	6 計 30	
 学業成績の評価方 法	授業中に行う演習	引課題や確認テストの点数に	より評価する。				HI 90	
関連科目								
教科書・副読本	教科書: 「新 微分 他 (大日本図書)	}積分 Ⅰ」高遠節夫他 (大日z	本図書),副読本: 「新	前 微分種	責分 I	問題集」	高遠節夫	
		評価 (ルーブリ	ック)					
到達目標 理想的な	よ到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	로 (可)	未到達	レベルの目安	· (不可)	
1 何も参 を求め	照しないで導関数 られる	公式を見ながら導関数を 求められる	教科書を見ながら導 を求められる			を見なが <i>い</i> 求められな		
参照せ	意味を理解し, 何も ずに関数の増減表 フの概形がかける	何も参照せずに関数の増 減表とグラフの概形がか ける	教科書を見ながら関 増減表とグラフの概 かける	形が	教科書を見ながらでも			
も参照	の意味を理解し, 何 せずに関数の極値 ・最小値を求めら	何も参照せずに関数の極 値や最大・最小値を求め られる	教科書を見ながら関 極値や最大・最小値 められる	[を求	数の極値	を見ながい 値は最大 られない		
4 何も参 計算が	照しないで積分の できる	公式を見ながら積分の計 算ができる	教科書を見ながら積 計算ができる			を見なが <i>い</i> 算ができな		
に、図用	公式を導くととも 彡の面崎や立体の体 めることができる	公式を見ながら図形の面 積や立体の体積を求める ことができる	教科書を見ながら図 面積や立体の体積を ることができる	求め	形の面積	を見ながり 漬や立体の ことができ	の体積を	

科目名		IVIA = 1	.度 ものつくり工学科 担当教員		学年	単位	開講時数	種別
基礎英語演習 II		小林慧(小林慧 (非常勤)・福田浩之 (非常勤)				前期	選択
(Practice of Basic	English II)	3 11721 () (14 2 2 4)	2	1	2時間	, , , ,
授業の概要	演習問題形式の を行う。	の教材を用	引いて、主に第1学年	の英語の復習と第2章	学年で学	学習する	英文法の	基礎固め
授業の形態	演習							
授業の進め方	の基本を身につ	つける。	と文法項目を学習する 自習の習慣を身に着け	。解説と練習問題の [、] ける。	セットを	を繰り返	しながら	、英文法
到達目標	1. 文法の基本	を系統的	に復習し、英語の基礎	楚力・標準レベルを身	rにつけ	ることが	ができる。	
実務経験と授業内 容との関連	なし							
学校教育目標との 関係				術者として、協働して よ、適切に表現する能				だり国際
	•		講義の内容	容				
項目		目標						時間
Lesson 1 · 2		語順・問	計制を理解できる。					2
Lesson $3 \cdot 4$		完了形を	:理解できる。					2
Lesson 5		助動詞を	:理解できる。					2
Lesson 6		受動態を理解できる。						
Lesson 7		受動態を	:理解できる。					2
Lesson 8		不定詞を	:理解できる。					2
復習・テスト		前半の授	シ 業内容を復習し、理	!解できる。				2
Lesson 9		不定詞を	:理解できる。					2
Lesson 10		不定詞と	: 動名詞を理解できる	0				2
Lesson 11		分詞を理解できる。						2
Lesson 12		1	分詞を理解できる。					
Lesson 13		関係詞を	:理解できる。					2
Lesson 14		関係詞を	:理解できる。					2
Lesson 15		比較を理	涅解できる。					2
復習・テスト		後半の授	発業内容を復習し、理	!解できる。				2
								計 30
学業成績の評価方 法	テスト、小テス	スト、提出	出物、参加状況などだ	いら総合的に評価する	0			
関連科目								
教科書・副読本	教科書: 「英文 の他: 適宜プリ		•	15 レッスン」いいずた	な書店編	幕集部 ()	いいずな書	書店), そ
			<u>評価 (ルーブリ</u>	「ック)				
到達目標 理想的な	 :到達レベルの目安 (優	ē) 標準i	 内な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)
1 英文法の	の基礎・標準レベ に習得できる。	ル英文	法の基礎・標準レベ 習得おおむね習得で	英文法の基礎・標準1	ノベル	英文法の	の基礎・標できない。	` ′

科目名		担当教員	学年	単位	開講時数	種別			
国語 III (Japanese III)		宮田航平 (常勤)・大谷哲 (非常勤/実務)	3	2	通年 2 時間	必修			
授業の概要	様々なジャン り方を理解し!	ノルの優れた文章・文学作品・伝統芸能などの読解や 思考する姿勢を養う。また、言語文化・日本文化に	・鑑賞を 対する	通して関心・理	、人間の/ 関解を深め	心情やあ る。			
授業の形態	講義								
授業の進め方	を進める。各勢	オを中心にその周辺の様々な作品や事象も採り上げ、 対育コースの特色に配慮する。 テい自学自習の習慣を身に着ける。	視聴覚	教材な	ども活用し	して授業			
到達目標	2. 登場人物の 3. 論理構成や つことができる	上会生活に必要な言語事項が理解できる。 登場人物の心情や場面の状況、語りのあり方を理解して、小説を読み味わうことができる。 命理構成や語句の意味を理解して評論の論旨を把握するとともに論旨に対する自分の考えを とができる。 合理構成を意識しながら800字程度の文章を書くことができる。							
実務経験と授業内 容との関連	なし	なし							
学校教育目標との 関係		ーション力) 総合的実践的技術者として、協働して とりするために、論理的に考え、適切に表現する能			取り組んす	ぎり国際			
		講義の内容							
項目		目標				時間			
評論の読解 1		身体論(「ぬくみ」「身体〈の〉疎外」など)を読解解を深める。	し、「身	体」に	対する理	8			
伝統文芸・芸能の	鑑賞	狂言・歌舞伎などを鑑賞し、伝統芸能に対する関心・理解を深める。							
表現 1		作品鑑賞を通して人間の生き方や情感などを考察し、感想文を書く。							
小説の読解と鑑賞	1	小説(「こころ」「檸檬」など)を読み味わい、人間のあり方に対する思考 を深める。							
表現2		小説を読んで考えたことを文章にまとめる。							
小説の読解と鑑賞	2	小説(「舞姫」「美神」など)を読み味わい、人間の深める。	あり方	に対す	る思考を	10			
表現3		小説を読んで考えたことを文章にまとめる。				2			
韻律のある文芸の	鑑賞	詩・歌・歌謡・俳句など韻律のある文芸の読解・鑑 の多様なありように触れ、理解を深める。	営を通	して、	文学表現	8			
評論の読解 2		文化論(「陰翳礼賛」「無常といふこと」など)を認る理解と考察を深める。	読解し、	「文化	」に対す	8			
表現4		筆者の見解に対する自分の意見をまとめ発信する。				2 計 60			
学業成績の評価方 法	前期・後期を比率で評価し	r 考査の得点、小テスト・課題、授業への取組状況を て算出する。状況により再試験を行うこともある。	とそれそ	*h 60 9	%、30%、				
関連科目									
教科書・副読本	便覧」大修館総	学校現代文B 改訂版(検定教科書)」(三省堂), 編集部 (大修館書店), 補助教材: 「ポイント整理 ブ 書編集部 (明治書院)	参考書: ラッシ、	「ビジ ュアップ	ュアルカ [、] プ常用漢字	ラー国語 三訂版」			

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	社会生活に必要な漢字の 読み書きや語句の意味な どが9割程度理解できる。	社会生活に必要な漢字の 読み書きや語句の意味な どが8割程度理解できる。	社会生活に必要な漢字の 読み書きや語句の意味な どが6割程度理解できる。	社会生活に必要な漢字の 読み書きや語句の意味な どが5割程度しか理解で きない。
2	小説の語りのあり方を理解し、場面や登場人物の心情の変化に注意しながら読むことができる。	小説の語りのあり方を理解し、場面の状況や登場 人物の心情に着目しなが ら読むことができる。	小説の語り手を意識して、 場面や登場人物に関心を もって読むことができる。	小説の語り、場面や登場人 物について理解できない。
3	評論文に書かれた内容を、 文章の構成や語句の意味 に注意しながら読み解き、 論旨を的確に把握できる。	評論文に書かれた内容を、 文章の構成に着目しなが ら論旨を把握することが できる。	評論文に書かれた内容に 関心をもって読み、論旨 を把握することができる。	評論の論旨を把握することができない。
4	課題について、指定され た文字数で、論理構成を 工夫して文章を書くこと ができる。	課題について、指定された文字数で、論理構成に注意して文章を書くことができる。	課題について、指定された文字数で、論理構成に 関心をもって文章を書く ことができる。	課題について、指定された文字数で、論理構成を 意識して文章を書くこと ができない。

科目名			担当教員		学年	単位	開講時数	種別
公民 II (Civics II	I)		広瀬義朗 (常勤)		3	2	通年 2 時間	必修
授業の概	要	政治・経済のしくみを理解し、社会のあり方を学ぶ。新聞やニュースに出てくる経済社会の その要因を理解できることを目指す。						
授業の形	態	講義						
授業の進	め方	政治・経済に関	舌形式による。またグループで 引わるテーマを選び、パワーポ で作業を行うことがある。 行い自学自習の習慣を身に着け	イントを用いて発表し	度グルー してもら	-プに分 らう。授	かれて各 [・] 業で図書f	チームで 館を利用
到達目標		1. 新聞・ニューロな視点で考察につけることが	ースの話題を自分なりに理解し 序できる。3.国家予算や貿易、 ができる。	、解説できる。2. 糸 、企業売上高など兆P	経済・政]・億円	対治・司 日レベル	法をマクロ の経済セン	コとミク ンスを身
実務経験の関	と授業内 連	なし						
学校教育! 関係	学校教育目標との C (人間性・社会性) 総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、 関係 豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。							
			講義の内容	F				
項目			目標					時間
ガイダン 現代の資 現代経済	本主義経		資本主義体制の成立と発展、 市場経済と国民所得、経済成	現代経済の特質を理解 長を理解する。	解する。			20
日本経済(福祉社会 日本社会	と日本経	産業構造の変化 済の課題	社会保障と福祉、中小企業の	オイル・ショック後の日本経済について理解する。 社会保障と福祉、中小企業の現状と課題について理解する。 世界最速の日本の超高齢社会について理解する。				
国際社会ビジネス	の諸課題 創造チャ ピーカー	レンジ による 3 つの	世界の人口・食料・エネルギ品川区主催のビジネス創造コ日本政策金融公庫・日本年金による講義、過去の講義例「t 金のはなし」「日本の財政の現	ー問題を考察する。 ンテストの作品を考算機構・財務省関東財務 ごジネスプランの考え	おりゅう かいりょう かいりょう かいりょう かいしょう かいしょう かいしょう かいしょう かいしょ おいし おいし おいし おいし おいし おいし かいし しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ	「財務事 『ってお	きたい年	20
								計 60
学業成績(法	の評価方	0%とする。排	至(ビジネス創造コンテスト企 受業への参加態度の悪い学生に 学生に対しては、単位を付与し	は、警告をした上で》	載点をで	する。居	・眠り等、暑	著しく授▮
関連科目								
教科書・	副読本	教科書: 「政治	お・経済(検定教科書)」 (東京	(書籍)				
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目5	岁(可)	未到達	レベルの目安	(不可)
1	り見たり	ニュースを読ん) した上で自分 月できる。	だ 新聞やニュースの経済関な 連の指標を理解できる。	経済関連のニュース 解できる。	を理	ニュー)	スを理解で	きない。

科目名		担当教員	学年	単位	開講時数	種別	
線形代数 II (Linear Algebra I	I)	執行洋子 (非常勤)・松本響 (非常勤/実務)・大田将 之 (非常勤)・臼井智 (非常勤)	3	2	通年 2 時間	必修	
授業の概要	2年次の「線刑 学ぶ.	/代数Ⅰ」で学んだことの続きとして,「行列」「行列]]式」「:	1 次変捷	換」「固有f	直」等を	
授業の形態講義							
授業の進め方	講義を中心と 予習,復習を行	を中心とするが、理解を深めるための問題演習も行う. 7、復習を行い自学自習の習慣を身に着ける.					
到達目標	1. 行列式の概念を理解する 2. 行列式の性質,展開などを理解し,行列式の計算ができる 3. 行列式の連立一次方程式や図形への応用が理解できる 4. 線形変換の概念を理解し,その計算ができる 5. 固有値・固有ベクトルを利用し,行列の対角化ができる						
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				りな技術	
		講義の内容					
項目		目標				時間	
行列の階数と連立	一次方程式	基本変形を利用して、行列の階数を求めることがで	できる。			2	
ベクトルの線形独立と線形従属		ベクトルの線形独立と線形従属の概念を理解し、与 が線形独立か線形従属かを判定することができる。	えらえ	たべク	トルの組	3	
行列式の性質		行列式の性質を理解し、その計算ができる.				3	
行列式の定義		行列式の概念を理解する.				3	
行列式の展開		n 次の行列式を (n-1) 次の行列式を用いて表すこと	ができ	る.		3	
行列の積の行列式		正方行列の積の行列式を計算することができる。					
正則な行列の行列	式	行列が正則であるための条件を理解する.					
連立一次方程式と	行列式	連立一次方程式とクラメルの公式について理解する	3.			6	
行列式の図形的意	味	平行四辺形の面積や線形独立であるための条件を理	里解する			4	
線形変換の定義		線形変換の概念を理解する.				2	
線形変換の性質		線形変換の基本性質を理解する.				2	
合成変換と逆変換		合成変換と線形変換の逆変換について理解する.				4	
回転を表す線形変	换	平面上の点の回転移動について理解する.				2	
直交変換		直交行列によって表される線形変換を理解する.				4	
固有値と固有ベク	トル	固有値・固有ベクトルの概念を理解し、求めること	とができ	る.		6	
行列の対角化		行列の対角化について理解する.				4	
対称行列の対角化 対称行列を直交行列によって対角化することができる.				4			
対角化の応用		対角化の応用として2次形式の標準形や行列のべき	乗の計	算を理	解する.	2	
						計 60	
学業成績の評価方 法	4回の定期試験 とする.	倹の得点と課題等の提出状況から評価する.なお,気	定期試験	を課題	等の比率	を4:1	
関連科目							
教科書・副読本	教科書:「新 他(大日本図書	線形代数」高遠・斉藤他 (大日本図書), 副読本: 「	新 線形	代数	問題集」	高遠節夫	

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	行列式の符号に基づき, 行列式の定義を理解することができる.	行列式の符号について理解することできる.	2次, 3次の行列式を計算により求めることができる.	2次、3次の行列式を計算により求めることができない.				
2	4次以上の行列式を求める ことができる.	やや複雑なな三次行列式 をサラスの法則を用いず 求めることができる.	簡単な三次行列式をサラスの法則を用いず求めることができる.	簡単な三次行列式をサラスの法則を用いず求めることができない.				
3	行列式のもつ幾何的意味 や,外積の幾何的意味を 理解できる.	クラメルの公式や,外積を 理解し,問題を解くことが 出来る.	クラメルの公式を用いて 連立方程式を解くことが できる.	クラメルの公式を用いて 連立方程式を解くことが できない.				
4	回転行列により変換, 直交 変換を理解し, 問題を解く ことができる.	線形変換による像を理解 し,表現行列を求めるこ とができる.	線形変換の基本的意味を 理解できる.	線形変換の基本的意味を 理解できない.				
5	三次行列の固有値・固有べ クトルを求め, 行列を対角 化できる.	二次行列の固有値・固有べ クトルを求め, 行列を対角 化できる.	二次行列の固有値,固有ベクトルを求めることができる.	二次行列の固有値,固有ベクトルを求めることができない.				

科目名		担当教員	学年	単位	開講時数	種別		
解析学基礎 (Basic Analysis)		山岸弘幸 (常勤)・中西泰雄 (常勤)・八木史江 (非常勤)・松本響 (非常勤/実務)	3	4	通年 4 時間	必修		
授業の概要	媒介変数表示さ できる対象が ^立 応用が可能と力	された曲線の微分積分、関数の展開や2変数関数の微平面から空間へ(2次元から3次元へ)と広がり、遅なる。	対積分を	を学ぶ学に対	。これに。 するより	より解析 実践的な		
授業の形態	講義							
授業の進め方		&を中心とするが、理解を深めるための問題演習を行う。 習、復習を行い自学自習の習慣を身に着ける。						
到達目標	1. 媒介変数表示された曲線の長さや曲線で囲まれた図形の面積を求めることができる。 2. 多項式による近似の概念を理解し、関数の展開ができる。 3. 偏微分の概念を理解し、偏微分の計算ができる。 4. 偏微分を利用して、2変数関数の極値を求めることができる。 5. 重積分の概念を理解し、重積分の計算ができる。 6. 重積分を利用して、立体の体積を求めることができる。							
実務経験と授業内容との関連	なし							
学校教育目標との 関係	\	合的実践的技術者として、数学・自然科学・自らの 倫に関する知識をもち、工学的諸問題にそれらを応				りな技術		
		講義の内容						
項目		目標				時間		
曲線の媒介変数表		媒介変数表示された曲線の概形を描くことができる				4		
媒介変数表示と微		媒介変数表示された曲線の速度ベクトルや接線が表		る。		4		
媒介変数表示と積		曲線の長さや、図形の面積を求めることができる。				4		
極座標と極方程式		極方程式で与えられた曲線の概形を描くことができる。				4		
極方程式と積分法		極方程式で与えられた曲線の長さや、図形の面積な				4		
数值積分		台形公式を用いて、定積分の近似値を求めることだ		-		4		
広義積分		広義積分の収束判定ができ、その値を求めることだ		0		4		
高次導関数		与えれた関数の高次導関数を求めることができる。				4		
べき級数		· ·	D概念を理解し、その収束半径を求めることができる。					
テイラーの定理と		級数展開の概念を理解し、基本的な関数の展開ができる。						
マクローリン多項	式と関数の近似					4		
2変数関数		2変数関数とそのグラフの概念が理解できる。						
2変数関数の極限	:値	与えられた2変数関数の極限値を求られ、連続性な				4		
偏導関数		偏微分係数、偏導関数の概念を理解し、偏導関数な				4		
前期のまとめ	Later	前期の学習内容を組合せて、総合的に問題を解くこ	ことがで	きる。		4		
合成関数の偏導関	数	合成関数の偏導関数を求めることができる。				4		
接平面		与えられた2変数関数のグラフの接平面の方程式が		れる。		4		
全微分と近似		全微分の概念を理解し、全微分を求めることができ		~		4		
2変数関数の極値		極値の概念を理解し、その極値を与える候補点が浸します。		る。		4		
極値の判定					4			
陰関数の微分法		陰関数の概念を理解し、その導関数が求められる。		7		4		
条件付き極値		ラグランジュの乗数法を用いて、条件付き極値問題				4		
2 重積分の定義 2 重積分の概念を理解し、累次積分の値を求めることができる。				4				
2 重積分の計算 積分順序の変更によって、2 重積分が求められる。			マモッ		8			
変数変換 極座標による2重						4		
						4		
立体の体積 広義積分					4			
仏我傾分 後期のまとめ		2里頃牙の概念を活用して1変数関数の定債牙が高 1年間の学習内容を振り返り、総合的に問題を解。				4		
文物がより		1十回ツナロバ1台で減り必り、脳口間に回恩で胜、	, C C 113	799	' 0	4		

学業成績 法	責の評価方	4回の定期試験の 不良者には再試験	得点(80%)と課題や小 を実施する場合がある。	テスト等の状況(20%)	から評価する。なお、成績
関連科目	1				
教科書	・副読本		・積分Ⅰ 問題集」高遠節夫 数分積分Ⅱ問題集」高遠・斉	F藤他 (大日本図書)・「新訂	
			評価 (ルーブリ	ック)	
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	変数表示 変数表示 形を正确 積分法で	を利用して、媒介 示された曲線の概 室に描くとともに、 を利用して、その 面積を求めること る。	とができ、その長さや面	曲線の長さや曲線で囲まれた図形の面積を求めるために積分法を利用することができる。	媒介変数表示された曲線 の概形をイメージできない。
2	リン展開 な関数の	な関数のマクロー 相を組合せて、複雑 のマクローリン展 りることができる。	基本的な関数のマクローリン展開を利用して、指定された値の近似値を求めることができる。	基本的な関数のマクロー リン展開を求めることが できる。	級数展開の概念が理解で きない。
3	て構成る	関数の合成によっ された関数の偏導 圧確に求めること る。	基本的な関数の偏導関数 や偏微分係数を正確に求 めることができる。	偏導関数や偏微分係数の 概念を説明することがで きる。	偏導関数や偏微分係数の 概念が理解できない。
4	て構成る	関数の合成によっ された関数の極値 付き極値を正確に ことができる。	初等的な2変数関数の極 値を求めることができる。	与えられた2変数関数の 極値を求める手順を説明 することができる。	2変数関数の極値の概念 が理解できない。
5	分順序の を適切り	れた式に応じて、積 の変更や変数変換 に活用し、複雑な 重積分を計算する できる。	計算することができ、変	重積分の幾何学的な意味を説明することができる。	重積分の意味が理解できない。
6	立体を加 立式し	えた曲面の式から 想像し、重積分を て立体の体積を求 こができる。	図示された立体の体積を、 重積分を利用して求める ことができる。	立体の体積を計算するために、どのように重積分を利用するかを説明する ことができる。	立体の体積と、重積分の関 係が理解できない。

科目名		担当教員	学年	単位	開講時数	種別
物理 III (Physics III)		深野あづさ (常勤)	3	1	前期 2 時間	必修
機械システム工学 ステム工学コース	コース・生産シ					
授業の概要	専門科目を学えを通して、物理	ぶ際に必須となる基礎事項を学ぶ。日常生活で経験で 里的思考力の養成をはかる。	する自然	、現象の	原理・法具	則の学習
授業の形態	· 態 講義					
授業の進め方	講義を中心とし 予習、復習を行	_ て、理解を深めるための問題演習を行う。 行い自学自習の習慣を身に着ける。				
到達目標	2. 静電界、コ	るいろいろな物理現象について、それらの関係も含 ンデンサーについて、それらの関係も含め理解し、 電流と磁界について、それらの関係も含め理解し、	計算で	きる。	算できる。	
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				りな技術
		講義の内容				
項目		目標				時間
ガイダンス		科目の概要と授業の進め方などを説明する。				2
うなり		うなりの現象とその性質について理解する。				2
発音体の固有振動	1	弦や気柱の固有振動と共鳴について理解する。				2
ドップラー効果		ドップラー効果について理解する。				2
静電気力		クーロンの法則について理解する。				2
電界		電界の性質とガウスの定理について理解する。				2
電位		電位の性質を理解する。				2
コンデンサー		コンデンサーの性質について理解する。				4
直流回路の計算		キルヒホッフの法則について理解する。				2
電磁気に関する実	験または演習	 電磁気に関する実験または演習により確認を行う。				2
磁界の基本		磁界の基本的性質について理解する。				2
電流による磁界		電流がつくる磁界について理解する。				2
電流が磁界から受	ける力	電流が磁界から受ける力について理解する。				$\overline{2}$
電磁誘導	.,, .,,	電磁誘導の法則について理解する。				$\frac{1}{2}$
2.2.00						計 30
学業成績の評価方 法	2回の定期試験 する。状況に。	」 鈴の得点を 80 %、演習課題および授業への取組み状 より再試験を行うことがある。	況を 20) % とし	て、総合	
関連科目						
教科書・副読本	教科書:「高専 秀穂、工藤 原 北出版)	序の物理問題集 第3版」田中 冨士男編著、大多喜 康紀 著 _{(森} 北出版 _{)・} 「高専の物理 第5版」和達	喜 重明 三樹盟	月、岡田 佐修、月	克彦、〕 暮 陽三	大古殿編集 (森

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	うなり、発音体の固有振動、共鳴と共振、ドップラー効果について応用問題を解く事ができる。	動、共鳴と共振に加えて、	うなり、発音体の固有振動、共鳴と共振の意味を 理解し、それらについて の基礎問題を解くことが できる。	うなり、発音体の固有振動、共鳴と共振の意味は 理解できるが、簡単な計算ができない。			
2	静電気力、電界、電位の性質、コンデンサーの性質 ついて応用問題を解くことができる。	質に加えて、コンデンサー	静電気力、電界、電位の 基本性質について理解し、 それらの基礎問題を解く ことができる。	静電気力、電界、電位の基 本性質についての意味は 理解できるが、簡単な計 算ができない。			
3	電圧と電流、直流回路、電 流のする仕事、電流による 磁界、電流が磁界から受け る力、磁性体の性質に関す る応用問題を解くことが できる。	流による磁界、電流が磁界	電圧と電流、直流回路、電流による磁界、電流が磁界、電流が磁界が高受ける力の意味を理解し、それらの基礎問題を解く事ができる。	電圧と電流、直流回路、電流による磁界、電流が磁界、電流が磁界がら受ける力の意味は理解できるが、基本的な計算を行うことができない。			

科目名			担	3当教員		学年	単位	開講時数	種別
物理 III (Physics I 電気電子エ 学コース	,	ス・電子情報工	杉田和優 (非常勤)			3	1	前期 2 時間	必修
授業の概要		専門科目を学ぶ際に必須となる基礎事項を学ぶ。日常生活で経験する自然現象の原理・法則 を通して、物理的思考力の養成をはかる。							則の学習
授業の形態	צממ	講義							
授業の進め	護め方 講義を中心として、理解を深めるための問題演習を行う。 予習、復習を行い自学自習の習慣を身に着ける。								
到達目標		1. 音波に関す 2. 光波の基本 算できる。	いろいろな物理現象に 性質、光波に関するい。	こついて、 ろいろな ^り	それらの関係も含 物理現象について、	め理解 それら	し、計らの関係	算できる。 も含め理解	解し、計
実務経験と容との関連		なし							
学校教育目 関係	標との		合的実践的技術者とし に関する知識をもち、						的な技術
			講	養の内容					
項目			目標						時間
ガイダンフ	ζ		科目の概要と授業の進	め方など	を説明する。				2
うなり			うなりの現象とその性	質につい	て理解する。				2
発音体の固	固有振動		弦や気柱の固有振動と	共鳴につ	いて理解する。				2
ドップラー	-効果		ドップラー効果につい	て理解す	る。				2
光の基本性	生質		光の基本性質について	理解する	0				2
光の反射と	上屈折		光の反射と屈折につい	て理解す	る。				2
光の回折と	上干涉①		光路長、光の反射によ	る位相の	変化について理解で	する。			2
光の回折と	上干涉②		ヤングの実験、回折格	子につい	て理解する。				4
光の回折と	上干涉③		薄膜による光の干渉、	ニュート	ンリングについて	里解する	る。		4
光の偏光と	と分散		偏光と光の分散につい	て理解す	る。				2
波に関する	る実験ま	たは演習	波に関する実験または	演習を行	う。				2
光学機器①	D		平面鏡とレンズについ	て理解す	·る。				2
光学機器②	2		レンズの応用について	理解する	0				2
									計 30
学業成績の 法)評価方		での得点を 80 %、演習 より再試験を行うことが		び授業への取組み状	況を 2	0%とし	て、総合	
関連科目		物理 II・物理学	と演習・物理学実験						
教科書・副	削読本		の物理 第 5 版」和達 中 富士男編著、大多	多喜 重明]、岡田 克彦、大				
				_ノ ーブリッ	(ク)				
到達目標	理想的な3	到達レベルの目安 (優	標準的な到達レベルの目	安 (良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)
	動、共順 ラー効果	発音体の固有 もと共振、ドッ もについて応用 事ができる。	プ 動、共鳴と共振にカ	们えて、 意味を 耳	うなり、発音体の を は は は は は は は は は は は は は	は味を いて	動、共同	、発音体の 鳴と共振の きるが、 きない。	の意味は
	光波の性質、ヤングの実 験、回折格子、薄膜による 光の干渉、ニュートンリン グ、光学機器について応用 問題を解く事ができる。					できるが、	こついて 簡単な		

科目名		担当教員	学年	単位	開講時数	種別	
保健体育 III (Health & Physi III)	cal Education	小川広 (常勤)・村中宏行 (非常勤)	3	2	通年 2時間	必修	
授業の概要	健康な生活の基応じた主体的	康な生活の基礎となる体力の向上を目指すとともに、授業を通して運動の楽しさを体験し じた主体的学習をする。					
授業の形態	実験・実習						
授業の進め方	なる。	基礎的体力を高めるとともに、各種目の基本技術を与 行い自学自習の習慣を身に着ける。	学びなか	ぶらゲー	ムができ	るように	
到達目標	2. 自己のとる 3. ラグビー・	業へ取組むことができる。 べき行動を判断し、仲間と協力・協調する態度を身 柔道・水泳の基本技術を身につけ、体力を高めるこ ナーを守りながら、自ら安全に留意して行動できる	とがで	ることだきる。	ができる。		
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		ーション力) 総合的実践的技術者として、協働して とりするために、論理的に考え、適切に表現する能				だり国際	
		講義の内容					
項目		目標				時間	
ガイダンス 体つくり運動		学習の進め方、評価の仕方が理解できる 体つくり運動の理論と実技を学習する				2	
ラグビー		概要(歴史・施設と用具) パス、キック、キャッチ ラインアウト、スローイン スクラム、ラック・モールプレー タックル、セイビング アタック、ディフェンス(4 対 4) フォーメイション ルールと簡易ゲーム 技能テスト				18	
水泳Ⅲ		ガイダンス、水慣れ クロール、平泳ぎ、背泳ぎ、バタフライ、水球 泳力テスト				10	
体力テスト		新体力テストを実施し、各自の体力が把握できる				計 30	
体力サスト 柔道 II		基本動作の復習 柔道の国際性 技の応用変化と歩合の向上(投げ技と連絡変化) 対人技能①固め技 (絞め技) ②抑え技と絞め技の連絡変化 ③乱取り 公式試合の運営と審判規定の研究 試合と運営 技能テスト				6 24	
						計 30	
						計 60	
学業成績の評価方 法		且み約 50 %、②学習意欲と学習態度(服装・準備・ ポート等を約 20 %とする。	後片付	け等)	的 30 %、(③技能テ	
関連科目	保健体育 I・係	R健体育 Ⅱ					
教科書・副読本		高等保健体育(検定教科書)」和唐正勝ほか (大修館 ソ 2018」髙橋健夫ほか (大修館書店)	馆書店),	副読本	ぶ : 「ステ	ップアッ	

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	全ての授業で主体的に取 組んでいる。	主体的に授業へ取組んでいる。	基準以内であるが、授業へ の取組みが良くない。	基準を超えており、授業へ の取組みが悪い。				
2	自己のとるべき行動を判 断し、仲間と協力・協調す ることができる。	仲間と協力・協調する態 度を身につけることがで きる。	教員の指示に従って、仲間 と協力・協調する態度を身 につけることができる。	仲間と協力・協調する態 度を身につけることがで きない。				
3	基本技術を発展させた技 能を身につけ、日常生活 に応用して体力を高める ことができる。	け、体力を高めることが	教員の指示に従って、運動 の基本技術を身につけ、体 力を高めることができる。	運動の基本技術を身に付けることができず、体力を高めることができない。				
4	ルールやマナーを守りな がら、自己及び仲間の安 全に留意して行動するこ とができる。		教員の指示に従って、ルールやマナーを守りながら、 安全に留意して行動することができる。	ルールやマナーを守るこ とができず、安全に留意 して行動することができ ない。				

科目名		担当教員	学年	単位	開講時数	種別
英語 III (English III)		岡島由以子 (常勤)・福永堅吾 (常勤)・長岡成幸 (非 常勤)・グリフィスイアン (非常勤)・エバンスガリー (非常勤)・ショーンポール オコネル (非常勤)		4	通年 4 時間	必修
授業の概要		国際的な話題など、様々なテーマを扱った基礎的な 5運用能力を総合的に伸ばす。また、英語におけるI けける。				
授業の形態	講義					
授業の進め方	分においては、 時に、自分の表 する。ネイティ	教員担当の時間、1時間はネイティブ教員担当の時で 文部科学省検定教科書を用いて、話の主旨、書き 考えを英語で表現する活動を行う。また、TOEIC ル アブ教員担当の部分においては、実践的なコミュニ 行い自学自習の習慣を身に着ける。	上話の手	手の意	向を理解で	すると 同
到達目標	2. 英文の主旨:	構文・語彙を用いた英文の主旨を理解し、意味を把 を理解し、自分の考えを表現することができる。 常英会話を理解し、英語でコミュニケーションがで		ことが	できる。	
実務経験と授業内容との関連	なし					
学校教育目標との 関係		ーション力) 総合的実践的技術者として、協働して とりするために、論理的に考え、適切に表現する能			取り組んが	ぎり国際
		講義の内容				
項目		目標				時間
New Discovery II the Right Brain / trial Revolution in	L8 An Indus-	①「脳の手術」「ドローン」の内容を理解できる。 ②関係代名詞の非制限用法・関係副詞の非制限用 that・未来進行形・未来完了形・倒置を理解する。			・同格の	20
ネイティブ教員に ケーション活動 1	よるコミュニ	③リスニングとスピーキングの技能をバランスより的なコミュニケーションを行うことができる。	く学び、	英語に	よる基本	7
New Discovery II Laughter / L10 L crobes		①「笑いと健康」「微生物と生活」の内容を理解で ②複合関係代名詞・as if ~・仮定法過去完了・S+ (分祠)・付帯状況の with・副詞節中の S+V の省間 否定の分祠構文を理解することができる。	+V (be	e 動詞以 ・形の分	√外)+C ∵詞構文・	25
ネイティブ教員に ケーション活動 2	よるコミュニ	③リスニングとスピーキングの技能をバランスよ ミュニケーションを積極的に行うことができる。	く学び	、英語	によるコ	8
実用英語演習問題 rant / U2 Depart U3 Train Station	1 U1 Restautment Store /	①「レストラン」「デパート」「駅」に関する問題 ②動詞の時制、自動詞と他動詞、主語と動詞の一致 ことができる。	に対処で 枚を理解	できる。 して問	題を解く	20
	よるコミュニ	③リスニングとスピーキングの技能をバランス良に関してコミュニケーションを取ることができる。		やや複	雑な内容	7
実用英語演習問題 portation / U5 U6 Bank / U7 A	Post Office /	①「交通機関」「郵便局」「銀行」「空港」に関する ②不定詞、副詞、分詞を理解して問題を解くこと:	問題にができる	対処で	きる。	25
ネイティブ教員に ケーション活動 4	よるコミュニ	③リスニングとスピーキングの技能をバランス良のしてコミュニケーションを取ることができる。	く学び、	高度な	内容に関	8 計 120
学業成績の評価方 法	定期試験 70 % や発表 20 %と	、平常点(小テスト、課題)10 %、ネイティブ教り して、総合的に評価する。状況によっては再試験を	員による を行うこ	コミュとがあ	ニケーシ る。	
関連科目	英語 I・英語 I					
教科書・副読本	ING FOR TH	Discovery English Communication II」生井健一 (ETOEIC L & RTEST」石井隆之ほか (成美堂), 対対: 「Word Navi 英単語・熟語 3000	参考書	: 「See	ed 総合英	語(四訂

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	英文を読んでいく中で、基本文法・構文を理解し、分からない語彙を自ら調べ、内容を理解するとともし、理解した内容を要約し、発表することができる。	英文を読んでいく中で基本文法・構文を理解し、分からない語彙は自らで調べ、内容を理解することができる。	英文を読んでいく中で理解できない基本文法・構文もあるが、分からない語彙は自ら調べ、イラストや写真を参考にしながら、内容を理解することができる。	を読むことができず、辞書 を使ったり、イラストや写				
2	関心のある分野の話題について、つながりのある文章で具体的に説明し、自分の意見を加えて書くことができる。	身近な事柄について、簡単な語句や文を用いて、説明文を書くことができる。	例文を参考にしながら、慣れ親しんだ語句や文を書 くことができる。	例文を参考にしても、慣れ親しんだ語句や文を書 くことができない。				
3	日常生活に関する身近な 話題や知識のある話題に ついて、基本的な表現を 用いて情報や意見交換し ながらコミュニケーショ ンができる。	個人的な関心事について、 基本的な英語表現を用い てコミュニケーションが できる。	ごく身近な話題であれば、 単語を用いて英語でコミ ュニケーションができる。	自分に関するごく限られた情報においても、英語でコミュニケーションをとることができない。				

			令和2年度 ものづくり工学科					
科目名			担当教員		学年	単位	開講時数	種別
国際社会 (Globaliz	と文化 I zation and	d Culture I)	阿部毅之 (非常勤)		3	2	通年 2 時間	選択
授業の概	要	国際社会と文化我が国の文化を	との関わりについて理解する。 と理解する。	国際社会に生きる私	たちを	知る。	国際社会	を通じて
授業の形	態	講義	<u> </u>					
授業の進	め方	チームを編成し	くる。前期は講義中心となるが し、年に2回チームごとに発表 別は、アクティブラーニング中 行い自学自習の習慣を身に着け	を義務づける。パワー	-ポイン	/トでチ	ームごとり	る。また こ発表し
到達目標		1. 国際社会と あることを認詞	異文化を相互理解できる。2. 銭できる。	多民族・多文化を享	受できる	5° 3.	国際社会の	の一員で
実務経験容との関		なし						
学校教育 関係	目標との		会性) 総合的実践的技術者とし っち、技術者として社会との関				こ貢献する	ために、
		•	講義の内容	\$				
項目			目標					時間
ガイダン	ス		講義内容の説明と授業の進め	方について				2
地理情報	と地図		日本の自然の特徴と人々の生	活				2
自然環境	:		日本の自然環境の特色 (1)					4
			日本の自然環境の特色(2)					4
自然災害			自然災害の事例					2
日本の自	然災害		日本の自然災害への取り組み					2
生活圏			生活圏の諸課題					2
資源と産	業		資源・エネルギー問題					4
人口、村	落、都市		村落と都市 都市・住居問題					4
生活文化	、民族・	宗教	民族と宗教 民族・領土問題					8
現代世界	の地域区	分	アジア(東・東南・南・西・ ヨーロッパ	中央)				12
現代世界	の諸地域		アングロアメリカとラテンア オセアニア	メリカ				10
現代世界	と日本		日本の産業と諸課題					4 計 60
学業成績 法	の評価方	授業へ取り組む には、単位をイ	つ姿勢、発表、レポート提出等 付与しない。	を総合的に判断する。	なお、	発表を	行わなか・	
関連科目								
教科書・	副読本		地理 A(検定教科書)」山本正前,補助教材:「図説地理資料					
		,	<u>評</u> 価 (ルーブリ					,
到達目標	理想的な	 到達レベルの目安 (優	(良) 標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)
1	日本の対行事など発信でき	文化や慣習、年 ご国際社会の中	中 日本の自然、環境等々をで 理解し国際社会の位置を 把握できる。	都道府県と県庁所在 正確に把握している	地を		県及び県庁 できない。	广所在地

科目名			担当教員		学年	単位	開講時数	種別
国際社会 (Global	会と文化 II ization and	d Culture II)	鈴木修斗 (非常勤)・加藤晴美	(非常勤)	3	2	通年 2 時間	選択
授業の概	既要	地理歴史 I で気環境、景観の複	学習した内容を深め、世界や日 見点から学習する。	本各地の衣食住や言	語、宗都	教などの)生活文化	を地域、
授業の刑	形態	講義						
授業の過	進め方	講義を中心に5 予習,復習を行	7ークブックや地図などの資料 5い自学自習の習慣を身に着け	を用いた作業を適宜? る。	行う。			
到達目標	票	1. 世界諸地域の	の生活文化の多様性について地	域の特徴を踏まえて理	里解し、	説明す	ることが	できる。
実務経験 容との関	食と授業内 関連	なし						
学校教育 関係	交教育目標との C (人間性・社会性) 総合的実践的技術者として、産業界や地域社会、国際社会に貢献するた 豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。							
			講義の内容					
項目			目標					時間
1ガイク			学習の目標、授業内容、評価					2
/- 1/2 .	の伝播と地		農耕文化の伝播と農業地域の					4
3世界名	各地の生活	文化	世界各地の生活文化が自然環 てきたことを理解する。	竟や風習などと密接に	関わり	ながら	形成され	6
4 演習	と成果の確	認	これまで学んだことのまとめ					4
5生活	文化と宗教		世界各地の宗教の特徴や分布を概観するとともに、おもな地域の特徴を考察する。					
6人びる	との移動と	地域	移民により形成された地域と	地域文化について理解	異する。			6
7演習	と成果の確	認	これまでに学んだことのまと	めと確認を行う。				4
8復習			前期および夏休みの課題につ		-			2
9グロ-	-バル化と	地域の課題	グローバル化にともなって生じた地域の課題とその取り組みについて考える。					
10 集落	景観の特徴	t	集落の立地や形態と人びとの	生活について理解する	5.			6
11 演習	と成果の確	認	これまでに学んだことのまと	めと確認を行う。				4
	文化の地域		日本の食文化や言語の地域差					4
	認識と地域	Ì.	人びとの地域や場所に対する		って考察	客する。		6
14 まと	め		本授業全体の学習成果の確認	とまとめを行う。				4
N/ 11/ 15 /	 1	the Land of the		N. L. The Part Hart Safe)	/> /	Start I	<i>→</i>	計60
学業成績 法 	責の評価方	期末および復行 どからなる平常	習試験の得点80%、提出物(演習課題等)や授業へ	への参加	口姿勢(発言の内容	容等) な
関連科目	1							
教科書	・副読本		地理 A(検定教科書)」山本正前,補助教材:「図説地理資料					
			· 評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目野	マ(可)	未到達	レベルの目安	(不可)
1	1 農耕文化と移民による地 域文化、グローバル化に よる地域の課題等を理解 できる。 世界各地の生活文化をある程度理 はな化、グローバル化に よる地域の課題等を理解 できる。 日本の文化をある程度理 解できる。 解できる。						曜できな	

扒口々		〒412 年度 ものフくり工子科 		兴左	出任	88 =# n+ ¥L	新 則		
科目名		担当教員		学年。	単位	開講時数	種別		
物理学演習 (Exercises in Phy	rsics)	山内一郎 (常勤)		3	1	前期 2 時間	選択		
授業の概要	を行う。質点、	な基礎となる物理の学力を修 質点系の運動及び運動方程式 のに必要な計算力と応用力を	に関して応用的な計算	物理II 即題を	を発展 中心に	させた内容 演習を行	容の演習 う。専門		
授業の形態	講義								
授業の進め方	習問題解答を黒	じめに、重要事項の確認を講 表板で説明してもらうこともあ い自学自習の習慣を身に着け	る。	育習問題	を中心	に進めてい	いく。演		
到達目標	1. 物理量の概念	物理量の概念を明確に理解し、基礎的計算問題を解くことができる。							
実務経験と授業内 容との関連	なし								
学校教育目標との 関係									
		講義の内容							
項目		目標					時間		
ガイダンス		科目の概要と授業の進め方な。 確認をする。	どを説明する。物理で	学習し	た基礎	的事項の	2		
質点の力学		運動方程式の解法と色々な運	動の復習				4		
剛体の力学		剛体運動の特色、重心と慣性モーメントについて							
流体に働く力		流体運動の特色、浮力や圧力	などについて				2		
力学のまとめ		力学的エネルギー保存の法則について							
演習		力学の問題解法について					2		
波の基本性質		波動の性質と表し方について					2		
音波		波動としての音波の性質につ	いて				2		
光波		波動としての光について					2		
波動のまとめ		波動のエネルギーなどについ					2		
気体の分子運動		力学を利用した気体の性質理	解について				2		
熱力学の第一法則		熱エネルギー保存則について					2		
熱力学の第二法則	J	カルノーサイクルなどについ	7				2		
出来は体の気圧ナ		目録の組占な 00 0/ 細胞かり	が極楽なの時も知り	1147日チ	20.0/ 1	1 7 1/2	計30		
学業成績の評価方 法	価する。成績不	試験の得点を 80 %、課題およ 良者には追試験を行うことも	ある。						
関連科目	物理 III・物理 物理 I・応用物	学実験・物理学特論 I・物理学 理 II・応用物理特論	特論 II・物理 I・物理	<u> </u>	.業力学 	・応用物理	埋・応用		
教科書・副読本	教科書: 「高専 秀穂、工藤	の物理問題集 第3版」田中 褎紀 著 (森北出版),その他:	冨士男編著、大多喜 フリーテキスト	重明]、岡田	克彦、	大古殿		
	•	評価 (ルーブリ	ック)						
到達目標 理想的な	:到達レベルの目安 (優 ₎	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)		
の事項 題につ	発展問題などのいくつか の事項を組み合わせた問 題について、問題解法を 理解・説明できる。 物理量の概念を明確に理 解し、基礎的計算問題を 解し、基礎的計算問題を 解くことができる。 理解・説明できる。								

科目名				学年	単位	開講時数	種別	
物理学実験 (Experiments in	Physics)	山内一郎 (常勤)・杉田和優 (非常勤)	3	1	後期 2 時間	選択	
授業の概要	2 学年までに学 導き出す手法を	んだ物理法則を実験的に検証 : 学ぶ。実験結果の発表手法や	する。実験装置の操作 評価方法について学、	声方法や ぶ。	実験デ	ーターか	ら結論を	
授業の形態	講義							
授業の進め方	な実験レポート	は班ごとに実施する。各テー - 提出と実験結果の発表を行う 5い自学自習の習慣を身に着け	0	美で終]	了する。	実験終了	後、簡単	
到達目標	1. 実験装置を操作し、協力して実験データを取得できる。2. 実験データから結論を導き出せる。3. 実験結果発表、レポートの作成ができる。							
実務経験と授業内 容との関連	D関連							
学校教育目標との 関係								
		講義の内容						
項目		目標					時間	
授業ガイダンス		実験スケジュール、実験レポ 評価方法などの把握。班分け	ートの作成方法や実験 による実験班の決定。	食結果の	発表方	法などと	4	
第1回テーマの第		各班毎に指定された実験を行					4	
第1回テーマ結界		各班毎に実験結果発表と質疑を行う。						
第2回テーマの第		各班毎に指定された実験を行う						
第2回テーマ結界		各班毎に実験結果発表と質疑を行う。						
第3回テーマの第		各班毎に指定された実験を行う						
第3回テーマ結界		各班毎に実験結果発表と質疑を行う。						
第4回テーマの第		各班毎に指定された実験を行う						
第4回テーマ結果	具発表	各班毎に実験結果発表と質疑	を行う。				2	
授業総括		授業のまとめを行う。					2	
			t				計 30	
学業成績の評価方 法	する。)評価を40%、実験結果の発					20%と	
関連科目	物理 I・物理 II	・物理学演習・物理 III・物理	里学特論 I・物理学特語	侖 II・「	芯用物理	特論		
教科書・副読本	その他: 授業で	配布する実験テキストを使用	する。					
		評価 (ルーブリ	ック)					
	な到達レベルの目安 (優	. , ,	ぎりぎりの到達レベルの目望	` /		レベルの目安	` '	
て実験	行のリーダーと デー取得中にデ 価や結果のまと る	- して実験データを取得で 協力できる。 で実験内の役				内の役割分		
論を導	ータを整理し、 き出すグラフや できる。	結 実験データから結論を導 実験データから結論を導 実験データの引表 き出せる き出す手伝いができる。 理解できない。					里方法を	
でき、	果を要領よく発 論旨の明らかな を作成できる。	表 実験結果発表、レポートの 作成ができる。	ートの 実験結果発表に寄与でき 実験結果についるが、レポートの論旨が できず、レポー 明確でない。 戦のまま提出する					

科目名			担当教員		学年	単位	開講時数	種別	
化学特論 (Special	हे I Topics in	Chemistry I)	田村健治 (常勤)		3	1	前期 2時間	選択	
授業の概	双要	て教授内容を習 相律と相図、熱 義を展開する。	習した内容を再確認し、応用 得し、レポートの書き方を演 化学、定性分析、定量分析、 主に大学編入学を希望する学 た進学対策科目である。	[習する。物理化学・タ 機器分析、量子化学、	}析化学 錯イオ	岸・無機 トン、磁	化学領域 [、] 性などに、	を中心に ついて講	
授業の形	態	講義							
授業の進	態め方	した内容をレポ して化学英語に	こよって基礎知識の再確認を解説し、課題を演習する。これをもとに、各自でさらに深 内容をレポートにより報告する。また、教授内容に即した英文の専門書や学術論文など 化学英語についても学習する機会を与える。 復習を行い自学自習の習慣を身に着ける。						
到達目標	2. 報告書やレポートの書き方を正しく学び習得することが出来る。								
実務経験と授業内 なし									
学校教育 関係	目標との	\ /	合的実践的技術者として、数3 論に関する知識をもち、工学的	的諸問題にそれらを応り				的な技術	
			講義の内容						
項目	. •		目標					<u>時間</u> 2	
物理化学	レポート ዾ(熱化学)	報告書やレポートの書き方を習得すること 熱化学に関する基礎・基礎理論を学び、演習を行って理解を深めること						
	全(量子化		量子化学に関する基礎・基礎理論を学び、演習を行って理解を深めること						
	全(結晶と		無機物質の基礎を学び、習得すること						
	≠(分子軌 ≠(錯化合		分子軌道の基礎を学び、演習を行って理解を深めること 錯化合物の基礎を確認し、習得すること						
	之(竡化合 之(定量分		類化骨初の基礎を確認し、資 骨 すること 定量分析の基礎を学び、習得すること						
	さ(定量カ さ(定性分		定性分析の基礎を学び、習得					$\frac{2}{2}$	
	之 之 (機器分		機器分析の基礎を学び、習得					2	
75 1/10 3	(1)2(1)1/3	1/17	Man M M A M C C 1 O C C II	, , , ,				計 30	
法	の評価方	に関する課題レ	&化学、分析化学に関する調査 / ポート(それぞれ各20%)		子209	%) と物	理化学、		
関連科目		化学 I・化学 II							
教科書・	副読本		[*] ラス・マクダニエル無機化学 Barrow ら (東京化学同人)・	「薬学のための分析化学					
L			評価 (ルーブリ 	ック)					
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	マ (可)	未到達	レベルの目安	(不可)	
1	統的に について を確認し	て更に調査し、要 し、深く理解する	項 し、関連する部分を調査 点 することが出来る。	学習内容について理ることが出来ないか連する部分を調査す とが出来る。	、関	学習内質が出来で	容を理解すない。	すること	
2	とが出来る。 提出期限内に報告内容を 精査し、執筆体裁を整え、 自分の考えに基づいたレ ポートを作成することが 出来る。 提出期限を守ることは出 でレポートを作成することが とが出来る。 提出期限を守ることは出 来ないが、自分なりのレ ポートは作成することが 出来る。							すること	

科目名			12.11	12年度 ものうくりエ学科 担当教員		学年	単位	開講時数	種別	
化学特論]		Chemistry II)	田木	付健治 (常勤)		3	1	後期 2 時間	選択	
授業の概要		「化学II」で学 て教授内容とし 名法・分子構造	レポー 告・コ	した内容を再確認し、応用 ートの書き方を演習する。 立体化学・合成反応・高分 学対策科目である。	的な内容を講義すると 有機化学・高分子化等 子合成・高分子物性・	 ともん 学・生物 酵素化	 こ、レポ 	 ートの執筆	筆を通し こ国際命 講義を展	
授業の形態	Ĕ	講義								
授業の進め	か方	した内容をレポ して化学英語	ポー (技征	TI識の再確認を解説し、課 トにより報告する。また、 析英語)についても学習す 自学自習の習慣を身に着け	教授内容に即した英プ 「る機会を与える。	ともとり ての専門	こ、各自 引書や学	でさらに活	深く調査 ども使用	
到達目標				実施して関連分野の知識を トの書き方を正しく学び習			0			
実務経験と 容との関連	:授業内 重	なし								
学校教育目 関係	標との			実践的技術者として、数学 関する知識をもち、工学的	J諸問題にそれらを応				りな技術	
				講義の内容	\$					
項目			目標	-					時間	
ガイダンス		ada as I		養全般について、概説する					2	
報告書・し			17.7	告書やレポートの書き方を **/ドヘ サヤー ロ #スヤサギタ アヤテラス ト アヤタ					$\frac{2}{2}$	
物の分類)				有機化合物の基礎を確認し習得する						
有機化学		,	1	国際命名法の基礎を確認し、習得する						
有機化学			分子軌道に関する基礎を学び、有機化合物の構造を理解する						$\frac{4}{2}$	
有機化学	,	字)	1	立体化学の基礎を確認し、習得する						
有機化学	,,		学で	付加反応・求核置換反応・親電子置換反応・脱離反応などの基礎について 学び、理解を深める						
学(基礎)		および生物化		高分子化学および生物化学の基礎について学ぶ						
総括			講	養全般について、総括する					1 計 30	
学業成績の 法	D評価方	国際命名法、分に関する課題に	分子草レポ、	軌道と構造、有機反応に関 ート(10%)により評価	する調査レポート(2 fする。	それぞれ	1各30	%) と国	祭命名法	
関連科目		化学 I・化学 I	I							
教科書・副	副読本			ノ・ボイド 有機化学 上 ォート 基礎生化学」 (東		同人)・	「高分子	产科学の基	礎」 (東	
				評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	憂)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	岁(可)	未到達	レベルの目安	(不可)	
	統的にまについてを確認しを確認します。	、更に調査し、要 、深く理解する 来る。	項点こ	学習内容から要点を見出 し、関連する部分を調査 することが出来る。	学習内容について理ることが出来ないか 連する部分を調査す とが出来る。	、関	が出来が			
2						のレ	レポーが出来が	トを作成っ ない。	けること	

科目名		1- 1-	担当教員		学年	単位	開講時数	 種別	
日本語表現法 I (Japanese Expres	sions I)	宮田	日航平 (常勤)		4	1	前期 2時間	必修	
授業の概要	文試験などの具	具体的	した日本語表現に関する知詞 的な場面を念頭におきなが としての言語表現力を身に	ら、コミュニケーショ	沈職や近 ョン能力	選学の際 力や文章	の面接試験 表現力を	険や小論 さらに高	
授業の形態	講義								
授業の進め方	挨拶・自己紹介・志望理由書・面接・礼状などの各項目について、これらの言語活動に必識や技能を確認し、実践的に演習を行う。 予習、復習を行い自学自習の習慣を身に着ける。							必要な知	
到達目標	1. 聞き手を意識して明快に話すことができる。 2. 論理的でわかりやすい文章を書くことができる。								
実務経験と授業内 容との関連	なし								
学校教育目標との 関係	B (コミュニケ 社会で活躍した	ーシ たり゛	/ョン力) 総合的実践的技術 するために、論理的に考え	、適切に表現する能力	ものつ力を育り	がくりに. 成する。	取り組んで	どり国際	
			講義の内容						
項目		目標	-					時間	
ガイダンス		授業	岸の概要・目的・意義を理 解	解する				2	
挨拶・自己紹介		敬言	敬語を含めた話し言葉の特質を理解し、場面に応じた、聞き手の印象に残る効果的な話し方を身に付ける。						
履歴書・志望理由	書(小論文)	日本語	┕語の表記法や段落構成のå 記入方法について理解し、ネ	あり方を確認し、履歴 適切に記入できるよ [、]	整書や志 うになる	を望理由 る。	書の形式	8	
面接		よりどん	き手を意識し、話し手自身の うに効果的に話すことができ こも気を配ることができる。	きる。また、場面にふ ようになる。	ふさわし	い態度	仕草な	10	
礼状(手紙)		手給書	低文の形式(頭語、時候の持 き方について学び、実際に	挨拶、前文・本文・約 目的に応じた手紙を割	結語)・ 書くこ。	宛名・ とができ	差出人のる。	4 計 30	
 学業成績の評価方 法	小テスト、書 評価して算出す	」 課題、 する。	試験、演習・発表等の取組 、状況により再試験を行う	且状況をそれぞれ 30 こともある。	%、30	%, 30	%、10 % [°]		
関連科目									
教科書・副読本	その他: 必要に	こ応し	ごて授業時にプリントを配付	付する。参考図書等に	は逐次、	紹介す	·る。		
	1		評価 (ルーブリ [・]	ック)					
到達目標 理想的な	:到達レベルの目安 (優	E)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	安 (可)	未到達	レベルの目安	(不可)	
うに内乳	がわかりやすい 容や方法を工夫し 話すことができる	し、	聞き手がわかりやすいように方法を工夫し、明快 に話すことができる。	聞き手を意識して記 とができる。		聞き手たとができ	を意識して きない。	て話すこ	
うに文章 工夫し、	がわかりやすい 章の内容や表現 、論理的で明快 書くことができる	をなっ		読み手を意識して文 書くことができる。			を意識し ^っ とができな		

科目名		担当教員	学年	単位	開講時数	種別			
保健体育 IV (Health & Physi IV)	cal Education	小川広 (常勤)・古川浩洋 (常勤)・小橋えりか (非常勤)・村中宏行 (非常勤)	4	2	通年 2 時間	必修			
授業の概要	生活内容として ともに、自ら言	ての運動の意味や価値を考えながら、健康な生活の基 十画を立案し日常生活に運動を積極的に取り組む態	基礎とな 度を養	る体力 う。	の向上を	目指すと			
授業の形態	実験・実習								
授業の進め方	なる。	を通して基礎的体力を高めるとともに、各種目の基本技術を学びながらゲームができる。 。 7、復習を行い自学自習の習慣を身に着ける。							
到達目標	2. 自己のとる [、] 3. テニス・ソ	生体的に授業へ取組むことができる。 日己のとるべき行動を判断し、仲間と協力・協調する態度を身につけることができる。 テニス・ソフトボールの基本技術を身につけ、体力を高めることができる。 シールやマナーを守りながら、自ら安全に留意して行動できる。							
実務経験と授業内 容との関連	なし								
学校教育目標との 関係		ーション力) 総合的実践的技術者として、協働して とりするために、論理的に考え、適切に表現する能				だり国際			
		講義の内容							
項目		目標				時間			
ガイダンス 体つくり運動		学習の進め方、評価の仕方が理解できる 体つくり運動の理論と実技を学習する				2			
テニス		概要(歴史・施設と用具) ラケットの握り方 グランドストローク (フォアハンド、バックハント	·*)			18			
		ボレー、スマッシュ、サービス ルールと簡易ゲーム 技能テスト							
水泳IV		ガイダンス、水慣れ クロール、平泳ぎ、背泳ぎ、バタフライ、水球 泳力テスト				10			
//. /. ~)		が(1.1.マニ) たけは) - カウェ/1.1.1.3hri日 まとめ				計 30			
体力テスト スポーツ総合		新体力テストを実施し、各自の体力が把握できる概要(学習の進め方) ソフトボール 歴史・施設と用具 オーバーハンドスロー、キャッチング ピッチング、バッティング、ベースランニング				$\begin{array}{c} 6 \\ 24 \end{array}$			
		ルールと簡易ゲーム 技能テスト その他の球技 バレーボール,バスケットボール、バドミント サッカー、ラグビー、ハンドボール等のゲーム	ン、卓 ^段 を実施	求、		計 30			
						計 60			
学業成績の評価方 法		且み約 50 %、②学習意欲と学習態度(服装・準備・ ポート等を約 20 %とする。	後片付	け等) 約	约 30 %、(③技能テ			
関連科目	保健体育 I・保	健体育 II・保健体育 III							
教科書・副読本		高等保健体育(検定教科書)」和唐正勝ほか (大修館 ソ 2017」髙橋健夫ほか (大修館書店)	館書店),	副読本	は : 「ステ	ップアッ			

	評価 (ルーブリック)										
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)							
1	全ての授業で主体的に取 組んでいる。	主体的に授業へ取組んでいる。	基準以内であるが、授業へ の取組みが良くない。	基準を超えており、授業へ の取組みが悪い。							
2	自己のとるべき行動を判 断し、仲間と協力・協調す ることができる。	仲間と協力・協調する態 度を身につけることがで きる。	教員の指示に従って、仲間 と協力・協調する態度を身 につけることができる。	仲間と協力・協調する態 度を身につけることがで きない。							
3	基本技術を発展させた技 能を身につけ、日常生活 に応用して体力を高める ことができる。	け、体力を高めることが	教員の指示に従って、運動 の基本技術を身につけ、体 力を高めることができる。	運動の基本技術を身に付けることができず、体力を高めることができない。							
4	ルールやマナーを守りな がら、自己及び仲間の安 全に留意して行動するこ とができる。		教員の指示に従って、ルールやマナーを守りながら、 安全に留意して行動することができる。	ルールやマナーを守るこ とができず、安全に留意 して行動することができ ない。							

科目名		担当教員		学年	単位	開講時数	種別	
英語 IV (English IV)		岡島由以子 (常勤)・海上順代 (勤)・長岡成幸 (非常勤)・梶谷		4	3	通年 3 時間	必修	
授業の概要	高専高学年に向 料の読み取り方 習の反復により	けて、科学技術分野の各種の法、英文記事の要点理解や速、TOEIC スコアアップを図	記事や資料を読み、同 読の能力を養成する。 る。	引分野の また、	基礎的 TOEI	な語彙の C 教材を	習得、資用いた演	
授業の形態	講義							
授業の進め方	彙、表現演習に いては、教材の	英文記事読解については、各 取り組み、資料の活用演習、 各 Unit のリスニング、リーデ い自学自習の習慣を身に着け	英文記事の理解、その ディング問題演習に取	されぞれ の問題派 いり組む	この分野 寅習を行	のキーワ [、] ゔう。TOE	ード、語 EIC につ	
到達目標	2. 英文記事の框	厚門分野の語彙が習得できる。 既要が把握できる。 ア・アップのためのリスニン	グ・リーディング技術	析の基礎	楚を身に	こつける。		
実務経験と授業内 容との関連	なし							
学校教育目標との B (コミュニケーション力) 総合的実践的技術者として、協働してものづくりに取り組んだ 対会で活躍したりするために、論理的に考え、適切に表現する能力を育成する。								
		講義の内容						
項目		目標					時間	
Chapter 1		機械系 (制御) の英文記事を読	解する。				4	
Chapter 2		脳科学の英文記事を読解する。					4	
Chapter 3		医療工学 (3D プリンター) のき	英文記事を読解する。				4	
Chapter 4		機械系 (EV 車) の英文記事を	読解する。				4	
Chapter 5		機械・電気系 (ポータブル・ラ	ディバイス)の英文記	事を読	解する	>	4	
Chapter 6		医療工学系 (医療機器) の英文	記事を読解する。				4	
Chapter 7		化学系 (発光ゲル) の英文記事を読解する。						
Chapter 8		電気・機械系 (超伝導リニア)	の英文記事を読解す	る。			4	
Chapter 9		情報・機械系 (手のひら静脈語	図証) の英文記事を読	解する。)		4	
Chapter 10		医療工学系 (国際標準化機構)	の英文記事を読解す	る。			4	
Chapter 11		電子系 (自動運転装置) の英文	記事を読解する。				4	
TOEIC 演習 Unit		「財務」「ショッピング・注文 行」「契約・交渉」などにまた 演習を行う。 受動態・不定詞、時制の一致 解して問題を解く。	わるコミュニケーシ	ョン表	現につ	いて問題	46	
学業成績の評価方 法	定期試験(70 %	6) +取組状況(30 %)。「取総プログログログログログログログログログログログログログログログログログログログ	且状況」は、小テスト る。	・の成績	〕 、提出	物、指名	計 90 発表等で	
関連科目								
教科書・副読本	(成美堂)・「エン	essful Steps for the TOEIC I レジニアのための総合英語 (「、辻本智子、Ashley Moore、 ントを配布。	Getting to Know Eng	gineerir	ng Geni	es」村尾紀	純子、深	
評価 (ルーブリック)								
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)	
	分野の語彙を理解 に運用できる。	里解 理工系分野の語彙を理解 理工系分野の語彙を理解 理工系分野の語彙						
2 英文記 把握で	事の梗概を精確きる。	ぼに 英文記事の梗概をおおむ 英文記事の梗概を半分以 英文記事の梗概 ね把握できる。					を把握で	
_ <u> </u>	問題の内容を理解	解 TOEIC 問題の内容を理解	TOEI 問題の内容を	111 6亿	TOFIC	問題の出	容を理解	

NEA		〒和2年度 ものづくり工学科		344 (-	>>/ /-L		1 4 FU		
科目名		担当教員		学年	単位	開講時数	種別		
日本語演習 (Exercise in Japa		大谷哲 (非常勤/実務)		4	1	前期 2 時間	選択		
授業の概要	を収集・分析し	t、ディベート演習(ディベー 効果的に活用する力、体系的 Jなど、コミュニケーション能	・論理的に意見を述ぐ	(る力、	相手の	主張を聞			
授業の形態	演習								
授業の進め方	載されている論 た、司会やジャ)基本的ルール・技法を理解し 題でディベートを行う。受講 ッジも受講生が交替で行う。 い自学自習の習慣を身に着け	生は肯定側・否定側の	レープに)両方を	:分かれ :体験す	、講義の ることに	内容に記 なる。ま		
到達目標	1. 情報を収集分 2. 相手の主張を	∂析し、効果的に活用できる。 を的確に聞き取り、また自分の)考えを論理的かつ明	快に主	張する。	ことができ	きる。		
実務経験と授業内 容との関連									
学校教育目標との 関係		ーション力) 総合的実践的技術 こりするために、論理的に考え	、適切に表現する能力			取り組んる	どり国際		
		講義の内容	7						
項目		目標					時間		
1. ディベートス	門	ディベートの形式・ルール	・基本的な技法を理解	解する。			4 22		
2. ディベート海	習	以下の論題で実際にディベートを行う (論題は変更される場合がある)。							
3. リフレクショ	יע	・日本は夫婦子 ・日本は長婦子 ・日本はは原子 ・日本はは ・日本はは ・日本本はは ・日本本はは ・日日本本は ・日日本本は ・日日本本は ・日日本本は ・日日本本は ・日日本本は ・日日本本は ・日日本本は ・日日本本は ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・	べ引でする。 べ引でするる。 でもある。 でもある。 でる。 でる。 でる。 でる。 でる。 でる。 でる。 で	きである) た点や	気づい		4 計 30		
学業成績の評価方	ディベートへの)取組状況、リフレクションで幸	執筆するレポートなど	から総	合的に当	判断して評			
法							Ĭ		
関連科目									
教科書・副読本	その他: 適宜、	プリントを配付する。参考図		受業で新	習介する	0			
		評価 (ルーブリ	ック)						
到達目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可)									
収集し	関する情報を広 的確に分析する 効果的に活用す できる。	こ し分析することで、活用	論題に関する情報を することはできるか 果的に活用すること きない。	、効	するこ	関する情報 とも効果的 ともできな	りに活用		
取り、	主張を的確に聞 自分の考えを論 明快に主張する きる。	理 分の考えを明快に主張す	相手の主張を聞き取 とはできるが、自分 えを明快に主張する はできない。	の考	とも自急	主張を聞き 分の考える ることもて	を明快に		

科目名				担当教員		学年	単位	開講時数	種別	
表象文化	ZI e and Rep	resentation I	大谷	哲 (非常勤/実務)		4	1	後期 2 時間	選択	
授業の概	既要	一般的な国 である。しかし 「言葉」に関す	_ 語の授 しこの ける新7	業とは、教科書に載って 科目では、映画や演劇、 たな視角を手に入れるこ	いる「言葉」を、「言 アニメーションなどの とで、社会に貢献でき	 葉」に の「映作 る広い	よって 象」と <i>の</i> 視野を	解釈してい 関わりの 身に付ける	いくもの なかで、 る。	
授業の刑	/態	講義								
授業の進	重め方	映像及びそれ く。 予習、復習を行	れに関	連する文学作品の比較、 学自習の習慣を身に着け	分析、鑑賞を講義と記る。	討論、演	習など	を交えて	進めてい	
到達目標	票	1. 百呆りさま	習、復習を行い自学自習の習慣を身に着ける。 言葉のさまざまな機能を映像とのかかわりの中でとらえることができ、またその結果を そしたり、文章にまとめたりすることができる。							
実務経験 容との関	と授業内 関連	なし								
学校教育目標との C (人間性・社会性) 総合的実践的技術者として、産業界や地域社会、国際社会に貢献するた 関係 豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。									ために、	
				講義の内容	5					
項目			目標						時間	
1. ガイタ				の目的や内容を理解する	·		→ > are 316		2	
2. アニ>	メーション		デインダ	ズニーアニメーション『身 ーなどの観点から考察す	長女と野獣』 およびそのる (取り上げる作品は	の実写版	なを鑑賞	(し、ジェ がある)。	12	
3. 映画	・演劇		保次 映画	潤一郎「春琴抄」を読み、 郎監督)や『春琴抄』(金 ・舞台における表現の差 ある)。	≳田敬監督)、舞台劇の)映像を	:鑑賞し	、小説・	14	
4. まとぬ	か			・映画・アニメーション	・舞台、それぞれの矛	 現特性	生を理解	学する。	2 計 30	
法		授業中の課題、	、演習	引・発表等の取組状況、レ	ポートを総合して評	価する。	1			
関連科目										
教科書・副読本 その他: 必要に応じて授業時にプリントを配付する。参考図書は逐次、紹介する。										
				評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	憂)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	ルの目安 (可) 未到達レベルの目安 (不可)				
1	よって行 評を論理	品の鑑賞や分析 导られた感想や 里的かつわかり 見することがで	戸批 よ) や 評	快像作品の鑑賞や分析に くって得られた感想や批 好を論理的に表現するこ ができる。	映像作品の鑑賞や分よって得られた感想 評を表現することがる。	!や批 iでき i	よって行	品の鑑賞*得られた原 明すること	感想や批	

科目名		担当教員	学年	単位	開講時数	種別		
経営学 I (Business Adminis	strations I)	村井知光 (非常勤)	4	2	通年 2 時間	選択		
授業の概要		- 夕の分析と経営戦略について理解を深め、競争戦時 / グを多用する。	各と業身	早構造の	考察を行	う。アク		
授業の形態	講義							
授業の進め方	各自で分析対象企業(東証一部)を選び、作業・報告を適宜、指示を受けて行う。①個人に業選択と②チームによる業界選択など共同作業に分かれる。個人による企業の財務分析およムによる企業の財務分析他、経営戦略、業界の動向を調査する。授業は、計30回のうち前(1~5回)には主に講義を中心に行う。中盤(6~9回)には貸借対照表と損益計算書を中た財務分析を行う。前期後半(10~15回)にはチームで選択した企業の財務分析の発表を後期前半(16~20回)には、講義を中心に資産、負債、純資産や売上総利益等の額でなく務分析指標を学ぶ。中盤(21~24回)にはPCやi-padを使ったアクティブラーニングをり入れた作業中心となる。後期後半(25~29回)には各チームで企業家の読む経済新聞並度な財務分析をし、発表してもらう。最終講義は、総括を行う。予習、復習を行い自学自習の習慣を身に着ける。							
到達目標	業の社会的責任	論理的合理性を理解できる。2.損益計算書・貸借 Eと事業戦略を総合的に理解できる。	対照表	などが理	理解できる	。3. 企		
実務経験と授業内容との関連	なし	A M. M. A. M. J. D. M.		belia F -	man and a			
学校教育目標との 関係		会性) 総合的実践的技術者として、産業界や地域社 oち、技術者として社会との関わりを考える能力を			こ貢献する	ために、		
		講義の内容						
項目		目標				時間		
ガイダンス 財務データ分析 経営組織 競争戦略		事例研究(1)。貸借対照表や損益計算書などを学事例研究(2)。経営理念、組織構造を学習する。 事例研究(3)。戦略比較を学習し、チームで選択 行う。(例) JR 東日本旅客鉄道の財務分析と経営単 務分析と世界販売計画	!した 1	社の財	務分析を DO の財	28		
企業の社会的責任 経営戦略の論理		事例研究(4)。戦略比較を学習する。 事例研究(5)。CSR を学習する。 事例研究(6)。前期と後期の財務指標を加えた上 較を行う。(例1)自動車産業、トヨタ自動車、日産 SUBARU の売上高総利益率、流動比率、負債比率 売業、セブンアンドアイ ホールディングス、ロー トの労働分配率、経営方針等の財務分析と販売戦略 など	自動車 等の財	、本田技 務分析	技研工業、 (例 2) 小	28		
						計 56		
ゲストスピーカー 講義及び討論 まとめ	による 2 つの	企業経営者及び財務省関東財務局東京事務所職員に 義例)「女性起業家として」「プリカ詐欺について、 ために考えなければならないお金の話」「金融の第 ついて」 ディスカッションと総括を行う。	」「なり	たい自っ	過去の講 分になる intech に	4		
) インソンへ a < C MENIL G.11 1。				計 4		
						計 60		
学業成績の評価方 法	授業の参加状況として評価する	兄(企業財務分析の課題提出・発表)および勤惰を <i>′</i> る。	7割、月	材務分析	・レポート			
関連科目								
教科書・副読本	補助教材: 「政	双治・経済(検定教科書)」 (東京書籍), その他:						
		評価 (ルーブリック)						
到達目標 理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)		
年後の記して 自ら行	戦略を理解し、 就職を念頭に置 企業の財務分析 とができる。	い「益など、勘定科目を理解」をある程度理解でき	常書る。	貸借対! が理解	照表と損益 できない。	益計算書		

講義の内容 項目	科目名			担当教員		学年	単位	開講時数	種別	
のか、また戦後の経済発展は、アメリカや隣国との協調や対話によって達成されたおり、我会に目を主ない。これらの事象について歴史学を通して判解する。満案では、歴史と遡ることで、平和の意念や隣国の植民地文能、農物学の思修会で語の情報を対しており、政府は集団的自動権の政府見所を成めた。これは戦後歴し政権になかった見所とであり、政府は集団的自動権の政府見所を成めた。これは戦後歴し政権になかった見所とであり、政府は集団的自動権の政府見所を成めた。これは戦後歴し政権になかった見所となる。人人・講義では遺滅かな態から後我が国の国際協調のあり方を戦後の歴史を振り返りながら活発な影論を行いたい。 選楽の進め方 講教と調査を同時並行に行う、授業前半では、指定テキストを使用し、2 年時に十分学習できなかった分野を中心に講義を行う。また教員の一方的な講義というよりも、学生に課題を悪しい場合を表を、年と回してもらう。 前期のテーマは我が国の歴史を含めた世界の世や生を含めた世界の歴史を予定している。 大学を中心に講義を行う。また教員の一方的な講義というよりも、学生に課題を悪しい場合を考えていまったのと、要の歴史を全予にしている。 大学、後期のテーマは我が国の歴史を含めた世界の歴史を予定している。 大学、後期のテーマは我が国の歴史を含めた世界の歴史を今を予定している。 大学、後期のテーマは我が国の歴史を含めた世界の歴史をの関係 第2 世界史の成功・特別や失敗例を学ぶことによって、現代の日常生活に活かすことができる。 と、歴史の成功・特別や失敗例を学ぶことによって、現代の日常生活に活かすことができる。 と、歴史の成功・特別・大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大				広瀬義朗 (常勤)		4	2		選択	
選案の進め方 講義と演習を同時並行に行う。授業前半では、指定テキストを使用し、2 年時に十分学習できなかった分野を中心に講義を行う。また教員の一方的な講義というよりも、学生に課題を課し、解答と説明してもらこともある。授業後半では、3 ~ 4 人で一つのチームを編成人民に関すると単立の歴史等々を予定している。 予習、復習を行い自学自習の関することができる。 2 歴史の成功事例や失敗例を学ぶことによって、現代の日常生活に活かすことができる。 2 歴史の成功事例や失敗例を学ぶことによって、現代の日常生活に活かすことが正きる。 2 歴史の成功事例や失敗例を学ぶことによって、現代の日常生活に活かすことが正きる。 2 歴史のより事象を適けることができる。 2 歴史のより事象を通りを呼ばれている。 第義の内容	授業の概	既要	のか。まま第9名。 憲法第する。 憲法解れ、て 関氏発りる。 意と が でえ、 でえ、 でえ、 を は に に に に に に に に に に に に に に に に に た い に に た い に た い に に た に た	後の経済発展は、アメリカや隣 そを堅持し、かつ決して戦火を 講義では、歴史を遡ることで 意主義や主権在民のあり方につ り、政府は集団的自衛権の政府 への挑戦に他ならない。専守防 は護憲か改憲か今後我が国の国	国との協調や対話によ交えてはならない。これではならない。これではならない。これで、平和の尊さや隣国のいて再認識する。一方見解を改めた。これでは議論の分類についても議論の分類についても議論の分類についても、	て で れ に れ に は は は は が あ	を成された を成までは を放象では を を を を で で で の で の で の の で の の の の の の の の の の の の の	ており、まり、という、という、というではいいいできる。これではいいではいいではいいではいいではいいではいいではいいではいいではいいではないではな	段史悲のっ伏々学惨動たを はをなき見踏 日通事が解ま	
た分野を中心に講義を行う。また教員の一方的な講義というよりも、学生に課題を課し、解客を発き 事してもらうこともある。投業後半では、3~4人で一のカームを編成し、歴史に関する発表を 年2回してもらう。前期のテーマは我が国の歴史等々、後期のテーマは我が国の歴史を含めた世界 の歴史等々を予定している。 子習、復習を行い自学自習の習慣を身に着ける。 2、歴史的事象を論理的に説明することができる。 実務経験と授業内 容との関連 学校教育目標との C (人間性・社会性)総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、関係 豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。 現所 自期 (日本史と世界史) ガイダンス。 日本史・近代国家の成立 田界史・ヨーロッパ主権国家体制 原用 日本史・ゴーの世界大戦とアジア 日本史・ヨーロッパ主権国家体制 原開 後期(日本史と世界史) 日本史・二つの世界大戦とアジア 日本史・二つの世界大戦とアジア 日本史・二つの世界大戦とアヴア 日本史・二つの世界大戦とアヴア 日本史・二つの世界大戦とアヴア 日本史・二つの世界大戦とアヴア 日本史・二つの世界大戦とアヴア 日本史・二つの世界大戦とアヴァ 日本史・二のの世界大戦とアヴァ 日本史・二つの世界大戦とアヴァ 日本史・二つの世界大戦とアヴァ 日本史・二のの世界大戦とアヴァ 日本史・コーの世界大戦とアヴァ 日本史・二のの世界大戦とアヴァ 日本史・二のの世界大戦とアヴァ 日本史・二のの世界大戦とアヴァ 最後の政治・社会・文化・国際情勢を理解する。 サニー・エー・昭和時代の政治・社会・文化・国際情勢を理解する。 サニー・エー・昭和時代の政治・社会・文化・国際情勢を理解する。 サニー・エー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー	授業の刑	杉態	講義							
2. 歴史の成功事例や失敗例を学ぶことによって、現代の日常生活に活かすことができる。 実務経験と授業内容との関連 学校教育目標との関係 C (人間性・社会性)総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、関係 正 (人間性・社会性)総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、関係 正 (人間性・社会性)総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、関係	授業の進	≜め方	明してもらうこ 年2回してもら の歴史等々を言	こともある。授業後半では、3 5う。前期のテーマは我が国の P定している。	~ 4 人で一つのチーム 歴史等々、後期のテー	し、2 ^を い、学生 いを編成 ーマは	F時に十 Eに課題 えし、歴 対が国の	分学習で、 を課し、 実に関する 歴史を含め	きなかっ 解答と説 る発表を めた世界	
容との関連 学校教育目標との 関係 ② (人間性・社会性)総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、関係 □ (人間性・社会性)総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、関かな教養をもち、技術者として社会との関わりを考える能力を育成する。 □ (日本史と世界史) ガイダンス □ (日本史と世界史) ガイダンス □ (日本史・近代国家の成立 世界史・ヨーロッパ主権国家体制 の展開 後期(日本史と世界史) 日本史・三の世界大戦とアジア 日本史・三つの世界大戦とアジア 日本史・現代の世界と日本 世界史・ニつの世界大戦とアジア 日本史・・コーロッパ主権国家体制 を期(日本史と世界史) 日本史・・カーロッパ主権国家体制 を期(日本史と世界史) 大正・昭和時代の政治・社会・文化・国際情勢を理解する。 12 日本史・二つの世界大戦とアジア 日本史・現代の世界と日本 世界史・ニつの世界大戦と冷戦、 「ヴェルサイユ体制とワシントン体制、世界恐慌、東西対立と冷戦を理解 する。 「対・エルサイユ体制とワシントン体制、世界恐慌、東西対立と冷戦を理解 の協合によっては、デストを行うこともある。 関連科目 教科書・副読本 教科書・「高等学校 日本史A 新訂版 (検定教科書)」佐々木 寛司 他 (清水書院),参考書:「高校日本史ノート編集部 (山川出版社),補助教材:「プロムナード日本史」 (派島書店) 「歴史的事象を論理的に説 暦・中の世界大戦とかの自安 (東) 歴史的事象を論理的に説 暦・宇のな到述しへルの自安 (東) 歴史的事象を論理的に説 暦・宇のな到述しへルの自安 (東) 歴史的事象を論理的に選 暦・まることができる。 「歴史音科の内容について 説明することができる。 歴史資料の西語るところを 近れく読み取ることができる。 歴史資料を解釈すること ができない。 歴史資料の語るところを 佐見 (読み取ることができる。 歴史資料を解釈すること ができない。 のまない。 歴史資料を解釈すること ができない。 のまない。 世界資料を解釈すること ができない。 のまない。 歴史資料を解釈すること ができない。 のまない。 歴史資料の語るところを 世界教育を見たり行ること ができない。 のまない。 歴史資料の語るところを 世界教育を定して持定する基礎的 な知識を身につけること ができない。 のまない。 歴史資料の語るところを 世界教育を定していること ができない。 のまない。 歴史資料を解釈すること ができない。 のまない。 歴史資料を解釈すること ができない。 のまない。 歴史資料を解釈すること ができない。 のまない。 歴史資料の語るところを な知識を身につけること ができない。 のまない。 歴史資料を解釈すること ができない。 世界教育を理解された。 歴史資料を解釈すること ができない。 歴史資料を解釈すること ができない。 世界と述述を対し、 は、	到達目標	Ę.	1. 歴史的事象 2. 歴史の成功	を論理的に説明することができ 事例や失敗例を学ぶことによっ	きる。 って、現代の日常生活	に活か	すことフ	ができる。		
関係 豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。										
国目	学校教育 関係	育目標との						こ貢献する	ために、	
1期 (日本史と世界史)	講義の内容									
ガイダンス 日本史・武家社会の成長-戦国の 動乱と幕藩体制の展開 日本史・近代国家の成立 世界史・ヨーロッパ主権国家体制 の展開 後期(日本史と世界史) 日本史・二つの世界大戦とアジア 日本史・二つの世界大戦とアジア 日本史・二つの世界大戦と冷戦、 現代の世界と日本 世界史・二つの世界大戦と冷戦、 現代の世界 世界史・二つの世界大戦と冷戦、 現代の世界 一部では、テストを行うこともある。 関連科目 教科書・副読本 教科書・「高等学校 日本史A 新訂版(検定教科書)」佐々木 寛司 他(清水書院)、参考書・「高株日本史ノート 改訂版」高校日本史ノート編集部(山川出版社)、補助教材:「プロムナード日本史」(浜島書店) 「選集日を関する。」 「実施のできる。とができる。とができる。」 「歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 説明することができる。 正しく読み取ることができない。とな知識を身につけること ができない。 「選集日を関する基礎的 な知識を身につけること ができない。」 「歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 歴史資料の西るととができる。 歴史資料の内容について 歴史資料の西るととができる。 正しく読み取ることができない。 を加速を見いても国際情勢を理解する。 12 は、東西の発達を理解する。 4 体の発達を理解する。 4 体の政治・社会・文化・国際情勢を理解する。 4 体の政治を理解する。 4 体の政治・社会・文化・国際情勢を理解する。 5 体の政治・社会・文化・国際情勢を理解する。 4 体の政治・社会・文化・国際情報を理解する。 4 体の政治・社会・文化・国際情報を理解する。 4 体の政治・社会・文化・国の教治・教育・教育・教育・教育・教育・教育・教育・教育・教育・教育・教育・教育・教育・	項目 目標								時間	
動乱と幕藩体制の展開 日本史・近代国家の成立 世界史・ヨーロッパ主権国家体制の展開 後期(日本史と世界史) 日本史・二つの世界大戦とアジア 日本史・現代の世界と日本 世界史・二つの世界大戦と冷戦、 現代の世界 世界史・二つの世界大戦と冷戦、 現代の世界 大正・昭和時代の政治・社会・文化・国際情勢を理解する。 12 戦後の政治・社会・文化・国際情勢を理解する。 9 ヴェルサイユ体制とワシントン体制、世界恐慌、東西対立と冷戦を理解 する。 学業成績の評価方 指定テキストの課題達成度、年2回の発表、授業中の態度や授業に対する取り組み等々を考慮する。法 場合によっては、テストを行うこともある。 関連科目 地理歴史 I・地理歴史 II・公民 II 教科書・副読本 教科書・「高等学校 日本史A 新訂版(検定教科書)」佐々木 寛司 他(清水書院),参考書:「高校日本史ノート 改訂版」高校日本史ノート編集部(山川出版社),補助教材:「プロムナード日本史」(浜島書店) 『四 (ルーブリック) 到達目標 理想的な到達レベルの目安(優) 標準的な到達レベルの目安(度) ぎりぎりの到達レベルの目安(可) 未到達レベルの目安(不可) 「歴史的事象を論理的に説解することができる。」 歴史資料の内容について説明することができる。 歴史資料の内容について説明することができる。 歴史資料の西語るところを歴史資料に関する基礎的な知識を身につけることができない。とができない。	前期(E ガイダン	日本史と世 /ス	界史)						2	
世界史・ヨーロッパ主権国家体制 の展開 後期(日本史と世界史) 大正・昭和時代の政治・社会・文化・国際情勢を理解する。 12 日本史・二つの世界大戦とアジア日本史・現代の世界と日本 戦後の政治・社会・文化・国際情勢を理解する。 9 サスナーニンの世界大戦と冷戦、現代の世界 指定テキストの課題達成度、年2回の発表、授業中の態度や授業に対する取り組み等々を考慮する。法 場合によっては、テストを行うこともある。 計 60 学業成績の評価方 指定テキストの課題達成度、年2回の発表、授業中の態度や授業に対する取り組み等々を考慮する。法 場合によっては、テストを行うこともある。 関連科目 地理歴史 II・公民 II 教科書・副読本 教科書・「高等学校 日本史A 新訂版 (検定教科書)」佐々木 寛司 他 (清水書院),参考書:「高校日本史ノート 改訂版」高校日本史ノート編集部 (山川出版社),補助教材:「プロムナード日本史」(浜島書店) 評価 (ルーブリック) 型達目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) 歴史的事象を論理的に 関明することができる。 歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 歴史資料の内容について 歴史資料の声るととができる。 歴史資料に関する基礎的 な知識を理解できない。 2 歴史資料の内容について 歴史資料の声るととがで な知識を身につけること ができない。 ができない。				室町・戦国・安土桃山・江戸時	代の政治・社会・文化	・国際	情勢を理	理解する。	12	
後期(日本史と世界史) 大正・昭和時代の政治・社会・文化・国際情勢を理解する。 12 日本史・二つの世界大戦とアジア日本史・二つの世界大戦と冷戦、現代の世界 戦後の政治・社会・文化・国際情勢を理解する。 9 世界史・二つの世界大戦と冷戦、現代の世界と日本世界史・二つの世界大戦と冷戦、現代の世界 ヴェルサイユ体制とワシントン体制、世界恐慌、東西対立と冷戦を理解する。 9 学業成績の評価方法 場合によっては、テストを行うこともある。関連科目 地理歴史 II・出理歴史 II・公民 II 教科書: 「高等学校日本史A 新訂版(検定教科書)」佐々木 寛司 他(清水書院),参考書:「高校日本史ノート 改訂版」高校日本史ノート編集部(山川出版社),補助教材:「プロムナード日本史」(浜島書店) 第個(ルーブリック) 到達日標 理想的な到達レベルの目安(優) 標準的な到達レベルの目安(度) 標準的な到達レベルの目安(良) ぎりぎりの到達レベルの目安(可) 未到達レベルの目安(不可) 歴史的事象を論理的に説明することができる。 歴史的事象を論理的に説解することができる。とができる。 歴史資料の内容について 歴史資料の語るところを 歴史資料に関する基礎的な知識を理解できない。とができるい。 を知識を身につけること ができない。 だてきない。 だてきない。 だてきない。 だてきない。 だてきない。 ができない。 な知識を身につけること ができない。	世界史·						5 。		12 4	
世界史・二つの世界大戦と冷戦、 ヴェルサイユ体制とワシントン体制、世界恐慌、東西対立と冷戦を理解 現代の世界	後期(日	日本史と世 二つの世身	界史) 界大戦とアジア	大正・昭和時代の政治・社会	・文化・国際情勢を理	里解する	5 .		12	
現代の世界 する。 計 60 学業成績の評価方 指定テキストの課題達成度、年 2 回の発表、授業中の態度や授業に対する取り組み等々を考慮する。 場連科目 地理歴史 I・地理歴史 II・公民 II 教科書・副読本 教科書:「高等学校 日本史A 新訂版 (検定教科書)」佐々木 寛司 他 (清水書院),参考書:「高 校日本史ノート 改訂版」高校日本史ノート編集部 (山川出版社),補助教材:「プロムナード日本 史」 (浜島書店) 評価 (ルーブリック) 到達目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) 歴史的事象を論理的に説 明することができる。 歴史資料の内容について 歴史資料の語るところを 歴史資料に関する基礎 的な知識を理解できない。とができる。 歴史資料の内容について 歴史資料の語るところを 歴史資料に関する基礎的 歴史資料を解釈すること ができない。 ができない。 とができる。 とができる。 とができる。 とができない。 とができる。 とができるいできるい。 対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対									9	
学業成績の評価方	世界史・ 現代の世	・二つの世 世界	界大戦と冷戦、	ヴェルサイユ体制とワシント する。	・ン体制、世界恐慌、	東西対	立と冷	戦を理解	9	
法 場合によっては、テストを行うこともある。 関連科目 地理歴史 I・地理歴史 II・公民 II 教科書・副読本 教科書: 「高等学校 日本史A 新訂版 (検定教科書)」佐々木 寛司 他 (清水書院),参考書: 「高校日本史ノート 改訂版」高校日本史ノート編集部 (山川出版社),補助教材: 「プロムナード日本史」 (浜島書店) 評価 (ルーブリック) 到達目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) 1 歴史的事象を論理的に説 歴史的事象を論理的に理 歴史的事象に関する基礎的な知識を身につけることができる。 歴史資料の内容について 歴史資料の語るところを 歴史資料に関する基礎的な知識を理解できない。 おりまりまりまりました。 とができる。 歴史資料の内容について 歴史資料の語るところを 歴史資料に関する基礎的 歴史資料を解釈することができる。 正しく読み取ることがで な知識を身につけること ができない。									計 60	
教科書・副読本 教科書:「高等学校 日本史A 新訂版 (検定教科書)」佐々木 寛司 他 (清水書院),参考書:「高校日本史ノート 改訂版」高校日本史ノート編集部 (山川出版社),補助教材:「プロムナード日本史」 (浜島書店) 評価 (ルーブリック) 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) 歴史的事象を論理的に説明することができる。 歴史的事象を論理的に説明することができる。 歴史資料の内容について説明することができる。 歴史資料の内容について説明することができる。 歴史資料に関する基礎的な知識を身につけることができない。 歴史資料に関する基礎的な知識を理解できない。 歴史資料に関する基礎的な知識を理解できない。 歴史資料に関する基礎的な知識を理解できない。 歴史資料に関する基礎的な知識を理解できない。 大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大	学業成績法	りまた。 	指定テキストの 場合によってい	D課題達成度、年2回の発表、f は、テストを行うこともある。	受業中の態度や授業に	対する	取り組み	み等々を考	が慮する。	
校日本史ノート 改訂版」高校日本史ノート編集部 (山川出版社)、補助教材: 「プロムナード日本 史」 (浜島書店)	関連科目		地理歴史 I・地	理歴史 II・公民 II						
到達目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不可) 1 歴史的事象を論理的に説明することができる。 歴史的事象を論理的に理解することができる。 歴史的事象に関する基礎的な知識を身につけることができる。 歴史的事象に関する基礎的な知識を理解できない。 2 歴史資料の内容について説明することができる。 歴史資料の語るところを正しく読み取ることがである。 歴史資料に関する基礎的な知識を身につけることができない。 歴史資料を解釈することができない。	校日本史ノート 改訂版」高校日本史ノート編集部 (山川出版社),補助教材:「プロムナード									
1 歴史的事象を論理的に説明することができる。 歴史的事象を論理的に理解することができる。 歴史資料の内容について説明することができる。 歴史資料の内容について説明することができる。 歴史資料に関する基礎的歴史資料を解釈することができる。 歴史資料に関する基礎的歴史資料を解釈することができる。 正しく読み取ることがでな知識を身につけることができない。				評価 (ルーブリ	ック)					
### 明することができる。 解することができる。 的な知識を身につけるこ 的な知識を理解できない。 とができる。 とができる。 歴史資料の内容について 歴史資料の語るところを 歴史資料に関する基礎的 歴史資料を解釈すること 説明することができる。 正しく読み取ることがで な知識を身につけること ができない。	到達目標	理想的な	 到達レベルの目安 (優	標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目録	マ(可)	未到達	レベルの目安	(不可)	
┃ 説明することができる。 │正しく読み取ることがで│な知識を身につけること│ができない。	1				的な知識を身につけ					
	2	歴史資料 説明する	説明することができる。 正しく読み取ることがで な知識を身につけること ができない。					すること		

科目名					学年	単位	開講時数	種別			
日本産業 (Japanes	論 se Industr	y)	村井知光 (非常勤)		4 • 5	1	集中	選択			
授業の概	要	戦前から戦後に	こかけての日本産業構造の変遷	を学ぶ。							
授業の形	態	講義									
授業の進	め方	クティブラース る。具体的に担当 をテーなお、た	くる。前半は、講義中心となる ニングが中心となる。グルーラ は、鉄鋼業、造船業、金融業、 自する。グループで討論した上 デストスピーカーによる講義も 行い自学自習の習慣を身に着け	『で各産業別に分かれ 運輸・輸送業、電気産 で資料を作成し、最終 予定している。	て日本	産業構	造の変遷で 業 情報:	と調査す 角信業等			
到達目標	Ę	1. 戦前の日本の 後の日本の産業	の産業の発展が理解できる。 美の目覚ましい発展が理解でき	2. 戦中の日本の産業る。	業の停滞	帯が理解	! できる。	3. 戦			
実務経験 容との関		なし									
学校教育 関係	目標との		会性) 総合的実践的技術者とし らち、技術者として社会との関				こ貢献する	ために、			
講義の内容											
項目			目標					時間			
	本の産業		戦前の日本の産業は、どの業	種を中心としての発展	屡したの)かを知	る。	15			
産業革命	ì		軽工業から重工業への移り変	わりはどのようにして	て行われ	こたのか	を学ぶ。				
重化学工業の発展 特徴 当時の労働者を取り巻く劣悪な環境は、どのように整備、改善されていったのかを学ぶ。											
戦後の日 第二次世 復興	本の産業 界大戦後	の発展	当時の労使関係、契約につい 二度の大戦を経た後、戦後の 遂げたのかを理解する。		に再興	し、高	度成長を	15			
1960 年代 1970 年代		泛長 √ショックと産	高度成長を経て、二度のオイズ 業から軽薄短小へ変換してい	ルショックと円高不汚 く過程を理解する。	足を克服	し、重	工長大産				
業構造の 1980 年1 新たな産 業の諸課	弋後半から 業の勃興。	の動き と今後日本の産	自動車産業や家電産業は世界 たが、日米貿易摩擦へ発展し				称号を得				
	<i>,</i>		ICT 産業の芽生え、欧米に加るなかで、どのように国際競るべき道筋を探る。	えアジア周辺諸国との 争力を養っていくのか)価格差 い、今後	や賃金の日本	格差があ 産業の取				
1								計 30			
学業成績法	の評価方	発表資料の作品	戊や発表の内容、チームへの貢	献度等々を総合的に	勘案し、	評価を	を行う。				
関連科目	1	地理歴史I・地	!理歴史 II・公民 I・公民 II・歴	歴史学 Ⅱ・キャリアデ	ザイン	特論					
教科書・	副読本	補助教材: 「函	な治・経済(検定教科書)」 (東	[京書籍]							
			評価 (ルーブリ	ック)							
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目的	マ (可)	未到達	レベルの目安	(不可)			
1	主要産業		区分だけでなく 別日本の産業の発展や停滞 解できる。 帯を説明できる。 を説明できる。								

N = 4		177个	7∐ ∠	年度3				-	X171		<i>)</i> / (W +		\			
科目名						担当	教員						学年	_	単位	開調	講時数	種別
キャリアデザイン ()	/特論												4·5	5	1			選択
授業の概要	授業は「キャ! りの現場に通明 ショップを通し	暁し	た多	多彩なり	デスト	スピー	カー	によ	るレ	クチ	ャー	、集	団知	の創]出を	目的	りとする	ものづく るワーク
授業の形態	講義																	
授業の進め方	個人でしっかり を創っていきる や理解を深め、 予習、復習を	ます。 、最	ト。 静 養終請	購義、ク 構におり	デスト. いては	スピー プレセ	カーシテ	によっシ	るレ	クチ	ャー	、ワ	ーク:	なコショ	ミュブ	こった。	イーショ くり自	ョンの場 身の考え
到達目標	1. 多彩なゲス 慣を身につける 2. 日本を代表 職業倫理」に	るこ	ことか る大	ができる 手企業	る。 の不祥	4事を2	対象る	とする	らケー	-ス)	スタ、	ディ	を通し	じて				
実務経験と授業内 容との関連																		
学校教育目標との 関係	豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。									ために、								
講義の内容																		
項目		目	標															時間
ウォームアップの時間 基礎の時間			ーーム こどの いしま	、での協)コミュ : す。	協働を。 ユニケー	より円 ーショ	滑な ンツ	もの。	とす。を用い	るたって	め、 活発	自己なワ	紹介、 ーク:	、ア ショ	イス ップ	ブレ環境	イク を構	15
ゲストスピーカヤー	ーによるレクチ	す。	-。其	考える 具体的に 現在の	こは大	手企業	にお	ける	組織	的な	不正	事例	[を対	象に	こ考察	きしき	ます。	
		実	ものづくりの現場に通暁した多彩なゲストスピーカーによるレクチャーを 実施します。弁理士、弁護士、大手メーカーの現役若手社員、NPO 法人 代表の方々を予定。															
応用の時間				-プワー ます。		中心に	授業	におい	ハて行	各自	が気	づい	たこ	と、	考え	を共	有し	15
まとめ		本記定	講義	をのまと こいます	とめとし	してグ	ルー	プでの	の全値	本に	向け	たプ	レゼ、	ンテ	ーシ	ョン	⁄を予	計 30
 学業成績の評価方 法																		
関連科目																		
教科書・副読本 補助教材: 「政治・経済(検定教科書)」 (東京書籍)																		
житы шарыт.	11000 001131	/ * 1H	, 72	-νι (D		(ルー			,									
列達日播 四起处	아제놀니 사비 자모호 7년	<u> </u>	4715	準的な到						파호	. 0° 11 •	カロヴ	(리)		ᆂ피ᄖ	El ^*'	II	(조립)
	な到達レベルの目安 (優	· .	-	•			(の目安	• /				ルの目安	` ′
俯瞰し	自身のキャリアや人生 俯瞰して考える習慣を につけることができる			ループ 授身で 自りで	へ積極考えを	図的に	参加	プメ		~ (の話	-、グ を聞		プ		バー	の話を	、グルー を聞くこ
2																		
														1				

(Exercises in Mathematics)	科目名		担当教員	学年	単位	開講時数	種別
学校のカリキュラムに含まれない内容、および木料4年生の応用数学の内容を解説すると共に、 資源習を通して理解の習数を図る。 選習 選書と譲せを交互に行う。毎回の講義では演習ブリントに取組み、授業時間内に提出する。 子習、役割を行い口で自智の習慣を身に着ける。。	数学演習 (Exercises in Matl	hematics)	澤田一成 (常勤)	4	2	通年 2 時間	選択
要素の進め方 計義と演習を交互に行う。毎回の講義では演習プリントに取組み、授業時間内に提出する。	授業の概要	学校のカリキュ	ュラムに含まれない内容、および本科4年生の応用数	3 年生ま 女学の内	での「 容を解	数学」の説すると	うち高等
当連目標	授業の形態	演習					
3. 線形代数字に関わる行列の海頂を理解し、例の行程式の解法に応用できる。	授業の進め方	講義と演習を3 予習、復習を	交互に行う。毎回の講義では演習プリントに取組み、 行い自学自習の習慣を身に着ける。	授業問	寺間内に	こ提出する	0
学校教育自標との	到達目標	3. 線形代数学	に関わる行列の海算を埋解し、行列の対角化を行う	ことが	できる. きる.で	きる.	
関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 講義の内容 目標 2変数関数の偏微分法 偏微分の概念を理解し、偏微分の計算を修得する 2変数関数の積分法(その1) 2変数関数の極大値や極小値の求め方を修得する 2変数関数の積分法(その2) 2変数関数の積分法(その3) 2変数関数の積分法(その3) 2変数関数の積分法(その4) 2重積分の変数変換を修得する 2重積分の応用 立体の体積や曲面積の収象方を修得する 2変数関数の積分法(その4) 2重積分の変数変換を修得する 2重積分の応用 立体の体積や曲面積の収象方を修得する 2重積分の応用 立体の体積や曲面積の収象方を修得する 2を機形代数(その1) 行列の固有値の概念とその計算法を修得する 2を機形代数(その3) 行列の対角化の方法を理解し、その計算法を修得する 2を機形代数(その3) 行列の対角化の方法を理解し、その計算法を修得する 2を機形代数(その4) 2を対策形、同次形の微分方程式の解法を修得する 2を数分方程式の解法(その1) 2変数が離形、同次形の微分方程式の解法を修得する 2を数分が離形、同次形の微分方程式の解法を修得する 2を数分が離形、同次形の微分方程式の解法を修得する 2を数分が離形、同次形の微分方程式の解法を修得する 2を数分方程式の解法を修得する 2を数分を軽表の解法を修得する 2を数係数用文高階線形微分方程式の解法を修得する 2を数の方程式の解法を修得する 2を数の方式の変換(その1) 2・2を数のの間になりが可能はを修得する 2・2を数のの形式を修得する 2・2を数のの形式を修得する 2・2を数のの形式を修得する 2・2を数の応用 2・2を数の形式を修得する 2・2を数の応用 2・2を数のの形式を修得する 2・2を数の応用 2・2を数のの形式を修得する 2・2を数の応用 2・2を数の形式を修得する 2・2を数の形式を修得する 2・2を数の応用 2・2を数の形式を修得する 2・2を数の応用 2・2を数の形式を修得する 2・2を数の応用 2・2を数の形式を修得する 2・2を数の応用 2・2を数の形式を修得する 2・2を使用式を修得する 2・2を使用式を修用式を修用式を修得する 2・2を使用式を修用式を修用式を修用式を修用式を修用式を修用式を修用式を修用式を修用式を修	容との関連						
項目							りな技術
2 変数関数の編徴分法			I				
 偏微分の応用(その1) 2変数関数の極大値や極小値の求め方を修得する 2変数関数の積分法(その1) 2変数関数の積分法(その2) 2重積分を累次積分に変形する方法を修得する 2変数関数の積分法(その3) 2重積分の変数変換を修得する 2変数関数の積分法(その4) 2重積分の変数変換を修得する 2重積分の応用 線形代数(その1) 線形代数(その1) 線形代数(その2) (行列の固有値の概念とその計算法を修得する 行列の固有ベクトルの概念と計算法を修得する 行列の固有ベクトルの概念と計算法を修得する 行列の対角化の方法を理解し、その計算法を修得する 行列の対角化を利用して、行列の n 乗を計算する方法を修得する (行列の対角化を利用して、行列の n 乗を計算する方法を修得する (対力程式の解法(その1) 破分方程式の解法(その1) 変数分離形、同次形の微分方程式の解法を修得する 定数係数目次高階線形微分方程式の解法を修得する 定数係数目次高階線形微分方程式の解法を修得する 定数係数目次高階線形微分方程式の解法を修得する 定数係数表に高階線形微分方程式の解法を修得する ラブラス変換(その1) ラブラス変換(その2) ラズシ変換(その2) ラズシス変換(その3) ラズラス逆変換(その1) ラブラス変換(その2) ラブラス変換の計算法を修得する ラブラス変換の計算法を修得する ラブラス変換のに用 ベクトル解析(その1) ベクトル解析(その2) ベクトル場の概念を理解し、の配の計算法を修得する ベクトル場の概念を理解し、の配の計算法を修得する ベクトル場の概念を理解し、の配の計算法を修得する ベクトル場の概念を理解し、の配の計算法を修得する ベクトル場の概念を理解し、の配の計算法を修得する 							時間
 偏微分の応用(その2) 条件付き極値問題の解法を修得する 2変数関数の積分法(その1) 2変数関数の積分法(その2) 2変数関数の積分法(その3) 2変数関数の積分法(その3) 2変数関数の積分法(その3) 2変数関数の積分法(その4) 重積分を繁火積分に変形する方法を修得する 2変数関数の積分法(その4) 重積分の変数変換を修得する 2重積分の変数変換を修得する 3位の作用 2をか体積や曲面積の求め方を修得する 2を利力の固有値の概念とその計算法を修得する 2を利力の固有値の概念と計算法を修得する 2を利力の固有値の概念と計算法を修得する 2を利力の固有値の概念と計算法を修得する 2を制定法を修得する 2を対析行列を直交行列で対角化する方法を修得する 2を数分離形、同次形の微分方程式の解法を修得する 2を数分離形、同次形の微分方程式の解法を修得する 2を数分離形、同次形の微分方程式の解法を修得する 2を数係数同次高階線形微分方程式の解法を修得する 2を数係数非同次高階線形微分方程式の解法を修得する 2を数係数非同次高階線形微分方程式の解法を修得する 2を数係数非同次高階線形微分方程式の解法を修得する 2を数條(その1) 2がラス変換(その2) 2がラス変換の計算法を修得する 2がラス逆変換(その3) 2がラス逆変換(その3) 2がラス逆変換(その1) 2がラス逆変換の計算法を修得する 2がラス逆変換の計算法を修得する 2がラス逆変換の計算法を修得する 2がりかとその性質を理解する 2が方とその性質を得する 2が方との性質を得する 2が方との性質を得する 2が方との性質を得する 2が方との性質を得する 2がうえ逆変換の計算法を修得する 2が方とのは関数のラブラス逆変換の計算法を修得する 2が方との計算法を修得する 2が方との計算法を修得する 2が方との計算法を修得する 2が方とを得する 2が方とを得する 2が方とを得する 2が方とを得する 2が方とを得する 2が方とを得する 2が方とを得する 2が方とを得する 2がのがよりによりによりによりによりによりによりによりによりによりによりによりによりによ			•				2
2変数関数の積分法(その1) 2変数関数の重積分の概念を理解し、累次積分の計算法を修得する 2変数関数の積分法(その2) 2重積分を累欠積分に変形する方法を修得する 2変数関数の積分法(その3) 極座標による2重積分を修得する 重積分の応用 立体の体積や曲面積の求め方を修得する 線形代数(その1) 行列の固有値の概念とその計算法を修得する 線形代数(その2) 行列の固有(の概念と計算法を修得する 線形代数(その5) 行列の固有(の概念と計算法を修得する 線形代数(その5) 行列の対角化の方法を理解し、その計算法を修得する 微分方程式の解法(その1) 変数分離形、同次形の微分方程式の解法を修得する 微分方程式の解法(その2) 線型微分方程式の解法を修得する 高階線型微分方程式(その2) ラブラス変換(その1) ラブラス変換(その3) ラブラス変換の表分方程式のデラス変換の計算法を修得する ラブラス遊変換(その3) 与えられた微分方程式のデラス変換の計算法を修得する ラブラス遊変換(その1) ラブラス変換の概念との性質を理解する ラブラス遊変換(その3) 与えられた微分方程式のデラス変換の計算法を修得する ラブラス遊変換(その3) ラブラス遊変換の配分が分分分解を修得する ラブラス変換の応用 「クトル解析(その1) ベクトル解析(その2) スカラー場、ベクトル場の概念を理解し、その計算法を修得する ベクトル解析(その2) スカラー場、ベクトル場の概念を理解し、その計算法を修得する ベクトル解析(その3) デースの計算法を修得する	`	,					2
2 変数関数の積分法(その2) 2 変数関数の積分法(その3) 極座標による2重積分を修得する 変数関数の積分法(その4) 重積分の応用 線形代数(その1) 線形代数(その2) 線形代数(その3) 線形代数(その4) 線形代数(その5) 線形代数(その5) 線形代数(その5) 線形代数(その5) 海が行列を直交行列で対角化する方法を修得する 符列の対角化の方法を理解し、その計算法を修得する おか行列を直交行列で対角化する方法を修得する 被分方程式の解法(その1) 微分方程式の解法(その1) 高階線型微分方程式(その1) 高階線型微分方程式(その2) ラブラス変換(その2) ラブラス変換(その3) ラブラス変換(その3) ラブラス遊変換(その3) ラブラス遊変換(その1) ラブラス遊変換(その1) ラブラス遊変換(その1) ラブラス変換の形用 ベクトル解析(その1) ベクトル解析(その2) ベクトル解析(その2) ベクトル解析(その3)	,	,					2
2変数関数の積分法(その3) 極座標による2重積分を修得する 重積分の応用 立体の体積や曲面積の求め方を修得する 線形代数(その1) 行列の固有値の概念とその計算法を修得する 線形代数(その2) 行列の固有ベクトルの概念と計算法を修得する 線形代数(その3) 行列の対角化の方法を理解し、その計算法を修得する 線形代数(その4) 対称行列を直交行列で対角化する方法を修得する 線形代数(その5) 行列の対角化を利用して、行列のn 乗を計算する方法を修得する 微分方程式の解法(その1) 変数分離形、同次形の微分方程式の解法を修得する 高階線型微分方程式(その1) 定数係数制の次形の微分方程式の解法を修得する 高階線型微分方程式(その1) ラプラス変換の概念とその性質を理解する ラブラス変換(その1) ラプラス変換の制算法を修得する ラブラス変換(その2) 与えられた関数のラブラス変換の計算法を修得する ラブラス逆変換(その1) ラプラス逆変換の概念とその性質を理解する ラブラス逆変換(その1) ラプラス逆変換の概念とその性質を理解する ラブラス逆変換(その3) 与えられた関数のラブラス逆変換の計算法を修得する ラブラス逆変換(その3) 与えられた関数のラブラス逆変換の計算法を修得する ラブラス変換の応用 ベクトル解析(その1) ベクトルの微分積分の概念を理解し、その計算法を修得する ベクトル解析(その2) スカラー場、ベクトル場の概念を理解し、その計算法を修得する ベクトル解析(その3) スカラー場、ベクトル場の概念を理解し、その計算法を修得する		,		十算法を	修得す	- る	2
2変数関数の積分法 (その4) 2重積分の変数変換を修得する 立体の体積や曲面積の求め方を修得する 立体の体積や曲面積の求め方を修得する 行列の固有値の概念とその計算法を修得する 緑形代数 (その2) 行列の固有値の概念とその計算法を修得する 行列の固有ベクトルの概念と計算法を修得する 緑形代数 (その3) 行列の固有べクトルの概念と計算法を修得する 緑形代数 (その4) 対称行列を直交行列で対角化する方法を修得する 緑形代数 (その5) 行列の対角化を利用して、行列のn乗を計算する方法を修得する 微分方程式の解法 (その1) 変数分離形、同次形の微分方程式の解法を修得する 微型微分方程式の解法を修得する 定数係数同次高階線形微分方程式の解法を修得する 定数係数同次高階線形微分方程式の解法を修得する 定数係数非同次高階線形微分方程式の解法を修得する ラブラス変換 (その1) ラプラス変換の耐法を修得する ラブラス変換(その3) ラえられた微分方程式のラプラス変換の計算法を修得する ラブラス逆変換(その1) ラブラス変換の概念とその性質を理解する 有理関数のデクタ数分解を修得する ラブラス逆変換(その2) ラえられた微分方程式のラプラス変換の計算法を修得する ラブラス変換の応用 ラブラス変換の応用 マクトル解析(その1) マクトル解析(その1) ベクトルの微分積分の概念を理解し、その計算法を修得する ベクトル解析(その3) ベクトル場の概念を理解し、名配の計算法を修得する		,	2 重積分を累次積分に変形する方法を修得する				2
 重積分の応用 歳形代数(その1) 線形代数(その2) 線形代数(その3) 線形代数(その3) 行列の固有べクトルの概念と計算法を修得する 線形代数(その4) 対称行列を直交行列で対角化する方法を修得する 線形代数(その5) 行列の対角化を利用して、行列のn乗を計算する方法を修得する 微分方程式の解法(その1) 変数分離形、同次形の微分方程式の解法を修得する 識型微分方程式の解法を修得する 高階線型微分方程式(その1) 高階線型微分方程式(その2) 高階線型微分方程式(その2) 方ブラス変換(その1) ラブラス変換(その1) ラブラス変換(その3) ラブラス変換(その1) ラブラス逆変換(その2) ラブラス逆変換(その1) ラブラス逆変換(その3) ラブラス逆変換(その3) ラブラス逆変換(その3) ラブラス逆変換(その3) ラブラス逆変換(その3) ラブラス逆変換(その3) ラブラス逆変換(その3) ラブラス逆変換の計算法を修得する ラブラス逆変換(その3) ラズシス変換の利用した微分方程式の解法を修得する ブラス変換の応用 ベクトル解析(その1) ベクトルの微分積分の概念を理解し、その計算法を修得する ベクトル解析(その2) ベクトル場の発散と回転の概念を理解し、その計算法を修得する ベクトル場の発散と回転の概念を理解し、その計算法を修得する 	2変数関数の積分	法 (その3)	極座標による2重積分を修得する				2
線形代数 (その1)	2変数関数の積分	法 (その4)	2 重積分の変数変換を修得する				2
線形代数(その2)	重積分の応用		立体の体積や曲面積の求め方を修得する				2
線形代数 (その 3)	線形代数 (その1)						
線形代数 (その4) 対称行列を直交行列で対角化する方法を修得する	線形代数 (その2)		行列の固有ベクトルの概念と計算法を修得する				
線形代数 (その5)	線形代数 (その3)		行列の対角化の方法を理解し、その計算法を修得す	する			2
 微分方程式の解法(その1) 高階線型微分方程式(その1) 高階線型微分方程式(その1) 高階線型微分方程式(その2) ラプラス変換(その1) ラプラス変換(その2) ラプラス変換(その3) ラプラス逆変換(その1) ラプラス逆変換(その1) ラプラス変換(その3) ラプラス逆変換(その1) ラプラス逆変換(その1) ラプラス逆変換(その1) ラプラス逆変換(その1) ラプラス逆変換(その1) ラプラス逆変換(その1) ラプラス逆変換の概念とその性質を理解する ラプラス逆変換(その2) ラプラス逆変換(その3) ラプラス逆変換(その3) ラプラス変換の計算法を修得する ラプラス逆変換(その3) ラプラス変換の計算法を修得する ラプラス変換の計算法を修得する スクトル解析(その1) ベクトル解析(その1) ベクトル解析(その2) ベクトル場の概念を理解し、その計算法を修得する ベクトル場の発散と回転の概念を理解し、その計算法を修得する ベクトル場の発散と回転の概念を理解し、その計算法を修得する 	線形代数 (その4)		対称行列を直交行列で対角化する方法を修得する				2
 微分方程式の解法(その2) 高階線型微分方程式(その1) 定数係数同次高階線形微分方程式の解法を修得する 定数係数同次高階線形微分方程式の解法を修得する 定数係数非同次高階線形微分方程式の解法を修得する ラプラス変換(その1) ラプラス変換(その2) 与えられた関数のラプラス変換の計算法を修得する ラプラス変換(その3) ラプラス逆変換(その1) ラプラス逆変換(その2) ラプラス逆変換(その2) ラプラス逆変換(その2) ラプラス逆変換(その3) ラプラス逆変換(その3) ラプラス逆変換の応用 ベクトル解析(その1) ベクトル解析(その2) ベクトル解析(その2) ベクトル場の概念を理解し、その計算法を修得する ベクトル場の概念を理解し、名の計算法を修得する ベクトル場の概念を理解し、その計算法を修得する ベクトル場の概念を理解し、その計算法を修得する ベクトル場の概念を理解し、その計算法を修得する 	線形代数 (その5)		行列の対角化を利用して、行列の n 乗を計算する。	方法を修	を得する こうかん かいかい かいかい かいかい かいかい かいかい かいかい かいかい か	5	2
高階線型微分方程式 (その1) 定数係数同次高階線形微分方程式の解法を修得する 定数係数非同次高階線形微分方程式の解法を修得する 定数係数非同次高階線形微分方程式の解法を修得する ラプラス変換 (その1) ラプラス変換の概念とその性質を理解する 与えられた関数のラプラス変換の計算法を修得する ラプラス逆変換 (その3) 与えられた微分方程式のラプラス変換の計算法を修得する ラプラス逆変換 (その1) ラプラス逆変換の概念とその性質を理解する ラプラス逆変換 (その2) 有理関数の部分分数分解を修得する ラプラス逆変換(その3) 与えられた関数のラプラス逆変換の計算法を修得する ラプラス変換の応用 ラプラス変換を利用した微分方程式の解法を修得する ラプラス変換の応用 ベクトル解析(その1) ベクトル解析(その2) スカラー場、ベクトル場の概念を理解し、名配の計算法を修得する ベクトル解析(その3) ベクトル場の概念を理解し、その計算法を修得する ベクトル解析(その3)	微分方程式の解法	(その1)	変数分離形、同次形の微分方程式の解法を修得する	3			2
高階線型微分方程式 (その2)	微分方程式の解法	(その2)	線型微分方程式の解法を修得する			1	2
ラプラス変換 (その1) ラプラス変換の概念とその性質を理解する ラプラス変換 (その2) 与えられた関数のラプラス変換の計算法を修得する ラプラス変換 (その3) 与えられた微分方程式のラプラス変換の計算法を修得する ラプラス逆変換 (その1) ラプラス逆変換の概念とその性質を理解する ラプラス逆変換 (その2) 有理関数の部分分数分解を修得する ラプラス変換の応用 与えられた関数のラプラス逆変換の計算法を修得する ベクトル解析 (その1) ベクトルの微分積分の概念を理解し、その計算法を修得する ベクトル解析 (その2) スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得する ベクトル解析 (その3) ベクトル場の発散と回転の概念を理解し、その計算法を修得する	高階線型微分方程	式 (その1)	定数係数同次高階線形微分方程式の解法を修得する	3			2
ラプラス変換 (その2)与えられた関数のラプラス変換の計算法を修得するラプラス変換 (その3)与えられた微分方程式のラプラス変換の計算法を修得するラプラス逆変換 (その1)ラプラス逆変換の概念とその性質を理解するラプラス逆変換 (その2)有理関数の部分分数分解を修得するラプラス逆変換 (その3)与えられた関数のラプラス逆変換の計算法を修得するラプラス変換の応用ラプラス変換を利用した微分方程式の解法を修得する。ベクトル解析 (その1)ベクトルの微分積分の概念を理解し、その計算法を修得するベクトル解析 (その2)スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得するベクトル解析 (その3)ベクトル場の発散と回転の概念を理解し、その計算法を修得する	高階線型微分方程	式(その2)	定数係数非同次高階線形微分方程式の解法を修得す	する			2
ラプラス変換 (その2)与えられた関数のラプラス変換の計算法を修得するラプラス変換 (その3)与えられた微分方程式のラプラス変換の計算法を修得するラプラス逆変換 (その1)ラプラス逆変換の概念とその性質を理解するラプラス逆変換 (その2)有理関数の部分分数分解を修得するラプラス逆変換 (その3)与えられた関数のラプラス逆変換の計算法を修得するラプラス変換の応用ラプラス変換を利用した微分方程式の解法を修得する。ベクトル解析 (その1)ベクトルの微分積分の概念を理解し、その計算法を修得するベクトル解析 (その2)スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得するベクトル解析 (その3)ベクトル場の発散と回転の概念を理解し、その計算法を修得する	ラプラス変換 (その	01)	 ラプラス変換の概念とその性質を理解する				2
ラプラス逆変換 (その1)ラプラス逆変換の概念とその性質を理解するラプラス逆変換 (その2)有理関数の部分分数分解を修得するラプラス逆変換 (その3)与えられた関数のラプラス逆変換の計算法を修得するラプラス変換の応用ラプラス変換を利用した微分方程式の解法を修得する。ベクトル解析 (その1)ベクトルの微分積分の概念を理解し、その計算法を修得するベクトル解析 (その2)スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得するベクトル解析 (その3)ベクトル場の発散と回転の概念を理解し、その計算法を修得する	`	,	 与えられた関数のラプラス変換の計算法を修得する。	3			2
ラプラス逆変換 (その1)ラプラス逆変換の概念とその性質を理解するラプラス逆変換 (その2)有理関数の部分分数分解を修得するラプラス逆変換 (その3)与えられた関数のラプラス逆変換の計算法を修得するラプラス変換の応用ラプラス変換を利用した微分方程式の解法を修得する。ベクトル解析 (その1)ベクトルの微分積分の概念を理解し、その計算法を修得するベクトル解析 (その2)スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得するベクトル解析 (その3)ベクトル場の発散と回転の概念を理解し、その計算法を修得する	, ラプラス変換 (その	03)	 与えられた微分方程式のラプラス変換の計算法を値	多得する			2
ラプラス逆変換 (その2)有理関数の部分分数分解を修得するラプラス逆変換 (その3)与えられた関数のラプラス逆変換の計算法を修得するラプラス変換の応用ラプラス変換を利用した微分方程式の解法を修得する。ベクトル解析 (その1)ベクトルの微分積分の概念を理解し、その計算法を修得するベクトル解析 (その2)スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得するベクトル解析 (その3)ベクトル場の発散と回転の概念を理解し、その計算法を修得する	`	,	 ラプラス逆変換の概念とその性質を理解する				2
ラプラス逆変換 (その3)与えられた関数のラプラス逆変換の計算法を修得するラプラス変換の応用ラプラス変換を利用した微分方程式の解法を修得する。ベクトル解析 (その1)ベクトルの微分積分の概念を理解し、その計算法を修得するベクトル解析 (その2)スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得するベクトル解析 (その3)ベクトル場の発散と回転の概念を理解し、その計算法を修得する	,	,	 有理関数の部分分数分解を修得する				2
ラプラス変換の応用ラプラス変換を利用した微分方程式の解法を修得する。ベクトル解析(その1)ベクトルの微分積分の概念を理解し、その計算法を修得するベクトル解析(その2)スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得するベクトル解析(その3)ベクトル場の発散と回転の概念を理解し、その計算法を修得する	`	<i>'</i>	 与えられた関数のラプラス逆変換の計算法を修得す	する			2
ベクトル解析(その1) ベクトルの微分積分の概念を理解し、その計算法を修得する ベクトル解析(その2) スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得する ベクトル解析(その3) ベクトル場の発散と回転の概念を理解し、その計算法を修得する	`	/					2
ベクトル解析 (その2) スカラー場、ベクトル場の概念を理解し、勾配の計算法を修得する ベクトル解析 (その3) ベクトル場の発散と回転の概念を理解し、その計算法を修得する							
ベクトル解析(その3) ベクトル場の発散と回転の概念を理解し、その計算法を修得する	`	` '					$\frac{2}{2}$
	,	,				1	2
	,	,			, 3		2
ベクトル解析 (その 5) 発散定理を理解する	,	,		•			2
ベクトル解析(その6) グリーンの定理、ストークスの定理を理解する	,	,					2
	× 1,7-131 NI (C •	/	A CONTRACTOR OF THE STATE OF TH				計 60

学業成績 法	責の評価方	授業中に取り組む 認める。	演習プリントにより評価す	る。演習プリントは完全に	解答できたもののみ提出を
関連科目	∃	応用数学 I・応用	数学 II・応用数学 III・応用]数学 IV	
教科書	・副読本	その他: 自作の教	材プリントおよび演習プリ	ント	
			評価 (ルーブリ	ック)	
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	理を理解に対する	こ関わる重要な定解し、様々な関数る微分、積分を行びできる.		基礎的な一変数関数の微分,積分ができる.	基礎的な一変数関数の微分,積分ができない.
2		数分方程式の一般 その特殊解を導く できる.	基本的な微分方程式の一般解及びその特殊解を導 くことができる.	変数分離形や線形微分方程式の問題を解くことができる.	変数分離形の基本的な微 分方程式が解けない.
3	ルを求め	国有値, 固有ベクト りられ, 行列を対角 ることができる.	行列式や連立方程式,ベクトルの諸定理を理解し,導くことができる.	行列演算における基本的な性質を理解し、計算することができる.	行列の演算における基本 的性質を理解することが できない.
4	様々なな	ス変換に関わる 公式を駆使し,微 式に応用すること 3.	ラプラス変換に関わる基本的な公式を導くことができる.	基本的な関数のラプラス 変換を行うことがでいる.	最も基本的なラプラス変 換を行うことができない.
5	意味を理	散・回転の数理的 理解し,様々な定理 することができる.	簡単なベクトル関数において、勾配・発散・回転を求めることができる.	ベクトルにおける簡単な 微分, 積分ができる.	ベクトルにおける簡単な 微分, 積分ができない.

授業の形態		担当教員 篠原知子 (常勤)・中西泰雄 (常勤) をの授業で学んだ、線形代数、微分積分、確率・統計、 を行いながら概念の厳密な定義を理解し、より高度	学年 4 ***********************************	単位 2	開講時数 通年 2時間	種別 選択			
(Special Topics in I) 授業の概要 授業の形態	これまでの数学 理論の一般化な			_		選択			
授業の形態		やの授業で学んだ、線形代数、微分積分、確率・統計、 を行いながら概念の厳密な定義を理解し、より高度							
	講義	2 14 3 15 15 15 15 15 15 15 15 15 15 15 15 15	な数学的	程式, 社考察力	复素解析に]を身につ	.ついて, ける.			
授業の進め方									
	的な思考と数学	た多くの演習問題を解くことにより,講義内容の理解 学的処理能力を身につけさせる. 行い自学自習の習慣を身に着ける.	異を深め	ると同	時に数学	的,論理			
	2. 一般的な線	密な理論展開を理解し,極限や収束性を取り扱うこ 形空間,線形写像について理解し,基底や次元の計 いての理解を深め,微分方程式,複素関数論の応用 の現象(力学または確率統計など)に応用し,現象	算をす	ることフ	ができる. とができる とができる).).			
容との関連	なし								
DD /-	\	合的実践的技術者として、数学・自然科学・自らの 倫に関する知識をもち、工学的諸問題にそれらを応				的な技術			
		講義の内容							
項目		目標				時間			
ガイダンス、記号の		ガイダンス. 今後の授業で用いる数学的記号を理解				2			
実数空間と数列の植	亟限	実数空間について理解し、数列の取り扱いについて			_	2			
関数の極限	₹	実数空間上の関数の極限について理解し、連続関数の関係の実際に対して理解し、連続関数	数の定義	きを与え	.る.	2			
連続関数の基本性質	-	中間値の定理,最大値の定理を理解する. 関数の微分の定義を理解し,平均値の定理を理解 [~]	ナス			$\frac{2}{2}$			
微分可能関数の基本性質 関数の微分の定義を理解し、平均値の定理を理解する. 無限級数の収束・発散の定義を理解する.									
Taylor 展開		関数が Taylor 展開できる条件を理解し、収束半径を求めることができる。							
問題演習		微分積分についての問題を演習する.				2			
中間試験		中間試験を行う				2			
行列の階数と連立ス		行列の階数の理論を用いて連立方程式の解の性質を		•		2			
線形空間の定義と基準形容像の理論	基本性質	線形空間と線形部分空間の定義を理解し、具体例を	を理解す	⁻ る.		2			
線形写像の理論 行列の対角化とその	の応用	線形写像の定義を理解し,次元公式を理解する. 固有値・固有ベクトルを求め,行列を対角化し,応	· 田 月月日	お紹ノ	こしがつ	4			
11790/21円16とそり	クルい刀	回有順・回有ペクトルを求め、11列を利用化し、元 きる。)川间と	で所へ	C Z M3 (4			
問題演習		線形代数についての問題を演習する.				2			
1 階常微分方程式		微分方程式の意味を理解し,変数分離系の微分方程		•		2			
線形微分方程式		未定係数法と、微分演算子法により線形微分方程す	式が解じ	する.		4			
問題演習		いくつかの応用的な微分方程式の問題を演習する	よぶ岳刀) しゃ			2			
複素数と方程式 正則関数と複素積分	4	複素数の計算を学び、極形式を用いて代数方程式が複素関数の微分可能性を理解し、複素積分の計算				$\frac{2}{2}$			
止則関数と復素積分	-	複素関数の微分可能性を理解し、複素積分の計算が コーシーの積分定理とコーシーの積分表示につい。				$\frac{2}{2}$			
留数定理	, 1	コーシーの債力に埋とコーシーの債力表示につい 留数の計算を理解し、複素積分を求めることができ		ં.		$\frac{2}{2}$			
問題演習		複素積分の実関数の積分への応用問題を演習する。				2			
中間試験		中間試験を行う				2			
数学の応用		数学を実際の現象(力学または確率統計など)に応	用し, 現	見象を解	解析する.	8			
AMARKAN ATTACK	4	A CARLOS ALL DESTRUCTION AND A PROPERTY OF A PARTY OF A))·	m* 1		計60			
学業成績の評価方 法	4回の定期試験	鹸の成績 (80 %),演習プリント提出状況 (20 %) に	より評価	曲する.					
関連科目	微分積分・線形 応用数学 I ~Γ	ド代数 I・線形代数 II・解析学基礎・基礎確率統計・V	・数学特	i論 III					
教科書・副読本	参考書: 「基礎保勝夫 (日本語	・ 整微分積分学第3版」江口正晃,他 (学術図書出版社 評論社)・「新 確率統計」高遠節夫他 (大日本図書)・「 (裳華房),その他: 講義用プリントを配布する							

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	数列,級数,無限級数,極限に関する応用問題を解くことができる.	関数の不連続性, 微分不可能性を極限を用いて示すことができる. 無限級数の収束・発散を理解し,収束半径を求めることができる.	関数の不連続点, 微分不可能点を理解している. 基本的な関数のテイラー展開を求めることができる.	関数の不連続点, 微分不可能点を理解していない. テイラー展開を求めることができない.
2	行列の対角化を理解し,線 形空間の応用問題を解く ことができる.	線形写像の核と像の基底 や次元を求めることがで きる.対称行列を直交行 列を用いて対角化できる.	簡単な線形空間の基底や次元を求めることができる. 行列の固有値, 固有ベクトルを求めることができる.	線形空間の基底や次元を 求められない.線形写像 の核と像を理解していない.行列の固有値,固有 ベクトルを求めることが できない.
3	変数を変換して微分方程 式を解くことができる. 複素関数の留数を求めて, 複素積分を求めることが できる.	を微分演算子を用いて求めることができる. コー	変数分離系、線形微分方程式を解くことができる。 ド・モアブルの定理を用いて複素数を計算できる。 複素関数の正則性をコーシー・リーマンの方程式を用いて示すことができる。	変数分離系,線形微分方程式を解くことができない.極形式を用いた複素数の計算ができない.
4	実際の現象について, 数学を用いて, 立式, 理論の展開, 解析などを自ら行うことができる.	数学を実際の現象 (力学または確率統計など) の問題に応用し、標準的な問題を解くことができる.	数学を実際の現象 (力学または確率統計など) の問題に応用し, 簡単な問題を解くことができる.	数学を実際の現象 (力学または確率統計など) に応用することができない.

科目名		担当教員	Į	学年	単位	開講時数	種別
基礎確率統計 ()				4 • 5	1		選択
授業の概要	工学の基礎とな 解の定着を図り	なる確率・統計の基本的な内容),応用の場面において十分な	について教授する。間 は活用が出来るように	問題演習 する。	を多く	行うことに	により理
授業の形態	講義						
授業の進め方		Fの理解を深め応用力を養うた Fい自学自習の習慣を身に着し		1			
到達目標	2. 条件付き確2	内な概念を理解し,確率に関 率,ベイズの定理について理! 中心極限定理を理解し,正!	解し. これを用いた確	率の計	算ができ 処理する	きる。 ることがて	ごきる。
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数 論に関する知識をもち、工学的					的な技術
		講義の内容	容				
項目		目標					時間
確率の基礎		場合の数を用いて基本的な確	[率の計算ができる。				4
確率変数		確率変数・数学的確率の意味	·			できる。	4
平均値と分散		平均値と分散について理解し	*		-		4
条件付き確率		条件付き分布について理解し				-	4
ベイズの定理		ベイズの定理について理解し				-	4
二項分布・正規分	布	正規分布について理解し, 正中心極限定理を理解し, 二項正規分布を応用して簡単な検	- 規分布の基本的な計算 [分布を正規分布で近位 [定の処理が出来る	算ができ 以する言	きる。 十算がて	ぎる。	10
			(たり)で注が 田水 す。				計 30
学業成績の評価方 法	授業中に行う記	果題演習の提出状況や確認テス	ストの点数により評価`	する。			
関連科目							
教科書・副読本	その他: 講義櫻	{要のプリントと演習プリント	を授業時に配布する				
		評価 (ルーブリ	リック)				
到達目標 理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目的	マ (可)	未到達	レベルの目安	(不可)
数の定理	敗, 平均値, 分散, 理について理解し 用いた複雑な確 ができる。	、, ついて理解し, これを求め	簡単な確率の計算がる。	でき	確率の記	計算ができ	ない。
2 条件付き 理につい	き確率, ベイズの いて理解し, 様々 事象を説明し, 計	な 定理について理解し、基	めることができる。				里解でき
	තを用いて, 検定 々な応用ができる				正規分できない	布を用いた。	た計算が

科目名			担当教員		学年	単位	開講時数	種別	
物理学特 (Advance	論 I ed Physic	s I)	深野あづさ (常勤)		4	1	前期 2 時間	選択	
授業の概要	要	低学年で学んた を通じて学習で	ご力学について微分・積分を用 する。	いて説明して理解する	と共に	、問題	が解ける。	よう演習	
授業の形態	態	講義							
授業の進	め方	講義と演習を「 予習,復習を行	中心に行う。理解を深めるため 行い自学自習の習慣を身に着け	の演習問題や小テス る。	トを実加	拖する。			
到達目標		1. 質点の運動 2. 剛体の運動	方程式をたて、質点の運動に関 方程式をたて、剛体の運動に関	する問題を解くこと する問題を解くこと	ができ ができ	る。 る。			
実務経験を容との関係	と授業内 連	なし							
学校教育 関係	目標との	\	合的実践的技術者として、数学 論に関する知識をもち、工学的					的な技術	
			講義の内容						
項目			目標					時間	
ガイダン	ス		授業の概要と進め方などを説明する。						
質点の位	置		位置ベクトルについて理解する。						
内積と外								2	
質点の速	度、加速	度	速度と加速度を微分形で導く	0				2	
運動方程式と力 質点に力が働く場合の運動方程式を導く。							2		
放物運動 重力中の運動方程式を導き、その解を求める。						2			
摩擦力と	粘性力		摩擦力・粘性力が働く場合の	運動方程式を導く。				2	
到達度確	認試験お	よび解説	学習到達度確認のための試験の実施およびその解説を行う。					2	
単振動			単振動の方程式を導きその解	を求める。				2	
エネルギ	ー保存則		エネルギー保存則を用いて物	体の運動を調べる。				2	
運動量保	存則		運動量保存則を用いて物体の	運動を調べる。				2	
剛体のつ	りあい		剛体のつりあい条件を導く。					2	
慣性モー	メント		慣性モーメントについて理解	する。				2	
剛体の運	動		剛体の運動方程式を導き、そ	の解を求める。				2	
到達度確	認試験お	よび解説	学習到達度確認のための試験	の実施およびその解詞	見を行う	5 。		2	
								計 30	
法	の評価方	る。状況によっ	式験の得点を 80 %、課題点おる って再試を実施することがある		を 20 %	6と <u>して</u>	、総合的	に評価す	
関連科目		物理I・物理I	I・物理学演習・物理学実験						
教科書・	書・副読本 参考書: 「詳解物理学」原 康夫 (東京教学社), その他: 授業で毎回自作プリントを配布する							する。	
			評価 (ルーブリ 	ック)					
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目室	そ(可)	未到達	レベルの目安	(不可)	
1	方程式を分を用い	運動について、運 注理解し、微分や いて、応用問題を いできる。	積 動方程式を理解し、微分	、微分 分や積分を用いた表現を 分や積分を用いて					
2	剛体のつり合い、慣性モー メント、剛体の運動方程式 を用いて、応用問題を解く 事ができる。					ーメント			

科目名				学年	単位	開講時数	種別			
物理学特論 II (Advanced Physi	cs II)	深野あづさ (常勤)		4	1	後期 2 時間	選択			
授業の概要	電磁気の法則に て学習する。	ついて微分・積分を用いて説	明して理解すると共に	二、問題	が解け	るよう演	習を通じ			
授業の形態	講義									
授業の進め方	講義と演習を中 予習,復習を行	心に行う。理解を深めるため い自学自習の習慣を身に着け	の演習問題や小テストる。	トを実加	をする。					
到達目標	1. 電磁気学の基2. 電磁界から多	基礎法則に関して微分・積分を 受ける力、電気と磁気の相互(を用いて表現すること 作用について理解でき	ができ る。	る。					
実務経験と授業内 容との関連	なし									
学校教育目標との 関係	\ /	合的実践的技術者として、数学 aに関する知識をもち、工学的					的な技術			
講義の内容										
項目		目標					時間			
ガイダンス 授業の概要と進め方などを説明する。										
クーロンの法則を理解する。							2			
ガウスの法則		ガウスの法則を用いて電場を	*				4			
電場と電位		電位と電場の関係について理解する。					4			
コンデンサー		コンデンサーについて理解す	•		_		2			
到達度確認試験お	よび解説	学習到達度確認のための試験		見を行う) ₀		2			
電流と磁場①		ビオ・サバールの法則を用いて磁場を求める。					2			
電流と磁場②		アンペールの法則を用いて磁場を求める。 電流が磁場から受ける力について理解する。					2			
電流と磁場③ 電磁誘導			いて理解する。				2			
■電磁誘導 回路と過渡現象		電磁誘導の法則を理解する。 回路の過渡現象について理解	オフ				$\frac{2}{2}$			
荷電粒子の運動		電磁界中での荷電粒子の運動					$\frac{2}{2}$			
何電位		学習到達度確認のための試験	****	首を行う	5		$\frac{2}{2}$			
20天上/文 旧田市心田/例天 6、) よ O /) 开 IDL	1日对于文服的"万亿"为"万的人		/L C J ,	0		計 30			
 学業成績の評価方 法	2回の授業内記 る。状況により	【験の得点を 80 %、課題点お。) 再試験を行うことがある。	よび授業への取組み点	を 20 %	6として	、総合的				
関連科目	物理 III・物理	学実験								
教科書・副読本	参考書: 「詳解	物理学」原 康夫 (東京教学	,	手 回自作	 アリン	トを配布	する。			
		評価 (ルーブリ	ック)							
到達目標 理想的な	は到達レベルの目安 (優	・ベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不								
いて、	学の基礎法則に 微分や積分を用 問題を解くこと。	い いて、微分や積分を用いて	電磁気学の基礎法則 いて、微分や積分を た表現を理解し、基 題を解くことができ	用い一機問	いて、往	学の基礎注 微分や積分 ができない	分を用い			
気と磁	から受ける力、 気の相互作用に 応用問題を解く る。	つ 気と磁気の相互作用につ		につ	気と磁気	から受ける 気の相互付 里解できな	作用につ			

科目名			担当教員		学年	単位	開講時数	種別		
工業化学概論 (Industrial Chem	istry)	池田宏 (常勤)			4	1	後期 2 時間	選択		
授業の概要	主に機械系及び 科目を学ぶ上で	電気系の材料 の教養とする	や素材に関係す	る最新のトピックス	を盛り込	込んだ内	容を講義	し、専門		
授業の形態	講義									
授業の進め方	講義とミニレポ 予習、復習を行	ート作成を中 い自学自習の	心に展開する。 習慣を身に着け	また、講義内におい する。	て、適	宜、演习	宗実験を行	う。		
到達目標	2. 液晶の原理 3. 有機 EL の原 ことができる 4. 有機伝導体	・特徴について 理と特徴について ・有機磁性体が	て正しく理解できいいて正しく理解でいい。 でいて正しく理解できる。 でいる電気系材料や	て正しく理解できる きる とし、有機 EL に関す への応用について理解 展的な内容について理	な深め	ることが	ができる			
実務経験と授業内 容との関連	なし									
学校教育目標との 関係				学・自然科学・自らの 対諸問題にそれらを応				りな技術		
講義の内容										
項目		目標						時間		
ガイダンス			•	における化学の役割			_	2		
基本的な有機材料		いて考える		特徴について学び、村				4		
液晶		例について考	える	いての理解を深めたる				6		
有機 EL の原理についての理解を深めたあと、機能性材料としての役割を 考察する								6		
有機 EL(演示実験 		める		5演示実験を行うこと				2		
有機伝導体と有機		と、電気材料	への応用につい					6		
ナノマシーン(分	·子機械)	ナノマシーン める	(分子機械)の	現状と今後の発展性に	こついて	考え、	理解を深	4		
MANUAL SALES TO THE LANGE OF TH		o()) _ \) (2.2.2.1) - I	I - → -	T - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	 	計 30		
学業成績の評価方 法	定期試験(70 の講義で解説す	「%)、単元ご ⁻ る。	との講義ミニレ	ポート(30%)の♪	七半で計	¥価する	。詳細は多	第1回目		
関連科目	化学 I、化学 II	、課題研究(化学系)							
教科書・副読本		有機化学」中 所(講談社)	筋 一弘ら編(東京化学同人),参考	(書: 「	目で見る	る機能性有	'機化学」		
	ı	•	評価 (ルーブリ	ック)						
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達	をしべルの目安 (良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)		
	的な有機材料の 数について正し きる		な有機材料の構 こついて理解し	単分子的な有機材料 造について説明でき	る	造と特征	的な有機材 徴について ていない	オ料の構 て正しく		
2 液晶の て正し	原理と特徴につ く理解できる	い 液晶の原理 て理解して	埋と特徴につい ている	液晶の原理について できる	て説明	液晶の原でである。	原理と特徴 く理解して	数につい いない		
ついてī EL に関	有機 EL の原理と特徴に ついて正しく理解し、有機 EL の原理と特徴につ いて理解し、有機 EL の原理と有機 EL の原理と有能 EL の原理と有能 EL の原理と有能 EL の原理と有能 EL の原理と有能 EL の原理と有能 EL の原理を有能 EL の原理と有能 EL の用を EL の用を EL の EL の用を EL の EL の原理と有能 EL の EL			Eしく理解 する演示詞	し、有機 実験につ					
から電気 につい とができ		用 から電気系 こ について理	本と有機磁性体 系材料への応用 単解している	から電気系材料へ6 について説明できる	の応用	から電気 につい ない	導体と有機 気系材料へ て理解を浴	への応用 深めてい		
につい	シーン(分子機械 ての発展的な内 て理解を深める きる	容 についての	-ン(分子機械) の発展的な内容 理解している	ナノマシーン(分子についての発展的だについて説明できる	な内容	につい	ンーン(分 ての発展的 て理解を <i>浴</i>	りな内容┃		

科目名		担当教員		学年	単位	開講時数	種別			
総合化学特論 (Special Topics in	Chemistry)	鶴巻英治 (非常勤)		4	1	前期 2時間	選択			
授業の概要	物理化学と有機 て、実践的な様	&化学を中心とした高度な内容 莫擬演習も適宜行い、化学に対	の講義と演習を行う。 する応用力も身につり	また、 ける。	大学編	入学試験を	を見据え			
授業の形態	講義									
授業の進め方	講義と大学編7 予習,復習を行	、学試験の問題演習を中心に展 5い自学自習の習慣を身に着け	開する。 る。							
到達目標	1. 物理化学分野 2. 有機化学分野 3. 大学編入学	野の高度な内容を習得し、この 野の高度な内容を習得し、この 試験の模擬演習を通して、実践)分野の問題解決に応)分野の問題解決に応 え的な入試問題に対応	用でき 用できる	るる					
実務経験と授業内 容との関連	なし									
学校教育目標との 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					りな技術			
講義の内容										
項目		目標					時間			
ガイダンス		総合化学特論を受講するにあ	たって				2			
物理化学の応用		原子の電子軌道から分子軌道 成軌道についても理解する。 気体の状態方程式を学び、気体 相平衡と溶液の束一的性質に	さらに、構造式の書き に関する一般的な法	き方を習 則を理論	f結合や 習得する 解する。	多様な混っ。	8			
物理化学の模擬演習 物理化学分野における実践的な演習を行い、編入学試験に対応できる力を 養う。							6			
有機化学の応用 電荷の偏りから共鳴と共役について学び、誘起効果と共鳴効果について正しく はく理解する。立体異性体について、立体配置と立体配座について正しく 理解し、順位則(CIP 則)を用いて投影図が書けるようにする。ハロゲン 化アルキルに対する脱離、置換反応を理解する。さらに、一般的な有機反応について理解を深める。							8			
有機化学の模擬演	習	有機化学分野における実践的 養う。	な演習を行い、編入学	試験に	対応で	きる力を	6 計 30			
学業成績の評価方 法	定期試験709	6、演習レポート30%の比率	で評価する。詳細は	第1回	目の講家	養で解説す	る。			
関連科目	化学特論 I・化	学特論 II								
教科書・副読本	Engineer Libra	福 高専の化学問題集(第2版 ary 化学」小林淳哉 (実教出 on 著 (東京化学同人),その他:	版)・「ブラディ 一船							
		評価 (ルーブリ	ック)							
到達目標 理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	₹ (可)	未到達	レベルの目安	(不可)			
容を習得	学分野の高度な 得し、この分野 問題解決に応用	野の 容を習得し、この分野の 容を習得している 容を習得していな								
容を習	学分野の高度な 得し、この分野 問題解決に応用	内 有機化学分野の高度な内 の 容を習得し、この分野の で 問題解決に応用できる	有機化学分野の高度 容を習得している	な内	有機化 容を習行	学分野の高 导していな	高度な内 :い			
習を通り	入学試験の模擬 して、より実践的 題にも対応できる	な 習を通して、実践的な入	大学編入学試験の模習を通して、基礎的 試問題には対応でき	な入	習を通	入学試験の して、基礎 こも対応で	Ě的な入┃			

科目名		担当教員	学年	単位	開講時数	種別	
実用英語 (Practical English	ı)	長森清 (常勤)	4	1	前期 2時間	選択	
授業の概要	スコアアップを	として TOEIC Listening and Reading Test の問題 と目指し出題傾向を把握する。また、実用的な英語を に関する基礎的な知識を得る。その際、自ら学びを得 なめられる。	志向す	る際に	も身につり	ナておく	
授業の形態	講義						
授業の進め方	する。課題も記 修者に応じて記	DEIC L & R を題材とした教材を用いて進める。また、英語の基礎知識に関するトピックる。課題も設定する。指名による演習形式なので、予習を欠かさないこと。辞書必携。進 者に応じて前後する。 習、復習を行い自学自習の習慣を身に着ける。					
到達目標	出題傾向を把捷	辞書などを用いて自力で教科書の問題を解くことを目標に英語力を向上させ、TOEIC L & 題傾向を把握することができる。 授業で扱う英語全般に関する基礎知識を身につけることができる。 主体的に学びを得るよう積極的に授業に参加し学習に取り組むことができる。					
実務経験と授業内 容との関連	なし	î L					
学校教育目標との 関係		B (コミュニケーション力) 総合的実践的技術者として、協働してものづくりに取り組んだり国 社会で活躍したりするために、論理的に考え、適切に表現する能力を育成する。					
		講義の内容					
項目		目標				時間	
オリエンテーショ Travel	ョン、Unit 1:	講義演習内容を理解し、授業の学習目標を立てる。 やホテルや旅行会社からのメールなどの問題を解	空港や 、。	駅での	構内放送	2	
Unit 2 : Dining C	Out	レストランでの会話、予約・注文の確認、開店・移 題を解く。	転のお	知らせ	などの問	2	
Unit 3 : Media		交通情報、天気予報、新聞雑誌・記事、経済ニュー	-スなど	の問題	を解く。	2	
Unit 4: Entertain	ment	チケット売り場での会話、美術館・博物館のアナウンスなどの問題を解く。					
Unit 5 : Purchasi	ng	店員や客との会話、商品の注文・変更・返品のメー	-ルなど	の問題	を解く。	2	
Unit 6 : Clients		納期・取引先についての会話、スケジュール・納期の変更に関するメール などの問題を解く。				2	
Unit 7 : Recruitir	ng	求人に関する会話や問い合わせ、求人応募メールなどの問題を解く。				2	
Unit 8 : Personne		研修・退職・移動に関する会話やお知らせなどの問				2	
Unit 9: Advertisi	0	店内放送、広告の依頼や宣伝方法に関する会話なる			0	2	
Unit 10: Meeting		会議の準備・変更に関する会話や会議の抜粋などの				2	
Unit 11: Finance		予算や費用に関する会話やアナウンス、請求書や見などの問題を解く。	L 積もり	に関す	るメール	2	
Unit 12 : Offices		同僚同士の会話や業務連絡に関するメモやメールに			_	2	
Unit 13 : Daily li	fe	医療機関・不動産・公共料金・工事に関する会話や解く。				2	
Unit 14 : Sales & Marketing		売上に関する分析、業績や取引に関する会話や顧客満足度アンケート調査 などの問題を解く。				2	
授業のまとめ 授業の学習内容や目標達成度を振り返り、今後の学習計画を立てることができる。				2			
計 30							
学業成績の評価方 法	試験×2回(7 態度・貢献度	′0 %)+参加状況(30 %)。「参加状況」は、小テラ で測る。状況により再試験を行うことがある。	くトの成	績、発	表、授業・	への参加	
関連科目							
教科書・副読本		High Road to the TOEIC(R) Listening and Readi 皇堂)・「TOEIC L & R TEST 出る単特急 金のフレ					

	評価 (ルーブリック)					
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)		
1	辞書などを用いて自力で 教科書の問題を解くこと を目標に英語力を十分に 向上させ、TOEIC L & R の出題傾向をしっかりと 把握することができる。	辞書などを用いて自力で 教科書の問題を解くこと を目標に英語力を確実に 向上させ、TOEIC L & R の出題傾向をおおむね把 握することができる。	辞書などを用いて自力で 教科書の問題を解くこと を目標に英語力を向上さ せ、TOEIC L & R の出 題傾向を最低限把握する ことができる。	辞書などを用いて自力で 教科書の問題を解って自力くと を目標に英語力を前 上させることができず、 TOEIC L & R の出題傾 向を把握することができない。		
2	授業で扱う英語全般に関する基礎知識を十分に身 につけることができる。	授業で扱う英語全般に関する基礎知識をおおむね 身につけることができる。	授業で扱う英語全般に関する基礎知識を最低限身 につけることができる。	授業で扱う英語全般に関する基礎知識を身につけることができない。		
3	主体的に学びを得るよう 大変積極的に授業に参加 し学習に取り組むことが できる。	主体的に学びを得るよう おおむね積極的に授業に 参加し学習に取り組むこ とができる。	主体的に学びを得るよう 積極的に授業に参加し学 習に取り組むよう努める ことができる。	主体的に学びを得るよう 積極的に授業に参加し学 習に取り組むよう努める ことができない。		

ショク				兴大) 사 기 기	BB =# n+ W/	1手 DII
科目名		担当教員		学年	単位	開講時数	種別
英語特論 (Special English	Seminar)	小林慧 (非常勤)		4	1	後期 2 時間	選択
授業の概要	大学編入希望者 だ文法・構文等	を対象に、編入試験問題や類 を復習しながらさらに強化し	[する演習問題を通じて 、より高度な英文に対	て、これ f応でき	までの る英語	英語の授う 力を身に	業で学ん つける。
授業の形態	受業の形態 講義						
授業の進め方 多くの学生が受験する大学の編入試験問題の演習、および試験問題に対応できる語彙力・構文力を高めるための問題演習を多くおこなう。受講者に応じて、内容が前後することがある。 予習、復習を行い自学自習の習慣を身に着ける。					構文理解 。		
到達目標	1. 英文の構文を 2. 英文の構造を	と把握し、英文の意味を理解で と把握するための文法が理解で	できる。 できる。				
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		ーション力) 総合的実践的技術 りするために、論理的に考え				取り組んが	ぎり国際
		講義の内容	7				
項目		目標					時間
ガイダンス		本授業の内容説明、授業ルー	ルの確認、基礎的文法	の確認	テスト	を行う。	2
問題演習 (1)		編入試験問題(長岡技大、豊 について理解できる。小テス することができる。					10
まとめのテスト	(1)	前半の内容について理解の定	着度合いを測り、自己	点検する	ることだ	ぶできる。	2
問題演習 (2)		編入試験問題演習(東工大、 ついて理解できる。小テスト ることができる。	電通大、東大など)を により理解の定着度合	演習しないを測	、文法 り、自	・構文に 己点検す	12
まとめのテスト	(2)	後半の内容について理解の定	着度合いを測り、自己.	点検する	ることだ	ができる。	2
総括		テストの解説、総まとめを行 きる。	い、授業全体の内容	の確認	をする	ことがで	2
							計 30
学業成績の評価方法 法	ī まとめのテスト どで測る。状況	×2回(70%) +取組状況 とによっては再試験を行うこと	(30%)。「取組状況」 がある。	は、小	テスト	の成績、技	是出物な
関連科目							
教科書・副読本	その他: 教科書	は指定しない。適宜プリント	を配布する。				
		評価 (ルーブリ	ック)				
到達目標 理想的	な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)
	英文の構文を把 は味を精確に理解		平易な英文であれば を把握し、英文の意 理解できる。	味を		構文を把握 意味を理角	
するた	複雑な英文の構造を把握 するための文法が、精確 に理解できる。					量するた きない。	

科目名				担当教員			学年	単位	開講時数	種別
課題研究 (Task-ba	t ased Studi	,		日航平 (常勤)・山岸弘幸 (7	,	,	4	1	集中	選択
授業の棚	ボ 要	アクティブ・ラ 生との討論を通 の設定、調査、 開する。	ラー: 通し 研タ	ニング科目。担当教員の専 て設定し、それに沿って学 党等を通じて、学生が自主	門性に 習・調査 的・継続	関連した課題 査・研究等をで 記的に学習する	(化学系) けすめ、 お能力を	系、国語 成果の 発育むこ	系、数学 報告を行 とを目的	系) を学 う。課題 として展
授業の形	態	演習								
授業の進	態め方	立てる。必要に行う。研究成長	により課題を設定する。3~4人のグループごとに課題解決のための手法を検討し学習計画をる。必要に応じて、学習・フィールドワーク・調査活動等を行い、得られた知見を基に研究を。研究成果は課題研究合同発表会にて発表する。 、復習を行い自学自習の習慣を身に着ける。						習計画を こ研究を	
到達目標		3. グループ内	で協	法を検討し、学習計画を立 主的、継続的に学習、調査 力して作業を進めることだ まとめ、わかりやすく発表	ぶできる。	0	等を進	めるこ	とができる	,) ₀
容との関		なし								
学校教育 関係	育目標との こうしん	A (学習力) 総·	合的	実践的技術者として、自当	と的・継	続的に学習す	る能力	を育成、	する。	
				講義の内容	\$					
項目			目標							時間
1. ガイク			1	イダンスを受け、日程調整		ナを行う。 授業	業の概要	更を理解	する。	2
2. 課題の	~	1.5 - 1.1	1	義を行い、課題を決定する		h. I				2
	解決手法の)検討	1	央に必要な知識を洗い出し ####################################						2
4. 学習	1 1° 11	カー語木		講講義等、学習計画に沿い						6
5. ノイ 6. 課題の	ールドワー の検討	つ、調宜	1	ィールドワーク、調査、実 夏を解決する手段を検討す		て夫虺りる。				$\frac{6}{4}$
—	の医的 ゼンテーシ	/ョン進備		out かんりょう なっぱん 使的り レゼンテーションの資料を		,				4
	- ・ / 研究合同発		l	党成果を発表する。	11/9/1/3	0				2
9. 総括	,1,2 to 1, 4,2 t		1	舌を行い、課題研究でまとる	めたこと	について、他	系列を	含めて‡	共有する。	2
										⊒ 1 00
学業成績	気評価方	取り組み状況、	゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	レゼンテーション、成果物	などによ	り評価する。	また、	取り組み	み状況につ	計 30 いては、
法 関連科目		コンタクトタ	イム	表を用いる。						·
教科書・		この他・数科書	赴乃ァ	び副読本に関しては、各担	业 数目の	り指示に トス				
扒什自	田山の八十	(7個, 教科官	3 / X C	評価(ルーブリ		71日小による。				
到達目標	理想的な	到達レベルの目安 (優	₽)	標準的な到達レベルの目安(良)		の到達レベルの目	夕(可)	未到達	レベルの目安	(不可)
1		や計画を自主的	-	解決法や計画を自主的に		イスを受けな	` /		去を検討で	` ′
1	立てる。	とともに状況に良していくこと	[応]	立てることができる	解決法	の検討や計画とができる	を立		立てられな	
2	状況を把握し改良を加ながら学習,調査,フィルドワーク等を進め当の課題よりも大きいもを解決できる			自主的, 継続的に学習, 調査, フィールドワーク等を 進めることができる.	査,フィ	受けながら学 イールドワーク ことができる	7等を	学習, i ワーク ⁽	調査,フ <i>ァ</i> 等を進めら	イールド れない.
3	に分担で 交換し, 改良し	ブループ内で作業を適切 ご分担すると共に、意見 を換し、よりよい方法に 対良しながら作業を進め こことができる。 できる。 がら自分の役割を果たす ことができる。 できる。								
4	成果を説	こもわかるように 適切にまとめ, テーションを行 ごきる.	プ	成果を適切に資料にまとめ,プレゼンテーションを行うことができる.		らの指示を受 果物をまとめ きる.		成果物	をまとめら	れない

科目名						種別
英語 V (English V)	勤	上順代 (常勤)・岡島由以子 (常勤)・福永堅吾 (常)・長岡成幸 (非常勤)		2	通年 2 時間	必修
授業の概要	理工系分野に関連 英文記事の要点理 用能力も高めてい ける。	望する題材をピックアップしたテキストを用い 解や速読の能力を養成する。音声教材、演習問いる。また、卒業研究のアブストラクト等を書	て、語彙 題に取 くための	の習得、 り組みな)基礎的	論文の読がら、表現な英語力を	み取り、 見力や運 を身につ
授業の形態	講義					
授業の進め方	文記事の読解およ でもらう。	沿って、理工系分野でよく使われる語彙、表明 び演習問題に取り組む。その他、小テストや関 自学自習の習慣を身に着ける。	の確認、 連する	資料読 寅習問題	み取りの? などにもF	寅習、英 仅り組ん
到達目標	1. 理工系分野の語彙を理解し、運用できる。 2. 英文記事の梗概を把握できる。					
実務経験と授業内 容との関連		なし				
学校教育目標との 関係		ション力) 総合的実践的技術者として、協働し するために、論理的に考え、適切に表現するf			取り組んが	ぎり国際
		講義の内容			Т	
項目		標構を(コギュー)の基本記事が理解をきて				時間
Chapter 12 Chapter 13	•	機械系(ロボット)の英文記事が理解できる。英文作成に必要な英文法が理解できる。				8
Chapter 15		・化学系(気体)の英文記事を理解できる。 ・英文作成に必要な英文法が理解できる。				
Chapter 14	・電気・エネルギー(再生可能エネルギー)についての英文記事を理解できる。				8	
Chapter 15	・英文作成に必要な英文法が理解できる。 ・バイオについての英文記事を理解できる。 ・英文作成に必要な英文法が理解できる。				8	
Chapter 16	・電子 (スパコン) についての英文記事を理解できる。 ・英文作成に必要な英文法が理解できる。				4	
Chapter 17	:	機械系 (スマートフォン) の英文記事を理解で 英文作成に必要な英文法が理解できる。	ぎきる。			4
Chapter 18	•	機械系(Robot Wheelchair)の英文記事を理解 英文作成に必要な英文法が理解できる。		0		4
Chapter 19	•	情報系(DNA software)の英文記事を理解で 英文作成に必要な英文法が理解できる。				4
Chapter 20 Chapter 21	•	機械・物理系 (テラヘルツ波) の英文記事を理 英文作成に必要な英文法が理解できる。 エネルギー(風力発電)についての英文記事を				4
Chapter 21	•	英文作成に必要な英文法が理解できる。	生件(∂ ⊘。		4
Chapter 22		情報系(コンピューター)の英文記事を理解で 英文作成に必要な英文法が理解できる。	ぎる。			4
	*	コースによって扱う Unit を変更する場合があ	る。			計 60
学業成績の評価方 法	定期試験 60 %、〕 試験を行うことか	取組状況(小テスト、課題など)40 %から総合 ぶある。	的に評価	画する。	状況によ	
関連科目	英語 I・英語 II・	英語 III				
教科書・副読本		ニアのための総合英語 Getting to Know Eng 上本智子、Ashley Moore、Erik Fritz、Tanya N る。				
		評価 (ルーブリック)				
到達目標 理想的な	は到達レベルの目安 (優)	標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの[安 (可)	未到達	レベルの目安	(不可)
1 理工系し、正確	分野の語彙を理解 確に運用できる。	理工系分野の語彙を理解 し、おおむね運用できる。 し、どうにか運用			分野の語∮ 運用でき	
2 英文記	 事の梗概を正確に	英文記事の梗概をおおむ 英文記事の梗概を	半分以	本 文記	車の種概を	<u></u> と把握で

科目名			担当教員				種別	
日本語表 (Japane	長現法 II se Express	sions II)	高野光男 (常勤)		5	1	後期 2 時間	選択
授業の概	双要	学習する。具体 者、IT のスペ 演をオムニバス	7としての言語表現力を磨くという作的には「中小企業家経営塾」を授業シャリストなど、学生にとっても関い形式で進める。司会・講師紹介・記言語表現力を身に付けていく。	業内企画として行 関心が高いゲスト。	う。第 スピー	一線でカーを	活躍する』 授業に招い	企業関係 いて小講
授業の刑	態	講義	義					
授業の進	態め方	を学習したある 業の中盤で、一 業担当者が手	つるための司会の役割や進行方法、 た、3~4人のグループに分かれ、 上度振り返りを行い、課題を明らかけ でする。 行い自学自習の習慣を身に着ける。	それぞれのグルー	プが小	、講演を	担当してい	いく。授
到達目標		2. 講演の要旨	質問の対応、講演のまとめなど司会 を的確にまとめることができる。 即した適切な質問をすることができ		ことが	できる。		
実務経験 容との関	を授業内 関連	なし						
学校教育 関係	学校教育目標との 関係 B (コミュニケーション力) 総合的実践的技術者として、協働してものづくりに取り組んだり国際 社会で活躍したりするために、論理的に考え、適切に表現する能力を育成する。							
			講義の内容					
項目			目標					時間
1. ガイ	イダンス		1. 授業の目的や展開を理解する。 2. 司会の役割や適切な質問の仕 3. 講演要旨のまとめ方を理解する。	方を考える。				6
2. 小請	購演(前半)	4. 小講演① 5. 小講演② 6. 小講演③					6
3. 振り)返り		7. 小講演(前半)を振り返り、 8. 課題を解決する手立てを話して	課題を見つける。 合う。				4
4. 小請	構演(後半)	9. 小講演④ 10. 小講演⑤ 11. 小講演⑥					6
5. 振り)返り		12. 小講演(後半)を振り返り、13. 課題を解決する手立てを話し	課題を見つける。 合う。				4
6. まと	<u>:</u> め		14. 教場レポートを執筆する。 15. 授業全体のまとめを行う。					4 計 30
学業成績 法	りでいる。	定期試験は実施 とに課す講演9	をせず、授業への取り組み状況(司 要旨・感想の提出状況20%、総ま	会、質問、講演の とめレポート30	まとめ %の出	りなど) 比重で評	50%、 価して算	小講演ご
関連科目		日本語表現法						
教科書・	・副読本	その他: 必要に	応じて授業時にプリントを配付する		次、約	召介する	0	
			評価 (ルーブリック))				
到達目標	理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりき	ぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
1	演のまる	ト、質問の対応、 とめなど司会の 権に果たしている	役 演のまとめなど司会の役 演の	紹介、質問の対応)まとめなど司会(おる程度果たし、	の役目	演のまる	ト、質問の とめなど たしていな	司会の役┃
2	らえた ^身 めること	中心的な内容を 要旨を的確にま とができている。	と らえた要旨をまとめるこ 旨を とができている。 とが	であり容をとらえた。 ある程度まとめ できている。	るこ	旨をまる ていない		とができ
3		容に即した適切 することができ	な 講演内容に即した質問を 講演 て することができている。 た質 てい	[内容にある程度] [問をすることが らる。	即し でき	講演内領できてい	容に即した いない。	た質問が

21 = E	令相 2 年度 ものづくり工字科 一般科目 シラバス						
科目名		担当教員		学年	単位	開講時数	種別
表象文化 II (Culture and Rep	resentation II)	高野光男 (常勤)		5	1	前期 2 時間	選択
授業の概要	「都市」小説 れた社会・時代	説の代表とされる村上春樹の短 代に特有の感性、意識、個のあ	[編小説を演習形式で] うり方や人間関係につい	読むこ ハて考	とを通し える。	ごて、「都i	†」化さ
授業の形態	講義						
授業の進め方	グループに分かる 20 分程度の研究	なび講義(村上春樹とその時代 いれて村上作品について研究多 究発表を行い、その後全体で言 行い自学自習の習慣を身に着け	巻表を行う。発表担当 対論を行う。研究発表	者はレ	ジュメ	に従ってる	それぞれ
到達目標	到達目標 1. 対象作品について分かりやいレジュメを作成することができる。 2. 対象作品についての読みを分かりやすく説明することができる。 3. 発表に関する討論に積極的に参加することができる。						
実務経験と授業内 容との関連	なし						
学校教育目標との C (人間性・社会性) 総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために 関係 豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。					ために、		
		講義の内容	\$				
項目		目標					時間
1. ガイダンス I 村上春樹入門		・「村上春樹とその時代」とい 全体像を把握する。	いうテーマで、諸資料	·を通し	て、村	上春樹の	4
2. ガイダンス Ⅱ 小説の読み方	・発表の仕方	・現代の文学理論の概略を理学ぶ。	涅解し、小説の読み方	・発表	の仕方	について	4
3. 演習: 村上春樹の短編小説を 読む グループ別発表と討論、相互 評価 ・2・3人のグループに分かれて、以下の村上春樹作品に関する研究発表・ 討論・相互評価を行う。(対象作品は変わることがある。) カンガルー日和 象の消滅 ささやかな時計の死 鏡 レキシントンの幽霊 七番目の男 沈黙 アイロンのある風景 青が消える					20		
4. まとめ		・講義の総括として総合討論	を行う。				2
 学業成績の評価方 法	研究発表(レジ て算出する。	ジュメを含む)、レポート、討	議への参加状況をそ∤	こぞれ 4	: 4:	2の比重	計 30 で評価し
関連科目	表象文化I						
教科書・副読本	その他: 必要に	応じて授業時にプリントを配	付する。参考図書は遠	조 次、約	召介する	0	
	ı	評価 (ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目録	そ(可)	未到達	レベルの目安	(不可)
1 対象作i やすい ている。	品について分か レジュメを作成	り 対象作品についてレジュ メを作成している。	対象作品についてのコメに不十分な点が			品について 成していな	
2 対象作 _i を分か いる。	品についての読 りやすく説明し	み 対象作品についての読み を説明している。	対象作品についての の説明に不十分な点 る。	読みがあ		品についっ できていな	
		発表に関する討論に積極 発表に関する討論に参加 発表に関する討論への参 発表に関する討論 的に参加している。 している。 加が不十分である。 参加していない。					命に全く

科目名		担当教員	学年	単位	開講時数	種別	
国際経済学		広瀬義朗 (常勤)	5	1	後期	選択	
(International Eco	onomics)	111/1/2019		_	2時間	, <u> </u>	
授業の概要	課題についてネ	済学と経済分析に関する基礎的な知識と考え方を身につけ、現代の国際社会の特色、およで題について考察する。グループ学習(アクティブラーニング)形式で進める。日本と世界 となる や為替事情などの題材に沿った講義を行い、資料の理解とグループによる具体的な情報収算 、考察を行う。					
授業の形態	講義						
授業の進め方	講義と演習による。半期 15 回のうち、前半($1\sim5$ 回)には講義を中心に学際経済学の概念を学習する。中盤($7\sim9$ 回)には、授業前半に講義を行い、授業後半にはグループ(チーム編成)ごとに共通課題が設定される。具体的には、各国のマクロ経済指標の分析を行う。学生には、PC やi-pad を用いて経済分析を行ってもらう。後半($10\sim14$ 回)には、割り当てられた地域と各チームで国際経済学に関する共通課題を設定し、各自実践的な作業を行いつつ各チームに発表が課せられる。講義最終日に総括を行う。 予習、復習を行い自学自習の習慣を身に着ける。						
到達目標	していくことを	斉分析に関する基本的な知識と考え方を理解できる。 ☑通じて、国際社会を経済学的な視点から考察できる。 ◎ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	, 2. 具 る。	体的な	事例につい	いて検討	
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		会性) 総合的実践的技術者として、産業界や地域社会 ち、技術者として社会との関わりを考える能力を			こ貢献する	ために、	
		講義の内容					
項目		目標				時間	
ガイダンス 主要経済国と日本のGDPと貿易 に関する統計分析 主要経済国と日本のGDPと貿易 に関する統計分析のまとめ 主要経済国と日本のGDPと貿易 に関する統計分析のプレゼンテー ション		ガイダンスを行い、チームを編成する。 各チームで統計資料を使って日本経済の世界におけ 表化する。	ける位置	づけを	整理、図	15	
の貿易関係の分析 米国・EU・中国・ の貿易関係のまと	・韓国等と日本 め 韓国等と日本の	発表用文章を作成する。 プレゼンテーションを行う。					
ゲストスピーカール 討論 各チームでの共通 産業等)の設定		魏町税務署職員による租税教室を行い、卒業後社会 得税制、法人所得税制等について学ぶ。 場合によっては新たにチームを再編し、研究対象と カッションにより設定する。				15	
産業構造・経済成	長・経済政策・ の産業構造・経・通商政策の分 の産業構造・経・通商政策の分 追加・修正と発	資料の探索・収集・図表化をする。 進捗を中間発表する。 史料の探索・収集・図表化の改善・工夫・精緻化を 報告用のプレゼンテーションを作成する。	を図る。				
済成長・経済政策 析:発表 総括	総評とディスカッションを行う。	₩ <i>4</i>	1 70	田田石舎ルピナ 1	計 30		
学業成績の評価方 法	発表および発表	月共通課題の作業とレポート等の成果物、発表等、後 長資料等を総合的に評価する。アクティブラーニング 学生に対しては減点を行う。欠席の多い学生に対し、	ブが主と	: なるた	:め、積極的	的に授業	
関連科目							
教科書・副読本	教科書: 「政治	・経済(検定教科書)」(東京書籍)					

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	先進国と途上国の経済戦略の違いを明確にし、国際社会における日本の経済的な役割は何かを十分説明できる。	グローバルな視点で先進 諸国の経済活動を理解で きる。	アジアの経済をある程度 理解できる。	諸外国の経済を理解できない。

科目名		担当教員		学年	単位	開講時数	種別
民俗学 (Folklore)		鈴木修斗 (非常勤)		5	1	前期 2 時間	選択
授業の概要	のように生きて	、ラにおける景観や生活文化のタ こきたのか考える。また、近世な 近活用されてきたのかを、日本E	から近現代の日本にお	3いて.	伝統的	な「民俗	がどの
授業の形態	講義						
授業の進め方	配布する資料をもとに講義を行う。また、史料の読解や絵図・古地図・古写真などを用いた行う。 予習、復習を行い自学自習の習慣を身に着ける。					た作業を	
到達目標	1. 日本における とができる。	日本における生活文化の特質とその多様性について地域の特徴を踏まえて理解し、説明 ゞできる。					明するこ
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		会性) 総合的実践的技術者とし っち、技術者として社会との関:				こ貢献する	ために、
		講義の内容					
項目		目標					時間
1. ガイダンス		「民俗」の考え方や授業の進む	め方・評価を理解する	ó.			2
2. 都市の景観と	民俗	都市における景観と民衆の生活	舌文化について考える	ó.			4
3. 農村の景観と	民俗	農村における景観と民衆の生活文化について考える。					
4. 山村の景観と	民俗	山村における景観と民衆の生活	舌文化について考える	5 。			3
5. 漁村の景観と	民俗	漁村における景観と民衆の生活	舌文化について考える	ó.			3
6.「発見」される		紀行文や近世地誌書を題材に、 識人らに見出されていく状況		て民衆	の生活	文化が知	2
7.「教化」され		明治期の文明開化・欧化政策の扱われたのか、北海道における考える。					4
8. 民俗の「再発		大正期から昭和戦前期における し、伝統的な生活文化がどのよ 高山市や陶器生産地である大分	ように「再発見」され	ていっ	たのか	開に着目 、岐阜県	4
9. 民俗の「活用	٢	高度経済成長期以降に日本各地について、世界遺産白川郷や河	也で展開された「民俗	」を活	かした	地域開発。	4 計 30
学業成績の評価方 法	期末試験の得点 平常点 20 %の	京 80 %、提出物(演習課題等) 比率で評価する。	や授業への参加状況	【(発言	の内容	等)など	からなる
関連科目							
教科書・副読本	副読本: 「基本	地理 A(検定教科書)」山本正言	三ほか (二宮書店)				
	1	評価 (ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目室	そ(可)	未到達	レベルの目安	(不可)
俗」を、 や地域	おける伝統的な「 日本民族学の成 開発の観点から 説明することが	立 特質とその多様性につい 理 て、地域の特徴を踏まえ	日本のマチやムラに る景観や生活文化を 程度理解できる。	ある		マチやムデや生活文化	

学修	科目名		担当教員					
単位 科目	数学特論: (Special Mathema	Topics in	篠原知子 (常勤)	5	2	前期 1時間	選択	
授業の		確率統計学にご	」 ついて、実学としての立場から講義を行うと共に、) 里の方法を身につけることができるようにする。	ノフトウ	 'エアを	利用した	 寅習を通	
授業の	形態	講義						
授業の	進め方	毎回提出する。	ついて、考え方のプロセスや統計的手法を理解できる 行い自学自習の習慣を身に着ける。	るような	演習を	行う。演習	習課題は	
到達目	標	 データの整 いろいろな 	率の性質を理解し、計算することができる。 理の手法を理解し、データの性質を読み取ることが 確率分布を理解し、確率、平均、分散を求めること の手法を理解し、推定と検定を行うことができる。	できる。ができ	。 る。			
実務経験容との	験と授業内 関連	なし						
学校教育 関係	育目標との		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				的な技術	
			講義の内容					
項目			目標				時間	
確率の	基礎		確率の定義と基本性質を理解し計算ができる				2	
いろい	ろな確率		条件付き確率とベイズの定理を理解し、これを用い	いた計算	算ができ	る	2	
データの整理 度数分布、代表値、散布度を理解し、これらを求めることができ				る	2			
2 次元(2次元のデータ 相関係数、回帰直線を理解し、これらを求めることができる					2		
確率分	[率分布 確率変数、二項分布、ポアソン分布を理解し、これらを求めることがで きる					2		
連続分	布		連続分布の平均・分散、正規分布を理解し、これら	らを求め	ること	ができる	2	
二項分	布と正規分	布	正規分布を用いて二項分布を近似することができる	3			2	
いろい	ろな確率分	布	カイ2乗分布、t分布、標本分布を理解することだ	ができる)		2	
母数の	点推定		母数を点推定する方法を理解し、推定値を求める。	ことがで	ごきる		2	
区間推	定		信頼度と信頼区間を理解し、母平均の区間推定が	できる			2	
区間推	定		母分散・母比率の区間推定ができる					
仮説の	検定		検定の用語と方法を理解することができる					
母数の	検定		母平均・母分散・母比率の検定をすることができる					
いろい	ろな検定		適合度・独立性の検定をすることができる					
いろい	ろな検定		F 分布を利用して等分散の F 検定をすることがで	きる			2	
İ							計 30	
			自学自習			•		
項目			目標				時間	
確率の	基本問題演	習	確率の基本問題を解くことができる				8	
データ	の整理		度数分布, 散布図, 相関グラフを作成することが	できる			8	
l .	布の演習		二項分布、ポアソン分布を作成し、確率を読み取る	ることか	ぶできる		4	
正規分布の演習 正規分布を作成し、確率を読み取ることができる					4			
二項分布と正規分布 標本数が大きい場合の二項分布を作成することができる					4			
	演習問題 確率に関する総合問題を解くことができる					8		
	実データを区間推定することができる					8		
検定	母平均・母分散等を具体的に検定することができる					8		
いろい	いろいろな検定 適合度・独立性・等分散等を具体的に検定することができる					8		
1						計 60		
総合学	習時間		講義+自学自習				計 90	

学業成績の評価方 法	定期試験 1 回 55 点、課題点 45 点(3 点× 15 点)により評価する
関連科目	基礎確率統計・数学特論Ⅰ
教科書・副読本	教科書: 「新 確率統計」高遠節夫他 (大日本図書), 副読本: 「新 確率統計問題集」高遠節夫他 (大日本図書)

(大日本図書)											
評価 (ルーブリック)											
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)							
1	ベイズの定理を用いて 様々な確率の計算ができ る	条件付き確率、反復試行 の確率の計算ができる	基本的な確率の計算がで きる	基本的な確率の計算がで きない							
2	データを整理し、相関係 数、回帰直線を求め、相 関関係の有無を判断でき る	標準偏差を求めることが	データを整理し、度数分 布、平均、中央値、最頻 値を求めることができる	データの整理ができない							
3	いろいろな確率分布 (カイ 2乗分布、t 分布、標本分 布) を理解し、確率を求め ることができる	正規分布を用いて、確率 を求めることができる	確率分布表を作り、平均 、分散を求めることがで きる	確率分布表を作ることが できない							
4	いろいろな検定 (適合度・ 独立性・等分散) をするこ とができる	母平均・母分散・母比率を 推定・検定することがで きる	母平均を点推定、区間推 定することができる	点推定・区間推定をするこ とができない							

			la di	ログ 千皮 しの ノく フエティ	一般14日 フラバス	•							
科目名				担当教員		学年	単位	開講時数	種別				
中国語 (Chinese)			蕭月	明禮 (非常勤)		5	2	通年 2 時間	選択				
授業の概	既要	中国語学習として、初級レベルの読解を目指した教科書の学習、基礎的な語彙表現の学習、 れのニュアンスの違いの理解、中華圏事情の紹介、文法の学習と応用、聞く能力と日常会話 どの活動を幅広くおこなう。											
授業の刑	 態	講義											
授業の進	業の進め方 新出単語と使い方、表現パターンを具体的な例で説明する(授業状況による、教科書なか 新出単語が対応する繁体字でも紹介する)。新しい内容を習得したうえで、本文と表現パ 基づいて、聞く能力と話す能力を鍛える練習を行う。練習また小テストの実施により予習 行い自学自習の習慣を身に着ける。 予習、復習を行い自学自習の習慣を身に着ける。								ターンに				
到達目標		1. 中国語を1年間の学習によって、基礎的な語学力を身につけことができる。 2. 基本的な中華圏の社会や文化に対する認識と理解できる。											
容との関	実務経験と授業内 なし 容との関連												
学校教育 関係	育目標との	の B (コミュニケーション力) 総合的実践的技術者として、協働してものづくりに取り組んだ 社会で活躍したりするために、論理的に考え、適切に表現する能力を育成する。											
講義の内容													
項目			目相						時間 15				
発音編(1~4 課) 文法編 第 5 課 第 6 課 復習・小テスト			動動	発音について理解できる。 動詞"是"、"吗"疑問文、名前の用法などを理解できる。 動詞述語文、副詞"也"と"都"、選択疑問文を理解できる。 第6課まで中国語の問題を解くことができる。									
第7課 第8課 第9課 第10課 第11課 第12課 前期の復習・小テスト			" 疑形所文連	"呢"疑問文、指示代詞「これ、あれ」を理解できる。 疑問詞疑問文、助動詞"想"、「本日、今年」を理解できる。 形容詞述語文、反復疑問文を理解できる。 所有を表す動詞"有"、量詞を理解できる。 文末の"了"、「時刻」、前置詞"在"を理解できる。 連動文、「年月日、曜日」などを理解できる。 第7課~第12課のまとめ、前期の中国語の授業内容を正しく理解てきる。									
第 13 課 第 14 課 第 15 課 第 16 課 第 17 課 第 18 課				指示代詞「ここ、あそこ」、存在を表す動詞"在"と"有"を理解できる。動詞の後の"了"、動詞の重ね型、前置詞"给"を理解できる。経験の"过"、前置詞"跟"を理解できる。時間量、前置詞"从"" 到"" 离"を理解できる。助動詞"会"と"能"を理解できる。 比較、年齢の尋ね方を理解できる。									
復習・小テスト 第 19 課 第 20 課 第 21 課 第 22 課 第 23 課 第 24 課 後期の復習・小テスト・まとめ 文化体験			第13課~第18課の中国語の問題を解くことができる。 "是~的"構文、数字、金額の言い方を理解できる。 状態補語、二重目的語を理解できる。 方向補語、進行の"在"を理解できる。 結果補語、助動詞"可以"を理解できる。 使役文、補語のまとめを理解できる。 近い未来、"越来越"を理解できる。 第19課~第24課のまとめ、これまて中国語の授業内容を正しく理解できる。 中国の映画等を鑑賞で、中華圏の社会や文化を理解できる。						15				
M M − 12 4 →	+ - == /m		, _	T-16 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Latter and a second	> 1/.11	H 2 6/4 HH	11.20) 200	計 60				
学業成績 法 関連科目	貴の評価方 	定期試験 70 % 小テストを行 [、]	ó、 <u>·</u> う。	平常の小テスト 30 % 。※5 ※前期と後期の成績を平均	正期試験は二回行な して最終の成績にす	フ。前其 ↑る。	月と後期	はそれぞれ	12回の				
教科書・		 教科書: 「大学生のための初級中国語 24 回」杉野 元子 (白帝社)											
拟付亩	田川の〇十	教科書: 「大学	九工,		(L)							
Table 5		評価 (ルーブリック)						/ 					
到達目標		到達レベルの目安 (優	_						` '				
1	けること を含める とがどす	調を正確に聞き : 及び単語 (繁体 ら) を正確に書く ららもできる。	字こ	4つの声調を概ね聞き分けること及び単語 (簡体字のみ) を正確また概ね正確に書くことができる。	分けること及び簡 単語を半分程度正 くことができる。	-			簡体字の ぶどちら :い。				
2	する「拸	国語レベルを対 終拶表現」と「日 正確に使うこと	常	5年生中国語レベルを対応 する「挨拶表現」と「日常 表現」を概ね正確に使うこ とができる。	5年生中国語レベル する「挨拶表現」と 表現」を半分程度正 うことができる。	「日常	をほとんど正確に使うこ						
	_												