科目名			担当教員		学年	単位	開講時数	種別
機械設計	上帯川 5才 エ							必修
		gn and Draft-	相楽勝裕 (非常勤)		2	1	前期 2時間	必修
授業の概	要	図面を作成して 仕上げ記号の	里解する機械設計製図の基礎を 長記法、はめあい記号などにつ	修得する。トレースを いて具体的に理解を	をおこな 深める。	ないなか	ら、寸法	記入法や
授業の形	態	演習						
授業の進	態め方	素図面につい	要となる基礎的な知識について て理解を深める。 亍い自学自習の習慣を身につけ		う。また	た実技を	おこない、	、機械要
到達目標	<u> </u>	2. 機械製図の	対象を実際に作図することがで 基礎知識を身につけ、簡単な図 はめあい記号などを正しく利用	図面を理解できる。				
実務経験 容との関	と授業内 連	なし						
学校教育 関係	目標との	E (応用力・実)	践力) 総合的実践的技術者とし	て、専門知識を応用し	問題を	解決する	る能力を育	「成する。
			講義の内容	ş				
項目			目標					時間
ガイダン	/ス		授業に概要について解説する					2
投影図			投影図(投影法,第3角法,	三面図,製図順序)				2
基本的な図形の描き方および立体 的な図示法			基本的な図形の描き方を立体的な図示法を学ぶ。◎曲線および等角図の 製図					2
寸法記入法			寸法記入法(寸法線,寸法補 穴寸法,面取り寸法)◎寸法	助記号,直径・正方用 記入法に関する課題	 ジ辺・当	半径・弦	・円弧・	4
製作図の			製作図の描き方について学ぶ (図番 2002) の製図			"る。◎	軸受ふた	4
	を (ねじ)	について	機械要素(ねじ)の種類、記号、指定方法について学ぶ。					2
ねじの製			◎ボルト、ナット(図番 4001)の製図					4
	2号とはめ	合い	断面指示、仕上げ記号と表面粗さ、寸法公差と軸のはめ合い					2
軸受の製			◎軸受(図番 2003)の製図					4
理解度の)催認		理解度を確認する課題を実施する					2
総括			授業で学んだことのまとめを	行う。				2
224.344.⊂12 .0±	= ↑==/π+	細胞の担けい	日 (aa 0/) よいような田原田が原金村 ニッ	+ 1 (40.0/) ~ 部位さ		. >		計 30
学業成績 法 	砂評価力	課題の提出状況	兄(60 %)および理解確認テン	スト (40 %) で評価を	はおこる	こ つ。		
関連科目		機械設計製図	II・機械設計製図 III・福祉機	器設計 I・福祉機器設	計 II・	機構学	• 基礎製図	
教科書・	副読本	教科書: 「機械	成製図(検定教科書)」 (実教出	出版)				
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	安 (可)	未到達	レベルの目安	(不可)
1	えられた	な問題について、 た対象を実際に ことができる。	与 応用的な問題について、与 作 えられた対象を実際に作 図することができる。	基本的な問題につい えられた対象を実際 図することができる	に作し	えられる	な問題につ た対象を ことができ	医際に作
2 機械製図の基礎知識を身 につけ、発展的な図面を 理解できる。			身 機械製図の基礎知識を身 を につけ、応用的な図面を 理解できる。	機械製図の基礎知識 につけ、基本的な図 理解できる。	面を	機械製 につけ、 理解で	図の基礎第 、基本的な きない。	田識を身な図面を
3	法記入り		寸 応用的な問題について、寸 法記入やはめあい記号な どを正しく利用できる。		号な	法記入	な問題につ やはめあい しく利用で	1記号な

		令和4年度 医療福祉工学コース シラバス 						
科目名		担当教員	学年	単位	開講時数	種別		
電気回路 I (Electric Circuits	I)	後藤和彦 (常勤)	2	2	通年 2 時間	必修		
授業の概要	電気電子系の二 年では、直流[工学技術を習得するうえで、電気回路は欠くことが出 回路と交流回路の基礎的な内容の講義を行う。	民来ない	基礎科	目である。	第2学		
授業の形態	講義							
授業の進め方	講義を中心と 予習、復習を行	、て、理解を深めるために演習問題を多く取りあげ。 行い自学自習の習慣を身につける。	3。					
到達目標	2. 交流波形を	則やキルヒホッフの法則を用いて直流回路の計算が 判読して電圧波形や電流波形を定式化できる。 流回路の計算ができる。	できる。					
実務経験と授業内 容との関連	なし	なし 						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 倫に関する知識をもち、工学的諸問題にそれらを応				りな技術		
		講義の内容						
項目		目標				時間		
ガイダンス/数学	基礎	電気回路を学ぶ意味/分数・三角関数・方程式等の	D基礎知	1識確認	ļ,	2		
直流回路の復習		オームの法則、分圧と分流、合成抵抗による直並死	间回路0)解き方	の確認	2		
キルヒホッフの法! 方程式	則を用いた回路	キルヒホッフの法則の理解、枝路電流法による回路				2		
回路方程式の立て		網目電流法による回路の解き方の習得、クラーメル 程式の解法の習得	の公式	を用い	た連立方	4		
回路方程式(網目	電流法)の活用	2 点間の電位差、全合成抵抗の算出方法の習得				2		
演習		例題解説と演習				2		
理解度の確認		実施試験の解答解説				2		
正弦波交流		正弦波交流の定義、正弦波交流の基本的事項の理解	星			2		
複素数とフェーザ	表示	2つの表示法と相互変換法の習得、オイラーの公式	代の理解	P		4		
複素数の演算		複素数の四則演算の習得				2		
電圧、電流のフェ	ーザ表示	 国圧、電流のフェーザ表示法の習得						
交流回路素子とイ	ンピーダンス	交流回路素子(R、L、C)の正弦波交流に対する振舞いとインピーダンス の理解						
理解度の確認		例題解説と演習				2		
交流直列回路		R-L 直列回路,R-C 直列回路のフェーザ図作成方法 の計算方法の習得	云, 合成	インピ	ーダンス	4		
交流並列回路		アドミタンス、R-L 並列回路、R-C 並列回路のフェ				4		
交流直並列回路		2 端子回路の直並列接続における合成インピーダン				2		
交流回路の周波数	:特性	簡単な素子の組み合わせ回路におけるインピーダン 方法の習得	′スの周	波数特	性を描く	2		
直列共振回路		R-L-C 直列回路における直列共振現象の理解				2		
演習		例題解説と演習				2		
理解度の確認		実施試験の解答解説				2		
交流回路における 法則	キルヒホッフの	網目電流法の交流回路への適用方法の習得				4		
電力		直流回路における電力と電力量の習得、交流電力の)理解			4		
理解度の確認		例題解説と演習						
M MV - 1874	1 1 1 HH 1 HH 1 1 1 1 1 1 1 1 1 1 1 1 1	HILL IN COLUMN I HILL WAS A STATE OF THE STA			M. s- >	計60		
学業成績の評価方 法	前期中間、前見の重み付け平均して総合的に	明期末、後期中間、学年末に実施される定期試験と必 均をもって評価基準点とする。成績評価は、評価基準 評価する。評価基準点と授業への取組み姿勢の評価	が要に応 生点と授 割合は	がで実 発業への 8:2 と	施される/ 取組み姿勢 する。	♪テスト 勢を勘案		
関連科目	医療福祉工学	実験実習 I						
教科書・副読本	教科書: 「電気	〔回路の基礎 第3版」西巻 正郎、森 武昭、荒井 6		北出版)			
教育者・副説や 教育者: 「电X凹路の基礎 第3版」四色 正郎、林 氏中、元升 夜彦 (林北山版)								

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	合成抵抗を用い回路を簡 単化できる。枝路電流法、 網目電流法を用い回路方 程式をたて、解くことが できる。	電流,電圧,電位の意味を 理解している。直列・並列 の合成抵抗が計算できる。 枝路電流法による回路方 程式が立てられる。	オームの法則やキルヒホッフの法則を公式として 理解している	電圧や電流の単位を理解 していない。オームの法 則やキルヒホッフの理解 度が不明である。(試験関 連箇所が 60 %未満)					
2	電圧や電流のフェーザ表現ができる。複素ベクトルの四則演算や直交座標・極座標の変換ができる。	電圧や電流の瞬時値表現 が数学的にできる。電圧 や電流波形を描ける。	電圧や電流の最大値と実 効値,周期と周波数の関 係、時間ずれと位相ずれ の関係を読み取れる。	三角関数の知識がなく、最 大値や実効値の判読がで きない。周期を読み取る こともできない。(試験関 連箇所が 60 %未満)					
3	複素ベクトル領域で回路 を考え、基礎的な回路を 解くことができる。	時間領域から複素ベクトル領域に回路を翻訳できる。合成インピーダンスの計算ができ、回路を簡単化して捉えられる。	インピーダンス, アドミタンスの意味を理解し、数学的に示せる。	回路素子のインピーダン ス表現ができない。(試験 関連箇所が 60 %未満)					

【C言語】	科目名		担当教員	学年	単位	開講時数	種別
選挙通して学ぶ。 接翼の進め方 各回とも講義と演習の組み合わせを基本として授業を行う。 子習、復習を行い自学自図の関連を身につける。 2 アルゴリズムに沿ってプログラムを設計から実行ファインを記述することができる。 2 アルゴリズムに沿ってプログラムを記述することができる。 2 アルゴリズムに沿ってプログラムを記述することができる。 2 アルゴリズムに沿ってプログラムを記述することができる。 2 アルゴリズムに沿ってプログラムを記述することができる。 2 アルゴリズムに沿ってプログラムを記述することができる。 2 アルゴリズムに沿ってプログラミング言語の材像を理解できる。 数字を教養自標との 世界 日標 日標 日標 日標 日標 日標 日標 日		amming I)	星善光 (常勤)	2	2		必修
	授業の概要			方法とア	゚ルゴリ	ズムを講え	養及び演
子習、復習を行い自学自習の習慣を身につける。	授業の形態	演習					
	授業の進め方	各回とも講義と 予習,復習を行	と演習の組み合わせを基本として授業を行う。 行い自学自習の習慣を身につける。				
学校教育目標との 関係 と 基礎的が理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。	到達目標	1. プログラム 2. アルゴリズ 3. 代表的なプ	の設計から実行ファイルの作成まで、一通りの動作 ムに沿ってプログラムを記述することができる。 ログラミング言語の特徴を理解できる。	を行う	ことが、	できる。	
関係	容との関連						
項目 目標 時間 【C言語】 プログラミングとは? プログラムの働きやプログラミングの流れを学ぶ。C言語の基本構造を学ぶ。 変数・入出力 演算子・式 C言語の変数と変数型、入出力関数を学ぶ。 C言語の条件分岐や繰り返し等の制御文を学ぶ。関数の構造及び利用法を学ぶ。 C言語の条件分岐や繰り返し等の制御文を学ぶ。関数の構造及び利用法を学ぶ。 C言語によるファイル操作方法について学ぶ。アルゴリズムについての基礎を学ぶ。プロセッサやメモリ等、コンピュータを構成する要素とコンピュータの基本概念、及び、プログラムについて学ぶ。 プロセッサやメモリ等、コンピュータを構成する要素とコンピュータの基常得する。 (Python 言語の基礎 習得する。 演算子・オブジェクト リスト 条件分岐・繰り返し Python 言語の基本構造を学び、プログラムの作成から実行までの手順を習得する。 計3 (日まり) の表について学ぶ。Python 言語の基本構造を学び、プログラムの作成から実行までの手順を習得する。 10 (日本) がよりましたのより表について学ぶ。Python 言語の参生発り返しを学ぶ。Python 言語の辞書型と文字列型について学ぶ。With 文についても学ぶ。Python 言語のクラスとメソッドについて学ぶ。With 文についても学ぶ。Python 言語のクラスとメソッドについて学ぶ。報込関数についても学ぶ。Python 言語のクラスとメソッドについて学ぶ。学習した内容を活かしてグルーブ別にプログラムの設計と製作を行い、プログラミングの製作技術を身につける。基礎的な情報理論について学ぶ。 プログラムの設計と必要な知識と思考法を学ぶ。学習した内容を活かしてグルーブ別にプログラムの設計と製作を行い、プログラミングの製作技術を身につける。基礎的な情報理論について学ぶ。 計3 学業成績の評価方と変があまれまして学ぶ。表述の評価方と変があまえて総合的に評価する。関連科目 情報処理 II 計2	学校教育目標との 関係		論に関する知識をもち、工学的諸問題にそれらを応				りな技術
【C言語】							
プログラミングとは?			目標				時間
演算子・式 C言語の演算子と式の記述方法について学ぶ。 制御文・関数 C言語の条件分岐や繰り返し等の制御文を学ぶ。関数の構造及び利用法を学ぶ。 配列・構造体ファイル操作・アルゴリズム C言語の配列や構造体について学ぶ。アルゴリズムについての基礎を学ぶ。コンピュータの構成要素とプログラムについて学ぶ。アルゴリズムについての基礎を学ぶ。プロセッサやメモリ等、コンピュータを構成する要素とコンピュータの基本概念、及び、プログラムについて学ぶ。 計3 【Python 言語の基礎 Python 言語の基本構造を学び、プログラムの作成から実行までの手順を習得する。		は?	プログラムの働きやプログラミングの流れを学ぶ 学ぶ。	。C言	語の基	本構造を	2
制御文・関数	変数・入出力		C言語の変数と変数型、入出力関数を学ぶ。				4
 配列・構造体 ファイル操作・アルゴリズム	演算子・式						6
ファイル操作・アルゴリズム C言語によるファイル操作方法について学ぶ。アルゴリズムについての基礎を学ぶ。プロセッサやメモリ等、コンピュータを構成する要素とコンピュータの基本概念、及び、プログラムについて学ぶ。計3 【Python 言語】 Python 言語の基礎 Python 言語の基礎 Python 言語の基本構造を学び、プログラムの作成から実行までの手順を習得する。			C言語の条件分岐や繰り返し等の制御文を学ぶ。 学ぶ。	関数の構	造及び	利用法を	6
 礎を学ぶ。 プロセッサやメモリ等、コンピュータを構成する要素とコンピュータの基本概念、及び、プログラムについて学ぶ。 【Python 言語】							6
東大村の東京語 本概念、及び、プログラムについて学ぶ。 計3 【Python 言語の基礎 演算子・オブジェクト Python 言語の選算子とオブジェクトについて学ぶ。 リスト Python 言語の演算子とオブジェクトについて学ぶ。 条件分岐・繰り返し Python 言語の条件分岐と繰り返しを学ぶ。 辞書・文字列 Python 言語の条件分岐と繰り返しを学ぶ。 ファイル操作 Python 言語によるファイル操作方法について学ぶ。with 文についても学ぶ。 クラスとメソッド Python 言語のクラスとメソッドについて学ぶ。組込関数についても学ぶ。 プログラムの設計と必ずの設計と製作を行い、プログラミングの製作技術を身につける。 基礎的な情報理論について学ぶ。 情報理論 基礎的な情報理論について学ぶ。 計3 計6 学業成績の評価方法 単元試験(20%)、期末試験(25%)、課題及びPBL課題(55%)として基礎点を算出し、授業態度などを踏まえて総合的に評価する。 関連科目 情報処理 II			礎を学ぶ。				4
【Python 言語の基礎 Python 言語の基本構造を学び、プログラムの作成から実行までの手順を習得する。 演算子・オブジェクト Python 言語の演算子とオブジェクトについて学ぶ。 リスト Python 言語の演算子とオブジェクトについて学ぶ。 条件分岐・繰り返し Python 言語の条件分岐と繰り返しを学ぶ。 辞書・文字列 Python 言語の辞書型と文字列型について学ぶ。 ファイル操作 Python 言語によるファイル操作方法について学ぶ。with 文についても学ぶ。 クラスとメソッド Python 言語のクラスとメソッドについて学ぶ。組込関数についても学ぶ。 プログラムの設計に必要な知識と思考法を学ぶ。学習した内容を活かしてグループ別にプログラムの設計と製作を行い、プログラミングの製作技術を身につける。 情報理論 基礎的な情報理論について学ぶ。 計3 学業成績の評価方法 単元試験(20%)、期末試験(25%)、課題及びPBL課題(55%)として基礎点を算出し、授業態度などを踏まえて総合的に評価する。 関連科目 情報処理 II		或要素とプログ					
Python 言語の基礎 Python 言語の基本構造を学び、プログラムの作成から実行までの手順を習得する。 演算子・オブジェクト Python 言語の演算子とオブジェクトについて学ぶ。 リスト Python 言語のリストについて学ぶ。 条件分岐・繰り返し Python 言語の条件分岐と繰り返しを学ぶ。 辞書・文字列 Python 言語の辞書型と文字列型について学ぶ。 ファイル操作 Python 言語によるファイル操作方法について学ぶ。with 文についても学ぶ。 クラスとメソッド Python 言語のクラスとメソッドについて学ぶ。組込関数についても学ぶ。 プログラムの設計に必要な知識と思考法を学ぶ。学習した内容を活かしてグループ別にプログラムの設計と製作を行い、プログラミングの製作技術を身につける。 情報理論 基礎的な情報理論について学ぶ。 計3 学業成績の評価方法 単元試験(20%)、期末試験(25%)、課題及びPBL課題(55%)として基礎点を算出し、授業規度などを踏まえて総合的に評価する。 関連科目 情報処理 II	【D 』 ⇒無】						計 30
リスト Python 言語のリストについて学ぶ。 条件分岐・繰り返し Python 言語の条件分岐と繰り返しを学ぶ。 辞書・文字列 Python 言語の辞書型と文字列型について学ぶ。with 文についても学ぶ。 ファイル操作 Python 言語によるファイル操作方法について学ぶ。with 文についても学ぶ。 クラスとメソッド Python 言語のクラスとメソッドについて学ぶ。組込関数についても学ぶ。 プログラム設計製作演習 プログラムの設計に必要な知識と思考法を学ぶ。学習した内容を活かしてグループ別にプログラムの設計と製作を行い、プログラミングの製作技術を身につける。 情報理論 基礎的な情報理論について学ぶ。 計3 計6 学業成績の評価方法 単元試験(20%)、期末試験(25%)、課題及びPBL課題(55%)として基礎点を算出し、授業態度などを踏まえて総合的に評価する。 関連科目 情報処理 II		姓		なから実	行まで	の手順を	2
条件分岐・繰り返し 辞書・文字列Python 言語の条件分岐と繰り返しを学ぶ。 Python 言語の辞書型と文字列型について学ぶ。 Python 言語の辞書型と文字列型について学ぶ。with 文についても学ぶ。 Python 言語のクラスとメソッドについて学ぶ。組込関数についても学ぶ。 Python 言語のクラスとメソッドについて学ぶ。組込関数についても学ぶ。 Python 言語のクラスとメソッドについて学ぶ。 がループ別にプログラムの設計と製作を行い、プログラミングの製作技術を身につける。 基礎的な情報理論について学ぶ。情報理論基礎的な情報理論について学ぶ。 計3 計6学業成績の評価方法単元試験(20%)、期末試験(25%)、課題及びPBL課題(55%)として基礎点を算出し、授業態度などを踏まえて総合的に評価する。関連科目情報処理 II	演算子・オブジェ	クト	Python 言語の演算子とオブジェクトについて学る	, ,		1	4
辞書・文字列Python 言語の辞書型と文字列型について学ぶ。ファイル操作Python 言語によるファイル操作方法について学ぶ。with 文についても 学ぶ。クラスとメソッドPython 言語のクラスとメソッドについて学ぶ。組込関数についても学ぶ。プログラム設計製作演習プログラムの設計に必要な知識と思考法を学ぶ。学習した内容を活かして グループ別にプログラムの設計と製作を行い、プログラミングの製作技術 を身につける。情報理論基礎的な情報理論について学ぶ。学業成績の評価方法単元試験 (20%)、期末試験 (25%)、課題及び PBL 課題 (55%) として基礎点を算出し、授業態 度などを踏まえて総合的に評価する。関連科目情報処理 II	リスト		Python 言語のリストについて学ぶ。				2
ファイル操作Python 言語によるファイル操作方法について学ぶ。with 文についても 学ぶ。クラスとメソッドPython 言語のクラスとメソッドについて学ぶ。組込関数についても学ぶ。プログラム設計製作演習プログラムの設計に必要な知識と思考法を学ぶ。学習した内容を活かして グループ別にプログラムの設計と製作を行い、プログラミングの製作技術を身につける。情報理論基礎的な情報理論について学ぶ。学業成績の評価方法単元試験 (20%)、期末試験 (25%)、課題及び PBL 課題 (55%) として基礎点を算出し、授業的 度などを踏まえて総合的に評価する。関連科目情報処理 II		il	· ·				4
学ぶ。			· ·				4
プログラム設計製作演習 プログラムの設計に必要な知識と思考法を学ぶ。学習した内容を活かして グループ別にプログラムの設計と製作を行い、プログラミングの製作技術 を身につける。 基礎的な情報理論について学ぶ。 計 3 計 6 学業成績の評価方 単元試験(20%)、期末試験(25%)、課題及び PBL 課題(55%)として基礎点を算出し、授業制 度などを踏まえて総合的に評価する。			学ぶ。				2
情報理論 を身につける。 基礎的な情報理論について学ぶ。 計 30 計 60 学業成績の評価方 単元試験(20%)、期末試験(25%)、課題及び PBL 課題(55%)として基礎点を算出し、授業態度などを踏まえて総合的に評価する。 関連科目 情報処理 II	クラスとメソッド		Python 言語のクラスとメソッドについて学ぶ。組	込関数 <i>(</i>	こついて	ても学ぶ。	6
計30 計60 学業成績の評価方 度などを踏まえて総合的に評価する。 関連科目 情報処理 II	プログラム設計製	作演習	プログラムの設計に必要な知識と思考法を学ぶ。 与 グループ別にプログラムの設計と製作を行い、プロ を身につける。	全習した ログラミ	内容を ングの	活かして 製作技術	4
計 60 学業成績の評価方 法 単元試験 (20%)、期末試験 (25%)、課題及び PBL 課題 (55%) として基礎点を算出し、授業態度などを踏まえて総合的に評価する。 関連科目 情報処理 II	情報理論		基礎的な情報理論について学ぶ。				2
学業成績の評価方 法単元試験(20%)、期末試験(25%)、課題及びPBL課題(55%)として基礎点を算出し、授業態度などを踏まえて総合的に評価する。関連科目情報処理 II							計 30
法 度などを踏まえて総合的に評価する。 関連科目 情報処理 II		1					計 60
		度などを踏まれ	%)、期末試験(25 %)、課題及び PBL 課題(55 %) えて総合的に評価する。	しとして	基礎点	で算出し、	授業態
教科書・副読本 参考書: 「令和 03 年 基本情報技術者 合格教本」角谷一成,イエローテールコンピュータ (技術語	関連科目						
論社),その他: 必要に応じてプリントを配布予定	教科書・副読本			ローテー	-ルコン	ノピュータ	(技術評

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	行ファイルの作成まで、一	プログラムの設計から実 行ファイルの作成まで、一 通りの動作を行うことが できる。	プログラムを動作させる	プログラムを実行できな い。					
2	アルゴリズムに沿ってプログラムを記述することができ、独自のプログラムに応用することができる。	ログラムを記述すること		アルゴリズムを実現する プログラムを実行できな い。					
3	C言語とPython言語それ ぞれの長所と短所を理解 し、説明することができ る。	C言語、Python言語の特徴を理解できている。	C言語、Python言語の文 法が理解できている。	C 言語、Python 言語を理 解できていない。					

シロク		+□ \/ +/L □	۲۰۰۰ ۲۰۰۰	774 /T	DD -44 - 1	1 4 mil
科目名		担当教員	学年	単位	開講時数	種別
工業力学 I (Engineering Mec	hanics I)	田宮高信 (常勤)	2	1	後期 2 時間	必修
授業の概要	物理学で学んたの基礎的素養を解を深める。	ごことを、現実の工業技術として起こる力学的現象 と を身につける。ここでは静力学を中心に学び、力とモ	こして理 モーメン	!解し、 ・トのつ	引き続く¤ り合いに	専門科目 ついて理
授業の形態	講義					
授業の進め方	講義を中心とし 予習,復習を行	、て進め,理解を深めるための問題演習を適宜行う. 行い自学自習の習慣を身につける.				
到達目標	2. 力とモーメ 3. 摩擦の法則	である力について理解し、力の分解、合成ができる ントのつり合いを理解し、つり合い方程式を導くこ を理解し、問題を解くことができる。 対する重心(図心)を求めることができる。	。 とがで	きる。		
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応)				内な技術
		講義の内容				
項目		目標				時間
ガイダンス 力の基本演習①		・授業計画を説明する。 ・ニュートンの運動の法則をもとに静力学と作用反	作用の流	去則を理	理解する。	2
力の合成 力の基本演習②		・2つ以上の力の合力を求め方およびその意味を5 ・平面内での力のつり合い問題が解けるようになる。		5 。		2
力の分解 力の基本演習③		・分力の求め方およびその意味を理解する。 ・斜面上の物体に作用する力の問題が解けるように	こなる。			2
力のモーメントお。 のつり合い		・力のモーメントおよびモーメントのつり合いに、 ・てこの原理を理解し、問題が解けるようになる。		説明する	0	2
力とモーメントの		・支点と支点反力・反モーメントについて説明する ・各種支点における支点反力・反モーメントが求る	る。 かられる	るように	:なる。	2
トラス① 節点法		・トラス構造について説明する。 ・節点法を用いてトラスの部材力を求める方法を記			6T 1	2
トラスの演習①		・節点法を用いてトラスの部材力を求める方法を演 <中間試験>	督を通	して埋	解する。	2
トラスの演習②		・節点法を用いてトラスの部材力を求める方法を める。			理解を深	2
トラス② 切断法		・切断法を用いてトラスの部材力を求める方法を記			67 J	2
トラスの演習③	\$ 1 -	・切断法を用いてトラスの部材力を求める方法を演	習を通	して埋	解する。	2
図心① 部分分割		・図心について説明する。 ・部分分割法による図心の求め方を理解する。				2
図心② 積分法		・積分法による図心の求め方を理解する。				2
図心の演習		・図心の求め方について、演習を通して理解する。				2
摩擦		・クーロンの摩擦の法則を説明する。 ・摩擦の簡単な問題が解けるようになる。				2
摩擦の演習 ・摩擦のある斜面上の物体に作用する力の問題を演習を通して理解する。 <期末試験>				2		
		- ハバンドナイログベン				計 30
学業成績の評価方 法	2回の定期試験 評価を行う。	 倹の得点 (約 70 %) と、課題などの提出状況と学習派	意欲と耶	文組状 沉	L (約 30 %	
 関連科目	-	オ料力学 I・材料力学 II・機械力学・流体力学				
教科書・副読本		《力学」本江哲行、久池井茂 (実教出版)				
		· · · · · · · · · · · · · · · · · · ·				

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	発展的な問題について、力 の分解、合成をおこない問 題が解ける。	力の分解、合成をおこない 問題が解ける。	基本的な問題について、力 の分解、合成をおこない問 題が解ける。	基本的な問題について、力の分解、合成をおこない問題が教員の補助を受けても解けない。						
2		力とモーメントのつり合い方程式を導き、問題が 解ける。	基本的な問題について、力 とモーメントのつり合い 方程式を導き、問題が解 ける。	基本的な問題について、教 員の補助を受けても力と モーメントのつり合い方 程式を導けない。						
3	摩擦の法則を理解し、発 展的な問題を解くことが できる。		摩擦の法則を理解し、基本的な問題を解くことができる。	摩擦の法則を理解し、基本的な問題を教員の補助を受けても解くことができない。						
4	発展的な問題について、重 心 (図心) を求めることが できる。	重心 (図心) を求めること ができる。	基本的な問題について、重 心(図心)を求めることが できる。	基本的な問題について、重 心(図心)を教員の補助を 受けても求めることがで きない。						

科目名			担当教員	学年	単位	開講時数	種別
医療福祉工 (Introducti Welfare En	ion to	Medical and ng)	冨田宏貴 (常勤)	2	1	前期 2時間	必修
授業の概要	Ī	医療福祉工学へ 取り組み事例を	への導入科目である。今後習う教科と関連付けを ☆紹介する。	行うと共に	こ、医療	福祉工学に	こ関わる
授業の形態	{	講義					
授業の進め		ながら授業を行	ので受講学生全員が理解できるように、また興味 すう。 近い自学自習の習慣を身につける。	床を感じら	られるよ	うに事例	を紹介し
到達目標		1. 医療福祉工学 2. 理解した内容	学の体系が理解できる 容が関連専門科目に繋がることを理解できる				
実務経験と 容との関連	授業内	なし					
学校教育目標 関係	標との		合的実践的技術者として、数学・自然科学・自身 全に関する知識をもち、工学的諸問題にそれらを				的な技術
			講義の内容				p+ nc
項目	- 1 200		目標				時間
医療福祉工		H-44:	「ガイダンス」<冨田>「ME 検定について」				2
生体情報の			脳機能計測などの生体情報の計測技術について		. ۲۱۱۲ سب	加土?(2
マイコンと			マイコンとセンサを組み合わせた機器の応用を吉村>		いて埋	弊する<	2
医療機器の			医療機器の安全性、事故事例について解説する。		/ 		2
医療福祉分: 役割	野におり	ける信号処理の	医療福祉分野における信号処理の役割について	埋解する<	<吉田>	•	2
	fにおけ	る生体情報の	脳波などの生体情報からどのように脳機能を調べ	べているカ	理解す	る<後藤	2
	ハビリラ	テーションロボ	工学とリハビリテーションの関係について解説	<柴田>			2
材料とその	強度		力学の基本および強度設計における力学の果た。 田宮>	す役割の櫻	既略を説	明する<	2
いて		能と構造につ	身近な医用精密機械に関する機器の構造と機能 冨田>				2
医用材料に			医用材料に関する先端的なトピックスに触れ, の果たす意義について理解する<杉本>				2
融合		医療福祉機器の	医療福祉機器におけるメカトロニクス技術の重青代>			,	2
人間工学に		01.7	人間工学の概要と人の形態と運動機能について 生体電気現象と安全基準について<降矢>	理解する<	く 占 座 ノ	`	2
生体情報の 医療福祉工		日の課題と展望	医療福祉工学の実務に携わる企業家をお呼びして	て今日の讃	題と展	望につい	2 2
		_	て話題に挙げる<外部講師>				
まとめと確	認		講義のまとめと理解度の確認を行う<冨田>				2
╨₩₽७≠≈	≣₩/ ₩ →	/ □ /廿日=1 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1.夕富日屋にとこり細筋とせにかみよりまし	V¤4≒-1⊓H	\$ ₽ . ∃π /π²	甘淮上1	計 30
学業成績の 法	評1曲万	定期試験問題に合評価にあたっ する。	は各項目毎に与える課題を基に作成する事とし、 っては、授業への取組状況を勘案する。評価基準	期木試験 点と授業	マピ評価 取組状況	基準点と、 兄の比率は	9 る。総 : 8:2 と
関連科目		専門科目全般					
教科書・副読本 その他: 講師が用意した自作資料を用いる							
			評価 (ルーブリック)				
到達目標	理想的な発	到達レベルの目安 (優)目安 (可)	未到達	レベルの目安	(不可)
	の工学的	上に関連する分 りな応用分野を 『理説明する事	理 の工学的な基礎知識を理 の工学的な基礎気	和識を理 ができる	の工学	坐に関連で 的な基礎知 説明する事	□識を理
7	を理解し	3専門科目の内 、原理と応用に 目する事ができる	つ を理解し、原理を説明す を説明する事がて			る専門科目 する事がて	

NDA			24/-) 사 기 기	DD =# n+ W/	1 4 011		
科目名	-L	担当教員	学年	単位	開講時数	種別		
医療福祉工学実験 (Experiments an Medical and Wel ing I)	d Practice of	吉田嵩 (常勤)・青代敏行 (常勤)・後藤和彦 (常勤)・ 鈴木和夫 (非常勤)・平塚剛一 (非常勤)	2	4	通年 4 時間	必修		
授業の概要	実験と実習で構成される。 テーマ I においては、直流回路に関する実験を中心に、テーマ I いては、交流回路に関する実験を展開する。テーマ III では旋盤・フライス盤などを用いた 的なものづくりを展開する。テーマ IV では医療福祉機器を製作する上で重要な、プレス加造などの塑性加工技術と金属材料の特性について実習する。テーマ V については実際に医機器を操作し、使い方や問題点等を実体験することで学習理解の支えとする。 さらにエンリングデザイン実習においては、チームで行うワークショップを通して、エンジニアリングン的な考え方の基礎を学ぶ。							
授業の形態	実験・実習							
授業の進め方	テーマ V は l を実施する。 st やレポートの打	をし、ローテーションにより1年を4期に分けて実験期の中で続けて行う。前期2週、後期3週を用い、 実験、実習共に、それぞれに関する講義と実験ないし 是出を義務づけ、これについて内容を吟味し指導を行い自学自習の習慣を身につける。	エンジ は実習	ニアリ	ングデザイ	イン実習		
到達目標	2. ものづくり 3. 基本的技能 4. 医療福祉機 5. 実験・実習	 直流及ぶ交流回路の動作を把握できる。 ものづくりの基本を理解して、実際に物を製作できる。 基本的技能を身に着け簡単な金属加工ができる。 医療福祉機器の基本的な特性を理解して、評価できる。 実験・実習のレポートを作成できる。 グループワークを通して、自ら自分の役割を見つけ、積極的にものづくりに関わることができる。 						
実務経験と授業内容との関連	なし							
学校教育目標との 関係	E (応用力・実員 	践力)総合的実践的技術者として、専門知識を応用し	問題を何	解決する	る能力を育	成する。		
		講義の内容						
項目		目標				時間		
ガイダンス		実験実習の進め方、レポートの書き方、グラフの抗			. .	4		
テーマ I (前期) 直流回路実験		オームの法則、抵抗の直列並列回路に関する実験を 電圧降下法による抵抗の実験を実施し、系統的誤差			:う。	24		
テーマ II (後期) 交流回路実験		オシロスコープの使用法を学び、交流直列並列回 する。	路に関	する実具	験を実施	24		
テーマⅢ(通年) ものづくり実習		ジャイロスコープの製作を題材に旋盤、フライス盤 ものづくり実習を行う。				24		
テーマIV(通年) 機械加工実習		医療福祉機器を製作する上で重要な熱間鍛造やプレ 技術と金属材料の力学的特性を調べる試験法を修得	导する。			12		
テーマV (通年) 医療福祉応用機器		車椅子や筋電位測定器などを利用し、福祉機器や医学に関わる機器の基本的な使い方や構造、問題点を	を実習に	より学	<i>.</i>	12		
エンジニアリンク (通年)	デザイン実習	グループワークによるものづくり実習を行い、製品 ルディングの基礎を修得する。	品開発に	必要な	チームビ	20		
出来は体の部位士	人々の安殿 5	マ羽さなとい、 極楽中の佐楽能序 - 細暗いしゃい 19)) = 1.	とを	6万)> ∃ず /ɔピ>	計 120		
学業成績の評価方 法	全ての実験・美価の比率は3	ξ習を行ない、授業中の作業態度、課題およびレポ− : 7とする。正当な事由による欠席については、補	帯を行っ	り総合 う。 	的に評価。	9 る。評		
関連科目								
教科書・副読本	その他: 指導書	手を配布する。 						

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	の法用の実とす回にに計、クムの直的で違。 の法用の実とす回にに計、クムの直的で違。 の法用の実とす回にに計、クムの直的で違。	直法法用の実論部るスと流関示をキりの実とを でルしの論認問る路よよ計し、一字の別把る違がオ形圧の素ル法則のにき相とは波電と複トの法並にき違いでルしの論認問る路よよ計しベーフの論認のことが、とそ直的でのこでるる測、クムの直的で相とは波電と複トの法並にき違がオルが正の素ル法則列把、のでのの活路し理一きロ測電の表算とよ路し論部る。のの活路し理一きロ測電の表算とよ路し論部る。	りらーフ並実理確はら波よが、クムの直で確間がりらーフ並実理確はら波よが、クムの直で確間がある。 りらーフ並実理確はら波よが、クムの直で確間が りらーフ並実理確はら波よが、クムの直で確間が りらーフが実理確はら波よが、クムの直で確間が りらーフが実理確はら波よが、クムの直で確間が りらーフが実理確はら波よが、クムの直で確間が	法則並に験理考、。スと流関ムの直に験理考 法則並に験理考、。スと流関ムの直に験理考 法則並に験理考、。スと流関ムの直に験理考					
2	製作工程の手順、形状記 憶合金などの材質の特性 を理解し、見本に近似し た加工を実施できる。	製作工程の手順、形状記 憶合金などの材質の特性 を理解し、一部は異なる が見本に近い加工は実施 できる。	製作工程の手順を理解できるが、いくつかの部分で見本に近い加工を行う事ができない。	必要な加工を実施することができない。					
3	工作機械を正しく操作し, 基礎的な加工と,製作物 の精度に関する評価が行 える。	工作機械を操作し,基礎 的な加工を行って製作物 を作成することができる。	基本的な工作機械操作は できるが、製作物を全て 作成することができない。	基本的な工作機械操作ができない。					
4	医療福祉機器の特性を正 しく把握し、適切に操作 して得られた値について 評価が行える。	医療福祉機器の特性を把握し、基本的な操作を行う事ができる。	基本的な操作を行う事は 出来るが、医療福祉機器 の特性を十分に理解でき ていない。	医療福祉機器の基本的な 操作を行う事ができない。					
5	適切な項目の並びに従い、適切な項目の並びに従い、適切なグラフや表に示した実験結果および理論値たの実施は対する考案では、との内容を分かり易くできる。	一部指導による改訂による り、が 適切切りを がい、 がはなななに がい、 のの考察によりまする がはました 大実験・実習の内容できる。 たしポートを作成できる。	指導による改訂を重ね、適適 切なグラフと表に明明のでは 切なグラフとなる 実験結果おびに所示の 実験結果の は は りと 変を に ま の 内容を ま の 内容を ま と の 内容 を と の と の と り と の と り と の と の と の と の と り と り	事ができず、不適切なグラフや表であったり、不十分な実験結果であったりし、実施した実験・実習					
6	グループワークを通して、 自ら自分の役割を見つけ、 積極的にものづくりに関 わることができる。	グループワークを通して、 自ら自分の役割を見つけ、 ものづくりに関わること ができる。	グループワークを通して、 指導により自分の役割を 見つけ、ものづくりの一 部に関わることができる。	グループワークを通して、 自ら自分の役割を見つけ ることができず、ものづ くりに関わることができ ない。					

				市和4年度 医療福祉工学	<u> </u>				
科目名				担当教員		学年	単位	開講時数	種別
応用数学 (Applied	≠ I d Mathem	atics I)	斎藤 常勤	純一 (常勤)・村井宗二郎 リ)	(常勤)・大田将之 (非	3	1	後期 2 時間	必修
授業の概	既要	を解くことは話	者々0		`る上で重要である。1	で必須の L 階・2	の道具で2階の定	あり、微忽数係数線形	分方程式 形微分方
授業の刑	沙態	講義							
授業の進	重め方			、理解を深めるための問 目学自習の習慣を身につけ					
到達目標		2. 1 階線形微分	分方科	床を理解し、変数分離形の 量式の解を求めることがて 量式の解を求めることがて	゙ きる。	めるこ	とがで	きる。	
実務経験容との関	を授業内 関連	なし							
学校教育 関係	育目標との			実践的技術者として、数学 関する知識をもち、工学的					的な技術
				講義の内容	\$				
項目			目標	i i					時間
微分方程				微分方程式の解の種類と意味を理解する。					
変数分離			1	は分離形の微分方程式の解					6
線形微分			線形	微分方程式の解法を習得	する。				6
中間試験									1
· ·	皆線形微分			斉次2階線形微分方程式の一般解の性質を理解する。					
	2階線形微		1	非斉次2階線形微分方程式の解法を習得する。					6
2 階級形	/微分方程	式の応用	具体	的な現象を踏まえて問題	を解いてみる。				3
ᆉᄼᆀ ᅷᄼᅼᅩᄼᅧᆿ	⇟↶≕∕ℼᅷ		FA - A - A	また(000) 1 細版の相		> =\\(\tau \).	アナッ	J1/200 > 1.	計 30
	長の評価方	試や再試を実施	施する		出状况等(20%)だ	29 評価	買する。	状況によ [、]	つては追
関連科目		微分積分・線子		·					
教科書・	・副読本	教科書: 「新 後藤他 (大日本図		漬分Ⅱ」高遠・斉藤他 (大	日本図書),副読本: 「	「新 微分	分積分 II	問題集」	高遠・斉
				評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	Į)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目野	史 (可)	未到達	レベルの目安	(不可)
1	微分方程	象を変数分離形 呈式で表現でき、 ができる。	解	簡単な変数分離形の微分 方程式を解くことができ る。	微分方程式の意味を し、一般解や特殊解 味を理解できる。	理解	微分方程式が何か理解で きない。		か理解で
2	方程式	型現象を1階線形微分 複雑な1階線形微分方程 簡単な1階線形微分方程 簡単な1階線形 型式で表現でき、解く 式を解くことができる。 式を解くことができる。 大を解くことが				1 階線形術 くことがで	数分方程 きない。		
3	線形微	の高い非斉次 2 分方程式の特殊 一般解を求める きる。	解 2	簡単な非斉次2階線形微 分方程式の特殊解および 一般解を求めることがで きる。	斉次2階線形微分方の一般解を求めるこできる。			解を求める	

1) E 2		令和4年度 医療価値上学コース シフバス	۷۷ ـــــــــــــــــــــــــــــــــــ	M / I		14.00	
科目名		担当教員	学年	単位	開講時数	種別	
機械設計製図 II (Mechanical Designing II)	gn and Draft-	青代敏行 (常勤)	3	2	通年 2時間	必修	
授業の概要	設計に必要な構造出し製図する	幾械要素の設計に必要な計算手法を学ぶ。また計算な ることで設計製図作成能力を習得する。	」 と行って	機械要	素や機器の	L の諸元を	
	演習						
授業の進め方	的演習として名 を行う。	要な各種知識および計算法について教室および製図 各自異なる諸条件に従い設計・製図作成も実施する。 行い自学自習の習慣を身につける。	室での記 また、	講義、淡 理解確	寅習 を行 [、] 認のための	う。実践 のテスト	
到達目標	2. 機械要素の 3. 機械構造部	ための基本計算が理解できる 諸元を導出するための計算手法が理解できる 品について機械製図法に基づいて作図できる 条件を元に計算により機器を設計し、諸元を導くこ 得られた諸元を基に図面を製図することができる	とがで	きる			
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	E (応用力・実)	践力) 総合的実践的技術者として、専門知識を応用し	問題を	解決する	る能力を育	が成する。	
		講義の内容					
項目		目標				時間	
ガイダンス・ねじ		ねじの諸元計算方法、選定基準導出方法を理解する	3 			4	
ボルト・ナットの	設計	ボルトナットの設計手法について学ぶ				2	
軸継手		キー、自在継手、クラッチなど軸継手の種類と計算方法を学ぶ					
機械要素の潤滑		回転軸等における各種潤滑方法について理解する					
トルク、動力の計	算	回転体におけるトルクと動力の計算手法を学ぶ				4	
軸の強度計算		必要動力を伝達可能な回転軸の設計手法を理解する	3			2	
自在継手作図演習		こま型自在軸継手の製図を作図できる					
軸受作図演習製図		ラジアル滑り軸受の製図を作図できる					
平歯車作図演習		平歯車の製図を作図できる					
実機の製作演習		現実に存在する機器を対象に製図を行うことで製図技能の向上を図る					
軸受の寿命		回転軸等における各種潤滑方法について理解する					
潤滑方法		軸受の特徴と寿命を導出する手法について理解する	3			2	
キー・ピンを用い	た締結	要求される強度を有するキー・ピンの特徴、締結等の	の用法に	ついて	理解する	2	
歯車の基礎		歯車の概要、種類、モジュール、歯形曲線につい	て理解す	^ト る		2	
効率と速度伝達比	の計算	かみ合い理論、かみ合い率減速比の計算方法を会行	导する			2	
平歯車の強度計算		歯面強さを求め、要求仕事を達成できる歯車設計	手法を理	単解する	,	2	
3軸2段平歯車減 減速比、トルク	速機の設計 の決定	指定された要求を満たす減速機の減速比、トルク				2	
諸元の決定		授業で学んだ知識を用いて計算し、軸、平歯車の調				2	
配置図の作成		歯車と軸の配置を簡略法により作図し、適切な位				4	
軸の強度計算		配置図の諸元を元に軸の強度について設計条件を満より確認する				2	
軸受の安全確認		計算より得られた諸元を元に軸受の動作条件を推定について計算を用いて確認する				2	
組立図製図		計算書の諸元を基に、軸、平歯車、軸受、歯車箱 	を含め作	凶する	·	6 計 60	
学業成績の評価方 法	授業中の演習/の比率は3:	 	か課題) は、補記	により 講を行う	 評価を行 う。		
関連科目		[・材料力学 Ⅰ・材料学・工業力学 I・工業力学 II					
教科書・副読本	教科書: 「機械 械製図(検定数	成設計 II(検定教科書)」 (実教出版)・「機械設計 I 教科書)」 (実教出版),副読本: 「工業力学 第3版 機械製図は過年度で購入済み、工業力学は他科目で	新装版」	青木弘	,	,	

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	応力、トルク、回転速度、 材料特性などの諸条件を 用い、安全な強度かを確 認するための計算を行う ことができる	特定の力や回転速度など を用い、安全性を確認す るための基本的な計算を 行うことができる	与えられた力や回転速度 などを用いた計算及び、そ の特性を基とした基本的 な問題を解くことができ る	与えられた力や回転速度 などを用いた基本的な問 題を解くことができない				
2	軸や歯車、軸受に関する強度、寿命等を導く式を適切に選択し、この結果を用いて必要とされる諸元を有する機械要素を適切に選定することができる	軸や歯車、軸受に関する強度、寿命等を導く基本的な計算を行い、また目的に合う規格を持つ機械要素を適切に選定することができる	指定された諸元や条件を 基に、目的を達成する機 械要素の種類を判別する とともに適切な機械要素 を選定することができる	指定された諸元や条件に 合う機械要素の種類を選 定することができない				
3	指定された機械構造部品 について、機械製図法に 基づいて作図できている とともに、形状的・数値的 に正しく、かつ実線、細線 などについて誤読が生じ ない精度を実現できる	指定された機械構造部品 について、機械製図法に 基づいて作図できている とともに、形状的・数値的 な正確さを実現できる	指定された機械構造部品 について、機械製図法に 基づいて基本的な作図が できている	指定された機械構造部品 について、機械製図法に 基づいた基本的な作図が できない				
4	特定の機械を対象に、指定の機械を対象に、指定れた入出力などの形式を実現する各部形状の連出と、かつ動作部分の動的安全性を担保することを記明する設計のための計算書を作成できる	特定の機械を対象に、指 定された入出力などの諸 元を実現する機械部品の 形状と、動的安全性を確 認するために必要な計 を行うことができる	特定の機械を対象に、指 定された入出力などの諸 元を実現する機械部品の 基本的な計算を行うこと ができる	特定の機械を対象に、指 定された入出力などの諸 元を実現する機械部品の 基本的な計算を行うこと ができない				
5	設定された諸元を基に、各部を構成する部品のそれであるともに、これらいまではいるという。 これらい はいい はいい はいい はいい はいい はいい はいい はいい はいい は	設定された諸元を基に、各部を構成する部品のそれぞれの基本的な形状を組み合わせた組立図を機械製図法に則った手法で製図できる	設定された諸元を基に、各部を構成する部品を適切に選定し正しい配置で組み合わせた組立図を適切に製図できる	設定された諸元を基に、各 部を構成する部品を用い た組立図を適切に作図で きない				

科目名		担当教員	学年	単位	開講時数	種別
電気磁気学 I (Electromagnetics	s I)	吉田嵩 (常勤)	3	1	後期 2 時間	必修
授業の概要	理現象の本質に 3 学年では静電	電磁気学は電気電子工学を学ぶ上で極めて重要な基礎科目である。電磁気現象を的確に理解し、物 理現象の本質にふれ、医療・福祉機器を構成する電子部品や各種機器を作る上での基礎を学ぶ。第 3 学年では静電場・静磁場についてスカラーによる理解を中心とし、具体的な応用例や演習問題を 多く取り入れ電磁気学の法則への理解を深める。				
授業の形態	講義					
授業の進め方	(成績に加味す	原理について簡単に解説した後、演習問題を通じてクラスメイトと共同し理解を深める。各授業開始時に,前週の内容の確認テストを行う(成績には加味しない).単元終了時には小テストを行う(成績に加味する). 予習、復習を行い自学自習の習慣を身につける。				
到達目標	2. ベクトルと3. 電磁力につ	1. 電界・磁界に関する基本法則について理解する 2. ベクトルとして静電力・磁気力を計算できる 3. 電磁力について理解し、計算できる 4. 電磁誘導について理解し、誘導起電力や誘導電流を計算できる				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	'	合的実践的技術者として、数学・自然科学・自らの 倫に関する知識をもち、工学的諸問題にそれらを応				的な技術

	講義の内容						
項目	目標	時間					
(ガイダンス)							
【静電気 1】 ガイダンス・静電誘導	授業の進め方、成績のつけ方について理解する。 静電気の性質と静電誘導について理解する。	2					
【静電気 2】誘電分極・誘電率・ 静電力	絶縁体(誘電体)と電荷の関係について理解する。静電誘導と誘電分極の 違いを説明できる。静電力の向きを図示でき、大きさを計算できる(スカ ラーとして理解)	2					
【静電気3】静電力(ベクトル)	静電力のベクトル表現について理解する。単位ベクトルの求め方を理解する。2~4個の電荷間に働く静電力を自力で求めることが出来る。	2					
小テスト 1	静電気の基本的な性質、静電力の計算方法について確認する。 大学	0					
【静電気 4】電界・電気力線	電界という概念を理解する。電界の可視化方法として、電気力線の書き方を理解する。点電荷が作る電界を計算できる。	2					
【静電気 5】電位・電束密度	電界が蓄えるエネルギー(電位)について理解する。電気力線と電束の違いについて理解する。	2					
【静電気 6】複雑な電界の計算	点電荷以外の電界を,向きと大きさを別々に自力で求められる.	2					
小テスト 2	電界の向きと大きさの求め方について確認する.						
【静電気 7】コンデンサ	電気回路で習ったコンデンサについて,電界を用いた説明ができる. 静電容量,静電エネルギーについて計算ができる.	2					
中間試験	静電気・電界に関する知識について確認する.						
【静電気7】まとめ	中間試験の返却・解説を行う。不正解率が高い問題について,類似問題を 用いて理解を深める。	2					
【磁気 1】磁気の基本	磁石の性質,磁気力,磁界について理解する.静電気,電界と比較して, どこが似ていてどこが違うのかを説明できる.磁気力をベクトルとして計算できる.点磁極が作る磁界を計算できる.	2					
【磁気 2】磁力線・磁束	磁力線と磁束について理解する.磁力線密度、磁束密度を自力で計算できる.	2					
【磁気 3】電流が作る磁界	電流が磁界を作ることについて理解する。右ネジの法則を用いて、電流が作る磁界の向きを求められる。ビオ・サバールの法則、アンペールの法則を用いて、電流が作る磁界の強さを計算できる。	2					
小テスト 3	磁石の性質, 磁気力, 磁界の計算方法について確認する.						
【磁気 4】電磁力	磁界中の電流に力が作用することを理解する. フレミングの左手の法則を 用いて、電磁力の向きを求められる. 電磁力の大きさを計算できる.	2					
【磁気 5】電磁誘導	電磁誘導という概念を理解する. 誘導起電力, 誘導電流の向きと大きさを計算できる. 自己インダクタンス, 相互インダクタンスについて計算できる. 磁界が蓄えるエネルギーについて計算できる.	2					
小テスト 4	電磁力,電磁誘導,自己インダクタンス,相互インダクタンス,磁界が蓄えるエネルギーについて確認する.						
【磁気 6】磁気回路・ヒステリシス	磁気回路, 磁気ヒステリシス, ヒステリシス損について理解する.	2					
期末試験	磁気・磁界・電磁力・電磁誘導に関する知識について確認する.						
【磁気 7】まとめ	期末試験の返却・解説を行う。不正解率が高い問題について,類似問題を 用いて理解を深める。	2					
		計 30					
学業成績の評価方 法 定期試験 (70 %	6), 小テスト(15%), 演習への取り組み(15%)とし, 総合的に評価する						
関連科目							
教科書・副読本 教科書: 「新版	反 電磁気学の基礎」斉藤幸喜 宮代彰一 高橋清 (森北出版)						

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	の言葉で説明でき,計算で きる. 【電界】静電誘導,誘電分 極,誘電率,電界,電位,	以下の項目について,資料 をみながらであれば説明 でき,自力で計算できる. 【電界】静電誘導,誘電分 極,誘電率,電界,電位, 電気力線,電束【磁界】透 磁率,磁界,磁力線,磁束	以下の項目について, 資料 を見ながら説明でき, 計算 できる. 【電界】静電誘導, 誘電分 極, 誘電率, 電界, 電位, 電気力線, 電束【磁界】透 磁率, 磁界, 磁力線, 磁束	以下の項目について,説明 も計算もできない. 【電界】静電誘導,誘電分 極,誘電率,電界,電位, 電気力線,電束【磁界】透 磁率,磁界,磁力線,磁束					
2	4つの電荷・磁極に関する 静電力・磁気力をベクトル として計算できる	3つの電荷・磁極に関する 静電力・磁気力をベクトル として計算できる.	2つの電荷・磁極に関する 静電力・磁気力をベクトル として計算できる.	2つの電荷・磁極に関する 静電力・磁気力をベクトル として計算できない.					
3	磁界中の導体が受けるト ルクについて計算できる.	複数の電流が相互に作る 磁界について,電磁力を 計算できる.	磁界中の1本の導線が受ける力について電磁力を 計算できる.	磁界中の1本の導線が受ける力について、電磁力を計算できない.					
4	自己インダクタンス,相 互インダクタンス,磁気 エネルギーについて計算 できる.	磁界中を導体が移動する 場合の誘導起電力を計算 できる.	磁界が変化した場合の誘導起電力を計算できる.	磁界が変化した場合の誘 導起電力を計算できない.					

科目名			学年	単位	開講時数	種別
電気回路 II		後藤和彦 (常勤)	3	2	通年	必修
(Electric Circuits	, ,	` '		_	2時間	
授業の概要	3 学年では、2	□学技術を習得するうえで,電気回路は欠くことの} □生次(交流の基礎とベクトル記号法)の復習からぬ ロトル軌跡などを扱う.	出来ない	·専門基 流回路	機科目では 網の諸定理	うる.第 里,相互
授業の形態	講義					
授業の進め方	あげ授業を行っ	らので受講学生全員が理解できるよう,適宜2年次の う。 行い自学自習の習慣を身につける。	の復習と	,充分	な演習問題	夏を取り
到達目標	2. 学んだ回路	解析して回路方程式をたてることができる。 解析法を理解し、適切に解析手法を活用できる。 諸定理を理解して回路の等価回路が導くことができ	る。			
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				りな技術
		講義の内容				
項目		目標				時間
ガイダンス		3年次電気回路の目的と内容及び授業の進め方に	ついての)説明		2
交流回路の基礎事	項の復習	・時間領域表現とフェーザ表示の関係 ・フェーザ表示の演算 ・網目電流法を用いた回路解析				2
可変要素による位	相調整	・桐日電流法を用いた回路解析 ・位相調整の必要性を理解する ・指定された位相関係となるように回路素子の大きさ、電源周波数を設定 できる				
交流電力		・最大供給電力となるインピーダンスを求めるこ。 ・力率を改善するために接続するキャパシタンスの できる			ることが	6
理解度の確認		解答解説と演習				2
回路網の諸定理	重ねの理	・端子間開放と短絡の意味を理解する ・重ねの理を用いて回路の解析ができる				4
回路網の諸定理 定理		鳳・テブナンの定理を用いて、任意の回路を等価が				4
	ノートンの定理	ノートンの定理を用いて,等価定電圧源回路と等値できる	f定電流	源回路	の変換が	4
理解度の確認		例題解説と演習				2
相互誘導回路		・相互インダクタンスの意味を理解する ・電磁誘導結合回路の等価回路を用いて回路の解	•			6
変圧器結合回路		理想変圧器のコイル巻数比を用いて、1次側と2岁 ピーダンスの変換を行うことができる	火側の電	汪, 電	流,イン	2
理解度の確認	, #.+- J.d.	例題解説と演習			0	2
交流回路の周波数	(特性	・C-R 直列回路の周波数特性を用いて、ローパスプルタの意味を理解する ・直列共振回路、並列共振回路を理解する	イル タ	, ハイ.	バスフィ	4
理解度の確認		解答解説と演習				2
ベクトル軌跡		組み合わせ回路における電圧や電流,インピーダンくことができる	/スのベ	クトル	軌跡を描	4
交流回路計算法のまとめ		交流回路に応じて、網目電流法、接点方程式、ΔーΥ変換、回路網の諸定 理などから方法を選択して回路を解析することができる				8
理解度の確認		解答解説と演習				2 計 60
学業成績の評価方 法	勘案して総合的	別期末,後期中間,学年末に実施される定期試験と見 日をもって評価基準点とする.成績評価は,この評価 りに評価する.評価基準点と授業への取組み姿勢の 、あるいは追試験を実施する場合がある.	公要に応 西基準点 評価割む	じて実 (と授業 合は 8:	施される/ への取組。 2とする.	小テスト み姿勢を
関連科目	電気回路I					
教科書・副読本		「回路の基礎 第3版」西巻 正郎、森 武昭、荒井 (陸 第3版」西巻 正郎 他 (森北出版)	嫂彦 (森	北出版),副読本	: 「続

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	複雑な回路構成であっても、適切に閉回路を選択して、回路方程式が立てられ、これを解くことができる。	電流法を基に回路方程式	一つの電圧源を有する比 較的優しい直列や並列回 路を解くことができる。	交流計算の基礎ができて いない。(試験関連箇所が 60 %未満)					
2	解析対象を理解した上で、 解析法を選択でき、解析が 行える。	・枝路電流法・網目電流法・ 節点方程式などの回路方 程式を理解している。さ らに4端子法におけるF マトリックスも理解して おり、これらによる回路 解析ができる。	全てではないが、一部の回 路解析法を理解しており、 解析が行える。	インピーダンス等は理解 しているが、解析に必要な 数学が伴っていない。(試 験関連箇所が 60 %未満)					
3	相互誘導回路など複雑な 回路の等価定電圧源回路 を求めることができる。	鳳・テブナンの法則を用い・等価定電圧源回路・等 価定電流源回路を導ける。	重ねの理・鳳・テブナンの 法則を理解している。	回路を簡単化することが できない。諸定理に関す る知識が曖昧である。(試 験関連箇所が 60 %未満)					

科目名		- 令和 4 年度 医療福祉工学コース シラバス 	学年	単位	開講時数	 種別
電子回路 I		福田恵子 (常勤/実務)	3	2	通年	
(Electronic Circui	its I)			_	2 時間	, . 12
授業の概要	で欠くことの旨	な電子情報機器を構成する重要な要素であり電気電 出来ない基礎科目である。第3学年では、トランジン ることを目的とする。	電子系の スタをは	工学技	術を習得てしたアナロ	するうえ コグ基本
授業の形態	講義					
授業の進め方	講義を中心とし 予習、復習を行	、て、理解を深めるために演習を取り入れる。 行い自学自習の習慣を身につける。				
到達目標	2. トランジス 3. 負帰還の原	の特性を理解できる タの特性を理解し、基本的なバイアス回路、増幅回 理を理解できる 算増幅回路の計算ができる	路の計	算がで	きる	
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				りな技術
		講義の内容				
項目		目標				時間
ガイダンス		目的と内容の説明、基礎知識の確認				2
半導体の基礎		半導体の基礎とダイオードの動作原理				2
ダイオード		ダイオードの静特性と整流作用の理解				
バイポーラトランジスタ		バイポーラトランジスタの静特性の理解				2
増幅の原理		増幅率、利得の理解				2
トランジスタの増	幅回路	基本増幅回路の特性				2
トランジスタの増	幅回路	トランジスタの等価回路の理解				2
まとめ		まとめと確認				2
周波数特性		CR 結合回路の周波数特性、回路シミュレーション				4
バイアス回路		直流バイアス回路の方式の理解				4
小信号增幅回路		直流バイアス回路を用いた CR 結合回路				4
まとめ		まとめと確認				2
小信号增幅回路		CR 結合回路の周波数特性、回路シミュレーション				4
小信号增幅回路		直結増幅回路の理解				2
負帰還増幅回路		負帰還増幅回路の原理の理解				2
負帰還増幅回路		帰還増幅回路(エミッタフォロア他)の動作の理解と演習				4
まとめ		まとめと確認				2
電界効果トランジ	スタ	電界効果トランジスタの動作原理と静特性、FET	增幅回	路		4
演算増幅回路		演算増幅器の基本特性の理解				2
演算増幅回路		基本的な演算増幅回路(加算器、減算器 他)の				4
演算増幅回路 基本回路と現実の回路の動作特性の理解、回路シミュレーション			-ション	·	4	
まとめ	まとめと確認					2
出来はほうまたよ	4 El 0 C HII - 1 El	 	从人 55) -	· >H, ++-2	- ツ - 广 	計60
学業成績の評価方 法	4回の定期試験 題・授業への関を実施する場合	倹の得点と、課題などの授業への取り組み状況からネ 反り組み状況の比率は7:3とする。その他、必要♡ 合がある。	窓合的に こ応じて	決定する課題、	る。定期は小テスト、	以験と課 追試験
関連科目						
	1	をシリーズ 電子回路入門」末松安晴、藤井信生 (ラ				

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	ダイオードの静特性にお ける動作点の算出や、動 特性における整流回路の 特性を説明できる。	ダイオードの静特性と動 特性を説明できる。	ダイオードの静特性と動 特性が理解できる。	ダイオードの静特性と動 特性が理解できない。					
2	トランジスタの特性や増幅の原理と周波数特性が説明でき、直流バイアス回路を持つ基本的な増幅回路のバイアス電圧、動作点、小信号の増幅特性の計算ができる。	トランジスタの特性や増幅の原理と周波数特性が理解でき、直流バイアス回路を持つ基本的な増幅回路のバイアス電圧と小信号の増幅特性の計算ができる。	増幅の原理が理解でき、直流バイアス回路の役割を 選解でき、増幅回路の小 信号の増幅特性の計算が できる。	増幅の原理、直流バイア ス回路の役割と増幅回路 の小信号の増幅特性が理 解できない。					
3	負帰還の原理を理解し、基 本的な帰還増幅回路の計 算ができる。	負帰還の原理を理解し、負 帰還の式が導出できる。	負帰還の原理を理解でき る。	負帰還の原理を理解でき ない。					
4	演算増幅回路の基本特性 を理解し、基本的な演算 増幅回路の性能評価がで きる。	演算増幅回路の基本特性 を理解し、基本的な演算 増幅回路の計算ができる。	演算増幅回路の基本特性 を理解できる。	演算増幅回路の基本特性 を理解できない。					

科目名		担当教員		学年	単位	開講時数	種別	
情報処理 II (Computer Progr	ramming II)	田代裕子 (非常勤/実務)		3	1	後期 2 時間	必修	
授業の概要	C++言語にて 学ぶ。	ついて学ぶ。情報工学の基礎と	して、データ構造、ア	ルゴリ	ズム及	び情報量の	の基礎を	
授業の形態	演習							
授業の進め方	各回とも講義 と 予習,復習を行	と演習を基本として授業を行う 行い自学自習の習慣を身につけ	· 3。					
到達目標	2. データ構造	を理解し、プログラムを作成す とアルゴリズムを理解しプロク 楚的な計算ができる。	rることができる。 vラムへの実装できる。)				
実務経験と授業内 容との関連	なし							
学校教育目標との 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					的な技術	
		講義の内容	F					
項目		目標					時間	
C++言語への発	法展	C 言語の基礎を復習する。C					2	
クラス		C++言語のクラスを理解し、プログラムを作成する。					8	
ファイルの入出力	J	ファイルの概念と操作法を理解し、プログラムを作成する。					4	
アルゴリズム		並び替え、モンテカルロ法のアルゴリズムを学び、プログラムを作成する。					6	
データ構造		基本的なデータ構造について学ぶ。					4	
情報理論の基礎		基本的な情報量の計算や通信路容量について学ぶ。					6	
		計3					計 30	
学業成績の評価方 法	中間・期末試験の参加状況等を	食の得点を 80 %、各回における を総合的に評価する。	る課題提出状況を 20 %	らとして	【基礎点	を計算し、	、授業へ	
関連科目								
教科書・副読本	参考書: 「プロ	グラミング言語 C++第 4 版」	ビャーネ・ストラウン	ストラ	ップ (SI	3 クリエイ	ティブ)	
		評価 (ルーブリ	ック)					
到達目標 理想的な	対達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	: (可)	未到達	レベルの目安	(不可)	
にプロ	語を理解し、独 グラムを作成す できる。	自 C++言語を理解し、プロる グラムを作成することができる。	C++言語の一部を し、プログラムを作 ることができる。	理解成す	解 C++言語が理解し すい。		していな	
┃ ムを理	構造とアルゴリ 解し、独自のプ 設計に応用できる	ズ データ構造とアルゴリズ ロ ムを理解しプログラムへ る。 の実装できる。	データ構造とアルゴムを理解できる。	リズ	ズ データ構造とアル: ムを理解していない		レゴリズ	
3 情報量 報量を きる。	の計算ができ、 他の事象に応用	情 情報量の計算ができる。 で	情報量の意味がわか		情報量の	の意味がす	つからな	

1) D 4		令和 4 年度 医療福祉工学コース ソフバス	344	N/ /-I	I	1 4 D.1
科目名		担当教員	学年	単位	開講時数	種別
材料学 (Materials Science	e)	杉本聖一 (常勤)	3	1	前期 2 時間	必修
授業の概要	かしながら、金持つ。したがつ	料として用いられる元素の種類は20~30種類程度 定属材料の種類や性質は合金化や熱処理などを用いる って、個々の材料について知識を覚えるのではなく、 機械や構造物を設計する上で必要な材料について	Sことで 材料学	ほぼ無の基本	限に近い	多様性を
授業の形態	講義					
授業の進め方	より授業を進め	プ学習による演習(アクティブラーニング)、および める。 行い自学自習の習慣を身につける。	理解度	確認の	ための小っ	テストに
到達目標	2. 材料の微視 3. 鋼の平衡状!	生質の定義とそれぞれの試験方法を理解できている 的構造を理解できている。 態図の読み方を理解し、状態図から組織の状態、組 処理による効果と特色を理解できている。		めるこ	とができる) ₀
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				内な技術
		講義の内容				
項目		目標				時間
ガイダンス		・授業に関するガイダンスを行い、ものづくりにま解する。	ける材	料学の	意義を理	2
材料の機械的性質	と試験方法	・材料の各種機械的性質(強度、延性、じん性、硬さ、疲労など)とその 試験方法について学び、それぞれの違いについて理解する。				
材料の微視構造		・材料の原子構造と結合力、結晶構造を理解する。 ・金属材料の欠陥と転位,転位による塑性変形の仕組みを理解する。				
合金の状態図の読	み方	・平衡状態図の読み方、てこの法則を理解する。 ・主要な2元合金状態図を学び、状態図から得られる組織の状態、組成の 求め方を理解する。				3
まとめ		・これまでのまとめと復習を行う。				1
鋼の状態図と組織		・代表的な金属材料である鋼の平衡状態図について 鋼の組織、変態について理解する。	学び、	各状態	における	6
鋼の熱処理		・各種熱処理(焼なまし、焼ならし、焼入れ・焼房 織変化と機械的性質との関係について理解する。 ・金属の強化機構について理解する。 ・TTT 曲線、CCT 曲線の読み方と組織変化、機械				8
		理解する。				
まとめ		・これまでのまとめと復習を行う。				2 計 30
学業成績の評価方	課題・小テスト	、等と2回の定期試験により評価を行う。ただし、i	平価の日	変は原	間として	
法	する。また, 月	 支續状況に応じて再試験を実施することがある。	т іші • / УС	1 100/2	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
関連科目	材料力学 I・医療福祉工学実験実習 II・生体材料					
教科書・副読本 教科書: 「図解 機械材料 第3版」打越二彌 (東京電機大学出版局)						

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	各種機械的性質の定義と それぞれの試験方法を理 解し、説明できる。	各種機械的性質の定義と それぞれの試験方法をお おむね理解できている。	各種機械的性質の定義と それぞれの試験方法を教 科書等を参考にしながら 理解できる。	各種機械的性質の定義と それぞれの試験方法を全 く理解していない。					
2	材料の微視的構造を理解 し、説明できる。	材料の微視的構造をおお むね理解できている。	材料の微視的構造を教科 書等を参考にしながら理 解できる。	材料の微視的構造を全く 理解できていない。					
3	鋼の平衡状態図の読み方 を理解し、状態図からあ らゆる組織の状態、組成 について説明することが できる。	を理解し、状態図から組 織の状態、組成をおおむ	鋼の平衡状態図の読み方 を理解し、状態図から組 織の状態、組成を教科書 等を参考にしながら求め ることができる。	鋼の平衡状態図の読み方 を理解できず、状態図か ら組織の状態、組成を求 めることができない。					
4	鋼の各種熱処理による効 果と特色を理解し、説明 できる。	鋼の各種熱処理による効果と特色をおおむね理解できている。	鋼の各種熱処理による効果と特色を教科書等を参 考にしながら理解できる。	鋼の各種熱処理による効果と特色を理解できていない。					

		〒和4年度 医療偏位工字コース ソフハス	I .					
科目名				開講時数	種別			
材料力学 I (Strength of Mate	erials I)	田宮高信 (常勤)	3	2	通年 2 時間	必修		
授業の概要	機械や構造物の 学は、部材内部 る。3年次で	D設計においては部材の材質や寸法は安全性と経済性 Wに生ずる応力と変形を明らかにする学問であり,機 は最も基礎となる諸問題を通じ,基礎力と応用力を	上の観点 と械や構 養う.	いら決 造物の	定される. 設計に不可	材料力 可欠であ		
授業の形態	講義							
授業の進め方		し、理解を深めるために演習を多く取り入れる。 行い自学自習の習慣を身につける。						
到達目標	2. 真直棒の引 3. 真直ばりの 4. 真直ばりに	み,およびフックの法則という材料力学の基礎を理 張圧縮の問題について応力およびひずみが計算でき せん断力線図および曲げモーメント線図が作図でき 作用する曲げ応力および曲げ剛性を理解し、強度計 たわみの基本式を理解し計算できる。	る。		3.			
実務経験と授業内 容との関連								
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 倫に関する知識をもち、工学的諸問題にそれらを応				的な技術		
		講義の内容						
項目		目標				時間		
ガイダンス		材料力学の目的・内容について説明する。				1		
応力とひずみ		応力とひずみについて説明する。				2		
フックの法則		フックの法則について学び、引張圧縮の簡単な問題	夏を解く	•		2		
材料試験と弾性係	数	フックの法則における比例定数=弾性係数について説明し、実験値から弾 性係数を求める。						
まとめと演習		フックの法則についてまとめと演習をおこなう。						
許容応力と安全率		設計時の基準応力と許容応力、安全率の関係について説明する。						
引張圧縮の不静定	問題	引張圧縮に関する不静定問題を解く。 ◎まとめと演習						
支点と支点反力		真直ばりで用いられる支点と支点反力について理解する。						
	力と曲げモーメ	真直ばりに作用するせん断力と曲げモーメントの関係を説明する。						
SFD, BMD		せん断力線図 (SFD), および曲げモーメント線図 (BMD) を説明する。						
SFD, BMD の演	習問題	SDF, BMD の演習をおこなう。						
真直ばりの応力		◎まとめと演習真直ばりの応力について基礎方程式を説明する。						
断面係数と最大曲	げ応力	野面係数を理解し、最大曲げ応力の計算をおこな。	5 (曲)-	が強さし		$\frac{2}{2}$		
平等強さのはり	ロシグロンコ	平等強さのはりについて理解する。	, (щу,	/ JA C / o		$\frac{2}{2}$		
断面二次モーメン	·							
断面二次モーメン		各種断面について断面二次モーメントおよび断面係	数の計	・ 算をお	こなう。	$\frac{2}{2}$		
断面二次モーメン	****	断面二次モーメントに関する定理を理解する。	1201711	>7 € 40	- 5 / 0	2		
		◎まとめと演習				$\frac{2}{2}$		
たわみの基本式の導出		真直ばりのたわみ曲線の基本式(微分方程式)を説明する。						
たわみ曲線を求め		たわみの基本式を解き、たわみ曲線を導く。						
真直ばりにおける 原理		重ね合わせの原理を用いてたわみを求める。						
真直ばりの不静定	問題	真直ばりの不静定問題を解く。						
		◎まとめと演習	, -			2		
引張圧縮問題の演	[習	引張圧縮に関する応用問題について演習をおこなう変形、断面の変化する棒の伸び)。	(自重	を考慮	した棒の	3 2		
		◎まとめと演習	◎まとめと演習					

計60

学業成績の評価方 法	4回の定期試験および授業中に実施する小テスト、授業への参加状況から総合的に判断する。定期 試験点数および小テストと授業への参加状況の比率は8:2とする。また、学習意欲と学習態度に より、加点又は減点を行う場合がある。
関連科目	工業力学 I・材料力学 II・医療福祉工学実験実習 II・医療福祉工学実験実習 III・機械工学演習
数 科 聿 . 則 詩 木	教科書, 「其隣から学ど、材料力学、真力公 政士、小林 禾畑 (杰北中県)

教科書	・副読本	教科書: 「基礎	きから学ぶ 材料	斗力学」臺丸谷	政志、小林 秀敏 (森北出席	反)
			Ē	評価 (ルーブリ	ック)	
到達目標	理想的な	到達レベルの目安 (個	標準的な到達し	レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	クの法則 の基礎で	かずみ, およびご 則という材料力 を理解し、周囲 Eしく教えるご る。	学 ックの法則の 学の基礎を	み, およびフ という材料力 理解し説明で	教科書やノートを見れば、 応力とひずみ,およびフックの法則という材料力 学の基礎を理解し説明で きる。	教科書やノートを見ても、 応力とひずみ、およびフッ クの法則という材料力学 の基礎を理解し説明でき ない。
2	縮の問題	な真直棒の引張 質について応力 「みが計算でき	おについて応	張圧縮の問題 力およびひず きる。	基本的な真直棒の引張圧 縮の問題について応力お よびひずみが計算できる。	基本的な真直棒の引張圧 縮の問題について応力お よびひずみが教員の補助 を受けても計算できない。
3	につい およびB	な真直ばりの間 て、せん断力線 曲げモーメント 図できる。	図せん断力線	問題について、 図および曲げ 線図が作図で	基本的な真直ばりの問題 について、せん断力線図 および曲げモーメント線 図が作図できる。	基本的な真直ばりの問題 について、せん断力線図 および曲げモーメント線 図が教員の補助を受けて も作図できない。
4	についる	な真直ばりの間 て、作用する曲 はび曲げ剛性を 食度計算ができ	げ 作用する曲 理 曲げ剛性を	問題について、 げ応力および 理解し、強度 る。	基本的な真直ばりの問題 について、作用する曲げ 応力および曲げ剛性を理 解し、強度計算ができる。	
5	式を理解	解し、発展的な の問題について	本 真直ばりの 真 式を理解し 問題につい	たわみの基本 、真直ばりの て計算できる。	真直ばりのたわみの基本 式を理解し、基本的な真 直ばりの問題について計 算できる。	真直ばりのたわみの基本 式を理解し、基本的な真 直ばりの問題について教 員の補助を受けても計算 できない。

科目名		担当教員	学年	単位	開講時数	種別	
工業力学 II (Engineering Med	hanics II)	杉本聖一 (常勤)	3	1	後期 2 時間	必修	
授業の概要	物理学で学んた 2学年の「工業 ついて中心に気	ごことを基にして、工業技術において実際に起こる力 €力学Ⅰ」では静力学について取り扱ったが、本授第 ^{並ぶ} .	J学的現 きではよ	象につ り一般	いて理解で 性のある動	する。第 動力学に	
授業の形態	演習						
授業の進め方	より授業を進め	プ学習による演習(アクティブラーニング)、および りる。 行い自学自習の習慣を身につける。	で理解度	確認の	ための小う	テストに	
到達目標	2. ニュートン(3. 剛体の運動: 4. 運動量と運動	各種の運動について理解し、位置、速度、加速度を求めることができる ニュートンの運動の法則を理解し、運動方程式を立てることができる。 剛体の運動を理解し、問題を解くことができる。 運動量と運動量保存の法則について理解し、問題を解くことができる。 士事とエネルギー、動力の関係を理解し、問題を解くことができる。					
実務経験と授業内 容との関連	なし	なし					
学校教育目標との 関係	学校教育目標との 関係 D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						
		講義の内容					
項目		目標				時間	
ガイダンス		・講義の概要、工学における動力学の意義を理解で	-			1	
点の運動		・変位、速度、加速度の関係と質点の種々の運動 放物運動、相対運動)について理解し、問題が解し	(直線道 ける。	重動、平	^Z 面運動、	5	
運動と力		・ニュートンの運動の法則と慣性力を理解する。				4	
剛体の運動		・剛体の回転運動と慣性モーメント、断面二次モーる. ・剛体の平面運動を理解し、運動方程式を立てられ		につい	て理解す	6	
まとめ		・これまでのまとめと復習を行う。				2	
運動量と力積		・運動量と運動量保存の法則について理解する. ・種々の衝突について、計算ができる.				4	
仕事、エネルギー	、動力	・仕事とエネルギーの関係について理解する。 ・エネルギー保存の法則と動力について理解し、記	計算がて	ごきる 。		6	
まとめ	・これまでのまとめと復習を行う。					2	
		計 30					
学業成績の評価方 法	課題・小テストする。また、『	、等と2回の定期試験により評価を行う。ただし、 え 技績状況によって再試験を行う場合がある.	平価の比	公率は原	則として	4:62	
関連科目	工業力学I・物	理 I・物理 II・応用物理 I・機械工学演習	<u> </u>	<u> </u>			
教科書・副読本	副読本 教科書:「工業力学」本江哲行、久池井茂 (実教出版)						

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	各種の運動について理解 し、応用的な問題につい て位置、速度、加速度を求 めることができる。	し、基礎的な問題につい	各種の運動について理解 し、教科書等を参考にし ながら、基礎的な問題に ついて位置、速度、加速度 を求めることができる。	各種の運動について理解 できず、位置、速度、加速度 を求めることができない。
2	ニュートンの運動の法則 を理解し、応用的な問題 について運動方程式を立 てることができる。	を理解し、基礎的な問題	ニュートンの運動の法則 を理解し、教科書等を参 考にしながら、基礎的な 問題ついて運動方程式を 立てることができる。	ニュートンの運動の法則 を理解できず、運動方程式 を立てることができない。
3	剛体の運動を理解し、応 用的な問題を解くことが できる。		剛体の運動を理解し、教 科書等を参考にしながら、 基礎的な問題を解くこと ができる。	剛体の運動を理解できず、 問題を解くことができない。
4	運動量と運動量保存の法 則について理解し、応用 的な問題を解くことがで きる。	則について理解し、基礎	運動量と運動量保存の法 則について理解し、教科書 等を参考にしながら、基礎 的な問題を解くことがで きる。	則について理解できず、問
5	仕事とエネルギー、動力の 関係を理解し、応用的な問 題を解くことができる。	仕事とエネルギー、動力の 関係を理解し、基礎的な問 題を解くことができる。	仕事とエネルギー、動力の 関係を理解し、教科書等を 参考にしながら、基礎的な 問題を解くことができる。	仕事とエネルギー、動力の 関係を理解できず、問題を 解くことができない。

		令和4年度 医療福祉工学コース シラバス							
科目名		担当教員	学年	単位	開講時数	種別			
医療福祉工学実験 (Experiments and Medical and Wel ing II)	d Practice of	福田恵子 (常勤/実務)・柴田芳幸 (常勤)・杉本聖一 (常勤)・冨田宏貴 (常勤)・篠崎真良 (非常勤)	3	4	通年 4 時間	必修			
授業の概要	生体計測に関す	長習で構成される。テーマⅠではアナログ回路に関す ↑る実験を展開する。テーマ III では機械部品の加工 ⋭行い、テーマⅣでは材料力学・材料工学に関する 実習を行う。	精度に	関するタ	実験と3次	元 CAI			
授業の形態	実験・実習								
授業の進め方	これについて	E編成で実施し、ローテーションにより1年を8期に分けて実験実習を行う。実験、実行れに関する講義と実験ないしは実習を実施し、作製物の提出やレポートの提出を義殖について内容を吟味し指導を行う。 習、復習を行い自学自習の習慣を身につける。							
到達目標	2. 生体計測の 3. ものづくり 4. 材料力学・ 5. 期限を守る	登子回路の動作を理解できる 生体計測の基本的な手法を理解できる のづくりの基本を理解し、適切に設計することができる 材料力学・材料工学の基本事項について理解できる 関限を守る重要性を理解できる 実験、実習レポートの作成手順を習得できる							
実務経験と授業内容との関連	なし								
学校教育目標との 関係	E (応用刀・実)	践力) 総合的実践的技術者として、専門知識を応用し 講義の内容	間題を	野沢する	6 能刀を育	アルする。			
		調務の内容				時間			
<u> ガ</u> イダンス		実験実習の進め方、実験実習に関する諸注意等ガー 開始時間、挨拶、後片付け、実験実習に取り組む負 を守る指導を行う。	イダンフ 態度、リ	くを行う ポート	。 提出期限	H-J lt			
テーマ I (通年) アナログ回路		電子回路を構成する重要な要素であるダイオード、 導体素子の静特性 (直流特性) と動特性 (交流特性 の基本動作を理解するための実験実習を実施する。)、及び	ジスタ 、演算	などの半 増幅回路	2			
テーマⅡ (通年) 生体計測実習		生体情報を工学的に計測する実験を行う。筋電図、 プチャーによる歩行計測、脳波、心電図の計測実験 学的計測方法の原理と、得られた生体情報の生理的 を習得する。	食を行い	、生体	情報の工	2			
テーマⅢ(通年) 計測工学実験 3 次元 CAD		前期(篠崎担当)は機械部品の加工精度評価(円筒 気マイクロメータを用いた部品の精度管理など各 後期(冨田担当)は3次元 CAD を用いて,ソフ パーツモデリングの概念を理解する。	鍾計測技	支術を習	習得する。	2			
テーマIV(通年) 材料力学実験 (引張試験,衝撃	試験)	・引張試験、シャルピー衝撃試験、各種硬さ試験を質を調べる方法を習得する。 ・引張試験によって得られる応力-ひずみ曲線の意 ・衝撃試験を行い、材料の靭性、脆性について理解	味を理解			2			
材料工学実験 (鋼の組織観察,	鋼の熱処理)	・鋼の組織観察を行う手法を習得し、鋼の平衡状態で理解する。炭素鋼、鋳鉄の組織と機械的性質といっ鋼に熱処理を行う手法を習得し、熱処理が鋼の板と CCT 曲線について理解する。焼入れ硬さ、焼力性の概念と、それぞれに影響を与える因子につい	の関係を 幾械的性 、性、焼	理解す 質に及 もどし	- る。				
まとめ		実験実習の実施状況の確認とまとめを行う。							
エンジニアリング	デザイン実習	チームで行うワークショップなどを通して、エンジな考え方の基礎を学ぶ。PDCAサイクルによるする。 前期4時間、後期8時間で実施する				1			
エンジニアリング・ よび総括	ンジニアリングデザイン発表お エンジニアリングデザインで検討した内容の発表および、実験実習全体の								
学業成績の評価方 法	全ての実験・領別を行う。	実習を行ったうえで、取り組み状況と課題およびレー 面する。評価の比率は3:7とする。ただし、正当:	ポート な事由に	(質問・ よる欠	試問を含む	計 12 む)に 』 ては、神			
関連科目									
教科書・副読本	その他: 指導書								

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	電子回路、論理回路の基本回路の動作を理解でき、 これら回路を配線して電子計測装置を用いて測定 し、得られた結果が正しいか否かを判断できる。	電子回路、論理回路の基本回路の動作を理解でき、 これら回路を配線して電子計測装置を用いて測定 できる。	電子回路、論理回路の回 路を配線して電子計測装 置を用いて測定できる。	電子回路、論理回路を配線して電子計測装置を用いて測定できない。
2	生体情報の基本的な計測 方法と得られた生体情報 の意味を理解し、生理的 な意味を説明する事がで きる。	生体情報の基本的な計測 方法と得られた生体情報 の意味を理解でき、説明 する事ができる。	生体情報の基本的な計測 方法と得られた生体情報 の意味を一部理解し、説 明する事ができる。	生体情報の基本的な計測 方法と得られた生体情報 の意味を理解できない。
3	3次元CADを用いて独自 の設計と基本的解析がで きる。	3次元 CAD を用いて部品 の設計と組み立て (拘束) ができる。	3次元 CAD を用いて基本 的な操作と設計が出来る。	3次元 CAD を用いて基本 的な操作と設計ができな い。
4	材料力学・材料工学の基本事項を理解し、材料の 各種性質を調べるための 適切な試験方法を選択し、 実施できる。	材料力学・材料工学の基本 事項を理解し、各種試験機 を使用することができる。	テキストを参考に材料力 学・材料工学の各種試験 機を使用できる。	各種試験機を用いて材料 力学・材料工学実験を行 うことができない。
5	期限内に自らの力でレポートを完成できる。	期限内にデータをまとめ、アドバイスを受けて レポートを完成できる。	具体的な指示を受けてレポートに着手し、期限内 に作成できる。	レポートを期限内に作成 することができない。
6	実験データを管理し、エクセルを用いたデータ処理を行い、ユニークな考察・調査を備えた形式の整ったレポートを作成できる。	実験データを管理し、エ クセルを用いたデータ処 理を行い、形式の整った レポートを作成できる。	実験データを管理し、データ処理を行い、レポートを 作成できる。	実験データの管理とデータ処理が行なえず、レポートを作成できない。

科目名		担当教員		学年	単位	開講時数	種別
医工連携概論 (Introduction engineering coop	of medical-	大田黒紘之 (非常勤)		3	1	前期 2時間	選択
授業の概要	医学と工学に関 内容をプロジェ	連した創造的な複合領域の新 クト科目への展開や卒業研究	規技術の動向を AI 関 などに生かす。	連技術	を中心	として学。	ぶ。学習
授業の形態	演習						
授業の進め方	オムニバス形式 端関連技術を学 実施順序は変更 予習、復習を行	で実施する。プロジェクト科 ぶ。また、最先端技術の学習 になる場合がある。 い自学自習の習慣を身につけ	目に役立つ工学的な内 やニーズの把握を目的 る。	内容を中 わとした	心とし :施設見	たコース 学を含む。	関連の先 講義の
到達目標	1. 医工学分野と	工学分野と先端技術の関わりを理解し、学習内容をまとめて他者に説明することができる					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学 に関する知識をもち、工学的					りな技術
		講義の内容					
項目		目標					時間
ガイダンス	ガイダンス 科目の位置づけとシラバスの内容と評価方法を説明する					2	
最先端技術1		IoT 技術、画像処理技術に関	して学ぶ				4
最先端技術 2		ロボティクスに関して学ぶ (タ					2
最先端技術 3		ヒューマンインターフェース 常勤教員)	、認知・生体機能に	関して	学ぶ (外	部講師・	6
生体機能の学習	1	生体情報モジュールを用いた	演習を行う				4
最先端技術4		AI 関連技術、ディープラーニ	ングに関して学ぶ				4
最先端技術 5		AI 関連技術の医工学分野への	応用に関して学ぶ				2
施設見学		医工連携あるいは AI 関連の旃	施設見学を行う				2
生体機能の学習	2	生体モジュールを用いた演習	を行う				2
まとめ		学習内容に関するまとめを行	う				2
							計 30
学業成績の評価方 法	アプート, 提出	物の取組状況 70 % 、成果発	表 30 % として評価	する。			
関連科目							
教科書・副読本	その他: 講師が	用意した自作資料を用いる					
	"	評価 (ルーブリ	ック)				
到達目標 理想的	な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目室	₹ (可)	未到達	レベルの目安	(不可)
┃	分野と先端技術(を理解し、学習 を理解し、学習 とめ他者に説明 ができる。	内 関わりを理解し、 学習内容	医工学分野と先端技 関わりの基礎知識を し、学習内容をまと とができる。	·理解 めこ	関わりの	分野と先端 の基礎知識 習内容を認 きない。	畿を理解┃

科目名					学年	単位	開講時数	種別	
オブジェ		入門 bject-oriented	望月尊仁 (非常勤)		3	1	後期2時間	選択	
授業の概	既要	については、C	る標準的な知識を有しているこ 言語との差違を説明すること 里も簡潔なプログラムで実行出	で理解する。後半は名	n の基礎 ト 種ライ	きを学ぶ ブラリ	s。Pythor の活用方法	ı の文法 去を理解	
授業の形	態	演習							
授業の進	≝め方	習、復習を行い)学習内容を解説する。次に、 よく聴くこと、自主的にプログ い自学自習の習慣を身につける 行い自学自習の習慣を身につける) ₀	が課題に <u>1</u> み、こ	エ取り組 これを完	む。学生に成させる。	は、教員こと。予	
到達目標			音を用いた基本プログラムを読 アルゴリズムから基本プログラ		実装で	きる。			
実務経験 容との関	と授業内]連	なし							
学校教育 関係									
			講義の内容	学				時間	
項目			目標						
ガイダン	/ス		ガイダンス					1	
基礎			プログラミング環境の使い方					1	
関数	as it.		関数の使い方について学習す					4	
データ様			文字列、リスト、辞書等、py		造を理	解する。	,	6	
制御構造			条件分岐、繰り返しについて					6	
ファイル			よく使われるデータ形式(csv, json, xml 等)の入出力方法を理解する。					6	
ライブラ	りの使い	方	各種ライブラリの使い方を理解する					6	
								計 30	
┃学業成績 ┃法 ┃	い評価方	取組状況により) 判断する						
関連科目	3								
教科書・	副読本		₹ Python のツボとコツがゼッ ython のツボとコツがゼッタ~						
			評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	(良) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目等	₹ (可)	未到達	レベルの目安	(不可)	
1	な基本的	on 言語を用いた高度 python 言語を用いた基本 python 言語を用いた簡単 python 言語を用 本的なプログラムを 的なプログラムを読むこ な基本的なプログラムを グラムを読むこ							
2	リズムカ	とができる。 とができる。 読むことができる。 ない。 れた高度なアルゴ 規定された基本的なアル 規定された簡単なアルゴ 基本プログラムを から基本プログラ ゴリズムから基本プログ リズムから基本プログラ はhon 言語で実装できる。 ない。 基本プログラムを 言語で実装できた。 できる。 された簡単なアルゴ リズムから基本プログラ るを Python 言語で実装できる。 きる。							

令和4年度 ものづくり工学科 シラバス

		市相4年度ものフくり」	= 3 1-1 > > / // /					
科目名		担当教員		学年	単位	開講時数	種別	
ゼミナール (Seminar)	医	療福祉工学コース教員 (常勤	助)	4	2	通年 2 時間	必修	
授業の概要	高専教育の総まとれ、卒業研究への	: めとしての卒業研究に着手)心構えを養う。	きするにあたり、その	予備段	階とし	て研究室に	こ配属さ	
授業の形態	実験・実習							
授業の進め方	ゼミナール形式で	、希望、調整に基づいて決 が進行する。 1自学自習の習慣を身につけ		算教員か	ら直接	指導を受り	けながら	
到達目標	1. 卒業研究に備え 2. 研究力、応用力	研究に備えた基本事項を修得し卒業研究に着手できる。 力、応用力、専門知識を向上し卒業研究に着手できる。						
実務経験と授業内 容との関連	なし							
学校教育目標との 関係	A (学習力) 総合的	的実践的技術者として、自主	E的・継続的に学習す	る能力	を育成	する。		
		講義の内容	ř					
指導教員	テ	·-マ						
青代 敏行	医	療・リハビリテーション機	器開発のための基礎知	口識習得	}			
後藤 和彦		体信号解析のための基礎知	識の習得					
杉本 聖一	· ·	用・生体材料に関する研究						
柴田 芳幸	·	ハビリテーション機器開発						
田宮 高信		料強度の基礎と試験機の操		引得				
冨田 宏貴		密機械要素の性能評価と計						
福田 恵子		体光計測のための計測技術						
古屋 友和		ューマンインタフェース・				得		
星 善光	人	.の心理特性に適合したマン	マシンインターフェィ	イスの開	開発			
吉田 嵩	高	速高精度なディジタルフィ	ルタ設計技術の習得					
吉村 拓巳	マ	イコンを用いた組込技術修	得					
	計	60 時間						
学業成績の評価方 法	取組状況により評	呼価する。						
関連科目								
教科書・副読本								
		評価 (ルーブリ	ック)					
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目野	そ(可)	未到達	レベルの目安	(不可)	
ること	に参考資料を調べ で、卒業研究に備え 事項を修得できる。	参考資料を調べることで、 卒業研究に備えた基本事 項を修得できる。	担当教員の助言を受 ことにより、卒業研 備えた基本事項を修 きる。	発に 得で イ	し受け	員の助言が ても、卒業 基本事項を	き研究に	
2 卒業研 識、応 できる。	究に備えた専門知 目力、研究力を向上 。	卒業研究に備えた専門知 識、応用力を向上できる。	卒業研究に備えた専 識を向上できる。	1	し受け、	員の助言を ても、卒弟 専門知識を	き研究に	

令和4年度 ものづくり工学科 シラバス

科目名				フィッエ <u>ディッ</u> 3当教員	·	学年	単位	開講時数	種別
インター (Internsh			門多嘉人 (常勤)・源雅 勤)・小出輝明 (常勤)			4	2	集中	選択
授業の概要	要	以上、企業や大 たちの仕事を観	を持った実践的な「 学・研究所などで「第 際・体験して、自らの 導を行い、学生の企	ξ務体験」を行う。 ○能力向上と、勉等	。学校で学A 学・進路の指	レだ内容	ネを活用	し、現場の	の技術者
授業の形態	態	実験・実習							
授業の進	め方	説明会や企業的 予習、復習を行	索、志望理由作成、第 い自学自習の習慣を	実習、報告書作成 身につける。	・発表の順	で進める	3.		
到達目標		1. 所定の事前 2. インターン 3. どのような	・事後指導に参加し、 ンップ先での実習によ 技術者になりたいのか	報告書等の提出物 り、仕事に対する を考え、実習先を	ガすべてを提 5 理解を深め と選ぶことが	出する るこき る	ことが ができ。 。	できる。 る。	
実務経験る容との関係		なし							
学校教育 関係	目標との	社会で活躍した C (人間性・社	ーション力) 総合的実 : りするために、論理! 会性) 総合的実践的技 : ち、技術者として社会	りに考え、適切に 析者として、産業	表現する能 界や地域社	力を育月 会、国	成する。 際社会/		
			講	義の内容					
特別	区・企業	ップ説明会 ・大学等 ップ申込書の	目標 インターンシップの記 理解する。各インター インターンシップ申込	-ンシップ事業に	応じて、数回	/ップと 回、実施	手続き	の流れを	時間 2
作成 2-1	企業探		掲示物や WEB サイ		-	めすて			6
2-1 2-2	正表体	术	担当教員と面談し、			以りる。			6 1
2-3	志望理	±	志望理由を、教員の						6
3. 説明:	会 (保険)	[[入]	保険加入の説明を受け	け、理解して加入	する。				1
4. イン	ターンシ	ップの諸注意	実習直前にインター: える。	ノシップにおける	注意を受け	、礼儀	・マナ	ー等を考	2
5. 学生	による企	業訪問・連絡	学生が事前に企業訪問して、インターンシップの初日についての打ち合わ せを行う。遠方の場合は、電話・FAX・メール等を用いて打ち合わせる。					2	
6. イン	ターンシ	ップ	実習先で、インターンシップを実施する。 5日 (実働 30 時間) 以上、実施する。					30	
7. イン 作成	ターンシ	ップ報告書の	インターンシップ報告書を作成する。内容には企業秘密等を記載しないよ うに考慮のうえ完成させる。					8	
8. イン	ターンシ	ップ発表会	発表会に参加し、発表	ēおよび質疑を行	う。				2 計 60
学業成績(法	の評価方	①事前・事後指否」で評価する ンターンシップ	7導、② 5 日(実働 30 。単位認定に必要な 『報告書」および「指	時間)以上の実習 碁類は、実習機関 導記録簿」である	引 (インター が発行する 。	ンシッ「インタ	プ)を約 フーンシ	総合的に見 ツプ証明	て「合・
関連科目									
教科書・	副読本	その他: (教科	書は使いません)						
<u> </u>				レーブリック)		,			
到達目標		到達レベルの目安 (優		安 (良) ぎりぎりの	到達レベルの目5	· /		レベルの目安	` ′
1	加し、報意義を理	師・事後指導に 告書等の提出物 望解し、すべてを ことができる。	の				欠席が、 要書類: れない。		たは、必 こ提出さ
2	実習に。	ーンシップ先での より、仕事に対す を深めることがで					完結せず,	仕事に	
3	たいのな	うな技術者にな かを考え、企業 実習先を選ぶこ う。	探				たいの; できず、	うな技術者 かを考える 、実習先を きない。	ることが

科目名		担当教員		学年	単位	開講時数	種別
			•		1 1		
応用数学 II (Applied Mat)	nematics II)	矢吹康浩 (常勤)・小野智明 (常	(到)• 日升智 (非幂期)	4	1	前期 2 時間	必修
授業の概要	性質について	は、波に関する現象を解析する 論じる。また、制御工学などで の解法への応用などを論じる。	上で特に重要な道具でよく用いられるラブラ	である。 ラス変換	フーリ ぬにも言	エ級数の表及し、定義	基本的な 数係数線
授業の形態	講義						
授業の進め方	講義を中心と 予習、復習を	するが、理解を深めるための問 行い自学自習の習慣を身につけ	l題演習も行う。 rる。				
到達目標	1. フーリエ級 2. ラプラス変	数の意味およびその性質を理解 換の意味およびその性質を理解	翼し、基本的な計算技 翼し、基本的な計算技	術を修 術を修	得でき _。 得でき	る。	
実務経験と授業 容との関連	体 なし						
学校教育目標と 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					的な技術
		講義の内容	\$				
項目		目標					時間
フーリエ級数		フーリエ級数の定義と概念を	理解すること。				14
ラプラス変換		ラプラス変換の定義と概念を	理解すること。				5
ラプラス変換の	の性質	ラプラス変換のいくつかの性	質を理解すること。				5
ラプラス逆変	奥と逆変換の公式	ラプラス逆変換の意味を理解	し、その技法を習得る	すること	- 0		4
定数係数線形征	数分方程式の解法	定数係数線形微分方程式への	応用を修得すること。				2 計 30
 学業成績の評値 法	5方 2回の定期試験 を実施するこ	」 倹の得点(80 %)と課題・取組 とがある。	状況(20 %)から評価	折する。	なお、	状況によ	
関連科目	微分積分・解	析学基礎・応用数学 I					
教科書・副読	本 教科書: 「基础	楚解析学 改訂版」矢野健太郎	、石原繁 (裳華房)				
		評価 (ルーブリ	ック)				
到達目標 理想	関的な到達レベルの目安 (何	憂) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目的	マ (可)	未到達	レベルの目安	(不可)
フ- る。	での周期をもつ関数 ・リエ級数展開がで	でき びその性質の理解はほぼ できていて、周期が 2π の 簡単な関数についてフーリエ級数展開ができる。	フーリエ級数の性質 解は不十分であるが、 2π の矩形関数などの な関数のフーリエ級 開はできる。	周期)簡単 数展	びその性基本的できない		できず、 析を修得
変換 変換 らを 形微	的な関数のラプラン・逆変換ができ、それのでき、それのでででき、それのでででは、 利用して定数係数のできません。 では、 では、 できる。	これ 質を用いて、簡単な関数の 対線 変換・逆変換をすることが	ラプラス変換の各種質を用いて、変換をす とは十分ではないが、 な変換・逆変換はで	⁻ るこ 簡単		な関数のう よび逆変換	

		7444及 区原佃仙工子-					
科目名		担当教員		学年	単位	開講時数	種別
応用数学 III (Applied Mathem	atics III)	矢吹康浩 (常勤)・中屋秀樹 (常勤)	常勤)・大田将之 (非	4	2	通年 2 時間	必修
授業の概要	変数から複素変	√できた数学を基礎として、複素 変数への拡張はきわめて自然で J学系、制御工学、電気工学系	ある。複素変数の関	数分・積 数は広	責分につ く工学	いて学習の分野で原	する。実 芯用され
授業の形態	講義						
授業の進め方	カ方 講義を中心とするが、理解を深めるための問題演習も行う。 予習、復習を行い自学自習の習慣を身につける。						
到達目標	1. 複素関数の意味およびその微分法を理解し、基本的な計算をすることができる。 2. 複素関数の積分法を理解し、基本的な計算をすることができる。						
実務経験と授業内 容との関連	受業内なし						
学校教育目標との 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					内な技術
		講義の内容					
項目		目標					時間
複素数の定義と複素数の極形式	素平面および複	複素数および複素平面の定義	と概念を理解する。				6
n乗根		複素数のn乗根の意味を理解					4
	および正則関数	複素数による数列と級数および	び正則関数について理	里解する	5.		4
中間試験		定着度の確認					1
正則関数の定義とコーシー・リー 正則関数の定義およびコーシー・リーマンの方程式との関係を理解する。 マンの方程式					解する。	6	
基本的な正則関数		各種の正則関数の性質を学ぶ。	ı				9
複素変数関数の積 定理	分とコーシーの	複素変数による関数の積分法およびコーシーの定理の意味を理解する。					4
コーシーの積分表		コーシーの積分表示の意味と きる。	その応用を習得し、	具体的	に積分	計算がで	6
テーラー展開・ロ	ーラン展開	テーラー展開・ローラン展開の意味を理解し、具体的に計算できる。					4
中間試験	1 0 < 7 W - D	定着度の確認					1
極と留数の定義は め方	るよび留数の求	極と留数の定義を理解し、実際	祭に留数を計算できる	5.			6
留数定理		留数定理の意味を理解し、基本的な計算技術を習得する。					5
留数の応用		留数をいろいろな計算に応用する技術を学ぶ。					4
学業成績の評価方		気(80 %)と課題・取組状況((20 %) から評価する	。 な ま	3、状況	により再	計 60 試験を実
法	施することがあ						
関連科目		所学基礎・応用数学 II					
教科書・副読本	教科書: 「基礎	整解析学 改訂版」矢野健太郎、	(, , , ,				
		評価 (ルーブリ [、]	ック)				
到達目標 理想的な	は到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安					(不可)	
関数に	複素関数の微分法、多価 関数に関する応用問題を 解くことができる。 コーシーリーマン方程式、 複素関数の微分法の意味 多価値関数の意味を理解 は理解できていないが、正 複素関数の微分: していて、必要な計算が 則関数の微分計算はでき していない。極 できる。 解していない。					数の微分活 ない。極用	よを理解
数定理の	ーの積分定理や の意味を理解し、 関する応用問題 とができる。	そ 数定理の意味を理解し、そ を れらに関する基本的な問	コーシーの積分定理 数定理の意味は理解 ていないが、それら する基本的な問題は ことができる。	『でき に関	シーのオ	数の積分流 漬分定理、 解している	留数定

科目名		担当教員		学年	単位	開講時数	種別
応用物理 I				4	2	通年	
(Applied Physics	I)	- (· · · ·)				2時間	
授業の概要	低学年で学んだ物理や数学を基礎に、微分、積分、微分方程式を用いて力学を学び、物体の運動について理解する。学んだ知識を元に、応用課題に取り組む。						
授業の形態							
授業の進め方	学習方式は、動画で予習し授業で発展的な問題を解く、反転学習方式とする。 予習、復習を行い自学自習の習慣を身につける。						
到達目標	1. 物体の運動を運動方程式、微分方程式などを用いて理解できる。 2. 学んだ知識を応用、展開できる。						
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						
講義の内容							
項目		目標					時間
ガイダンス		授業ガイダンスを行う。					2
復習		これまでの物理の復習を行う。					2
物体の運動		微分、積分、ベクトルなど物理に使用する数学を理解し、投げ上げ運動、 自由落下を微分方程式を解いて理解する。					4
空気抵抗		空気抵抗のある物体の運動について、運動方程式と変数分離の微分方程式を解いて理解する。					6
演習		空気抵抗、単振動の演習問題を解き、理解を深める。					2
単振動		バネの単振動に関して、運動方程式と微分方程式を解いて理解する。					8
減衰振動		バネの減衰振動に関して、運動方程式と微分方程式を解いて理解する。					4
演習		バネの単振動と減衰振動に関して演習を行う。					4
1		外積と内積、角運動量、重心とモーメントについて学ぶ。					4
		慣性モーメントと重心や角運動量との関係について学ぶ。					4
		角運動量、慣性モーメントの演習問題を解き、理解を深める。					2
		1 次元、2 次元物体の慣性モーメントの計算について学ぶ。 平板、平行軸の公式や、3 次元物体の慣性モーメントについて学ぶ。					4
		中板、平行軸の公式や、3人元初体の慣性モーメントについて子ぶ。 回転体の運動方程式を解き、慣性モーメントを考えた運動を理解する。					$\frac{4}{4}$
		変数分離の微分方程式を解くことで、ロジステック曲線について学ぶ。					2
		1年間の復習と概念テストを実施する。					4
及日 60 S O PULL 7		T TRAVEL CIVILIA / TO COME / SO					計 60
学業成績の評価方 定期試験、予習課題などの各点数を合計し、その総得点を 100 点換算したものを学業評価と 法 公式集配布の定期試験で零点を取った学生の成績は、基本的には不可とする。							
関連科目	工業力学 II						
教科書・副読本 教科書: 「動画で学ぶ応用物理 力学・原子物理編 」吉田健一 (デザインエッグ社), 副読本							本: 「高
専の物理問題集 第3版」田中 富士男編著、大多喜 重明、岡田 克彦、大古殿 秀穂、 康紀 著 (森北出版)・「高専の物理 第5版」和達 三樹監修、小暮 陽三編集 (森北出版)							
評価 (ルーブリック)							
	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	` ′		レベルの目安	` ′
の応用に	亢、単振動、回転位 問題が解ける。	の基礎問題が解ける。 の基礎的内容を理解して の基礎的内容を理解して いない。					里解して
2 力学に が解け <i>i</i>		題 力学に関連した基礎的な 力学の基礎的内容を理解 力学の基礎的内容を理解 力学の基礎的内容を理解 しておらず、複合問題が解している。 解している。 解けない。					

扒口夕		+D V/ 쏴 므	出た	<u> </u>	88 =# n+ W	チロ!	
科目名		担当教員	学年	単位	開講時数	種別	
機械設計製図 III (Mechanical Desig ing III)		青代敏行 (常勤)	4	2	通年 2 時間	必修	
授業の概要	目的とする機器を特定の課題を	『品図作成の手法を修得する。また 3DCAD、CAE 器の効率的な設計技術を習得する。学習成果の確認 と解決可能な機器を各自 3DCAD を用いて設計、製作 流れを修得する。	として、	. PDC.	Aサイクテ	レに基づ	
授業の形態	演習						
授業の進め方	設計に必要な記面を実機に反映	使用されている機械要素である歯車強度の諸計算に いて製図する。また CAE による各種構造体の 3D モ 設計手法、分析能力を修得する。その後、これらを見 決するための技術と知識、相違点などについて学ぶ。 行い自学自習の習慣を身につける。	目いた実	寅習課題 と各種 送機製作	重を通じて 解析を行い を行うこ	学習し、 は、構造 とで、図	
到達目標	2. 3 DCAD を 3. コンピュー	得られた諸元を基に図面を製図することができる と用いて対象物をモデル化し、評価を行うことができ タ上で3次元モデルを対象に強度解析など各種解析 利用し、特定の課題を解決可能な機器の発案・設計	を実行	できる を行うこ	ことができ	る	
実務経験と授業内容との関連	なし	BLVWVV	日日日云シ	2 Д.М. — »	2 4 L 1/A v	仕よっ	
学校教育目標との 関係	E (心用刀・実)	践力) 総合的実践的技術者として、専門知識を応用し 	问題を	野沢する	5 能刀を育	<u> </u>	
		講義の内容					
項目		目標				時間	
ガイダンス・歯車	強度の諸計算	機械設計に関するガイダンスを行い、歯車に係る必いて解説する.	必要事項	、強度	計算につ	8	
2軸1段平歯車減	速機の諸計算	2軸1段平歯車減速機を例に諸計算・設計を実施す	ける。			8	
3DCAD 演習 3DCAD 演習 1		 3DCAD を用いた、3D ソリッドモデルの製作手法	た翌得	する		2	
3 DCAD 演習 2	2	3 Dモデルのアセンブリ手法とアセンブリ後の追			って学ぶ	4	
実機モデル化		身近に存在する存在する物体を対象にし、3DCAD 手法を通じて、高度かつ実践的な設計技能を会得 ⁻		機器の	モデル化	2	
2軸1段平歯車減過	速機部品図作図	2軸1段減速機の部品図を作図し、構造退を設計す 載法を習得する	る上で	の必要	事項、記	6	
図面管理 CAD モデル動作権		組立図と部品図との関係性を理解し、製品作成にま 3DCAD 上で構築したモデルについて、動作検証を				$\frac{2}{4}$	
CAE 構造解析		て習得する FEM 強度解析を利用した、軽量かつ高強度な構造				2	
構造体の解析	ナ 紹北山田	DDM 紀代と利用して、ウの砂磨と用すっつ、超り	乳 /ルナ、 た	ここエソ	· ナ. 쓷 ××	4	
軽量化を対象とし	/こ月年47月7月7日	FEM 解析を利用して一定の強度を保ちつつ、軽量形状変化が強度等に及ぼす影響、形状最適化の手法ための方法を会得する	ETLで行 とを理解	し、最	適設計の	4	
実機モデル製作演 問題発見ワーク	習	PDCA サイクルに基づき、各自独自に解決すべき載した計画シートを作成し、自ら示したアイデアをデルを実際に設計したのち、実機(実寸または縮片価を行うことで問題解決型の体験型学習を実践する期段階として、解決すべき問題を発見するワー	:具現化 !モデル る。	する 3E)を製	OCAD モ	4	
問題解決手法の	検討	発見した問題について、考案した解決手法やそれを されているか調査を行う。その結果を経て、グルー が適切であるかを議論する	上回る	手法が	既に実現 解決手法	4	
企画書の立案、設計図の作成 解決手法を元に計画シートを作成し、その内容を実現するア する設計図を 3DCAD 上に作成する						4	
実機の製作 設計図に基づき、実機を作成する。 ま機による証明 という ないまがま ない ないまかい 第15日 と 火知の計画通りです。						4	
実機による評価		計画シートおよび実機をグループメンバー等に見せるか評価を受ける。また自身で達成度を評価し、自る確認と評価を行う	な、当例 目身のワ	の計画	通りであ グに対す	2	
計 60							
学業成績の評価方 法	取組状況及び打し、正当な事	受業中の課題により評価を行う。なお指定課題が未打 自による欠席については、別途対応する。	是出の場 	計合は不 	合格とする	る。ただ 	
関連科目							
教科書・副読本	教科書: 「図解	Inventor 実習(第三版)」船倉 一郎、堀 桂太郎	阝(森北	出版)			

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	強度設計等により得られ た計算値を正しく反映し た部品を、機械製図法に 基づいて的確に製図する ことができる	強度計算等により得られた計算値を反映した部品を対象に、基本的な製図することができる	指定された値を持つ部品 を対象に、基本的な製図 することができる	指定された部品を対象と する基本的な製図ができ ない
2	指定されたモデルを3DCAD上で指定された寸法でモデル化し、その形状の正当性について確認、評価することができる	指定されたモデルを3 DCAD上で指定された寸 法でモデル化し、形状に ついて評価することがで きる	3 DCAD 上で指定された モデルを作成し、形状に ついて評価することがで きる	3 DCAD 上で指定された モデルを作成することが できない
3	FEM 解析などの手法を用いて、指定された諸条件を満たす形状を設計することができる	FEM 解析などの手法を用いて、指定された諸条件の大部分を満たす形状を設計することができる	FEM 解析などの手法を用いて、設計に利用可能な解析手法を理解できる	FEM 解析などの手法を実施することができない
4	PDCA サイクルに基づき、 特定の課題を解決するた めの機器を CAD を用いて 設計し、実際に製作、その 性能について評価を行う ことができる	特定の課題を解決するための機器をCADを用いて設計し、実際に製作することができる	特定の課題を解決するための機器を設計、製作で きる	特定の課題を解決するための機器を設計、製作で きない

科目名		担当教員		担当教員						
電気磁気学 II (Electromagnetics	s II)	吉田嵩 (常勤)		4	1	前期 2 時間	必修			
授業の概要	電磁気学は電気 また実学への雇用例も扱う。	〔回路と並んで電気工学を学ぶ □用も可能である。第4学年で	上で重要な基礎科目 は静電場、静磁場を〜	である。 ベクトバ	。物理現 レ場とし	見象の本質 て扱う。	を扱い、 また、応			
授業の形態	講義									
授業の進め方	始時に,前週の (成績に加味す	簡単に解説した後、演習問題を)内容の確認テストを行う(成 る). 5い自学自習の習慣を身につけ	績には加味しない).	: 共同し 単元終	理解を 子時に	深める。? は小テス	各授業開 トを行う			
到達目標		滋場に関する電磁気学の法則に 理解し、その扱い(計算)が出								
実務経験と授業内 容との関連	なし									
学校教育目標との 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					りな技術			
		講義の内容								
項目		目標					時間			
【静電気 1】ガイ		電気磁気学Iの復習を行う					2			
【静電気 2】ガウ		ガウスの法則について理解し、					2			
【静電気 3】電界	(ベクトル)	電界の向きと大きさを、ベク		草できる	3		2			
【静電気 4】電位	/I.	電界を積分することにより、		⇒ 1. 10 .1	b ⇒1 &		2			
【静電気 5】誘電		誘電体の特性を理解し、自力					2			
【静電気 6】コンデンサ コンデンサの静電容量を自力で計算できる。コンデンサが蓄えるエネルギー、放出するエネルギーについて自力で計算できる。 した場合の静 極板間に誘電体を挿入した場合や、複数のコンデンサを接続した場合の静					2					
は開また	アンサ 2	電容量を自力で計算できる.	•		き続した:	場合の静	2			
中間試験 中間試験の解説・	熱電与ましゅ	電界、電気回路の電磁気学的中間試験の返却・解説を行う。		96			0			
「一世武鞅の解説・		年间試験の返却・解説を11 7. 電流がつくる磁場に関する法		書分の言	4 笛 がで	きって	2 2			
【磁気 2】ビオ・†		電流が作る磁界に関する法則	=	貝刀の百	一昇かく	ె ని.	$\frac{2}{2}$			
【磁気 3】電磁力		電磁力の向きと大きさを、ベ	•	十質でき	きろ		$\frac{2}{2}$			
【磁気 4】ローレ	ンツカ	荷電粒子が磁場から受ける力		1 51- 4 4	- 0.		2			
【磁気 5】電磁誘		電磁誘導の法則について理解		と大き	さを計算	草できる.	2			
【磁気 6】交流理	論	基本的な交流回路を電磁気学	の観点から理解する.				2			
期末試験		磁界, 電磁力, 電磁誘導, 電気	気回路の電磁気学的な	理解に	ついて	確認する				
まとめ		期末試験の返却・解説を行う					2			
							計 30			
学業成績の評価方 法	定期試験 (70 %	5),小テスト (15 %),演習へ	の取り組み(15%)	とし, ;	総合的に	こ評価する	•			
関連科目										
教科書・副読本	教科書: 「新版			清 (森	化出版)					
		評価 (ルーブリ	ック)							
到達目標 理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	분 (可)	未到達	レベルの目安	(不可)			
電体を打 気容量の	ンサの極板間に 挿入した場合の 変化につい場合 さまざすること 計算をすること	電 電体を挿入した場合の電 理 気容量の変化について理	コンデンサの極板間 電体を挿入した場合 気容量の変化につい 礎的な問題を解くこ できる。	の電とが	電体を打 気容量の	ンサの極 挿入した場 D変化につ 問題を解 い。	易合の電 いて、基			
理解し,	誘導起電力の計	な 理解し、標準的な問題で誘	電磁誘導の法則につ 理解し, 基礎的な問題 導起電力の計算がで	夏で誘 きる。	理解し,	尊の法則は 基礎的な[力の計算な	問題で誘			

科目名				担当教員		学年	単位	開講時数	種別
			4/\ >-						
·	nic Circui			請達治 (非常勤/実務)		4	1	前期 2時間	必修
授業の概	聚要	で欠くことのと	出来な	電子情報機器を構成する重導 ない基礎科目である。電子[解することを目的とする。	要な要素であり電気電 回路Ⅱでは、アナロク	這子系の で回路を)工学技 :設計す	術を習得する上で必要	するうえ 要となる
授業の形	態	講義							
授業の進	態め方	行う。		理解を深めるために演習で 自学自習の習慣を身につけ		応じて	中間テ	ストおよび	び追試を
到達目標	E C	2. 基本的な集	[積回]	基本特性と動作を理解でき 路の内部回路を理解できる 幅回路の動作を理解し計算					
実務経験 容との関	さ授業内 関連	なし							
学校教育 関係	言標との			実践的技術者として、数学 関する知識をもち、工学的	諸問題にそれらを応り				的な技術
				講義の内容					
項目			目標						時間
ガイダン			1	りと内容の説明と電子回路					2
電力増幅	国国路			J増幅回路の基本特性の理解					2
		電力増幅回路(A級、B級, B級 P P電力増幅回路)の理解					2		
演算増幅		演算増幅回路の基本特性の復習					2		
	各の内部回	路		責回路の内部回路					4
演算増幅				^{算増幅回路の周波数特性と}	動作特性				4
演算增幅	副回路			草増幅回路の応用回路					4
				算増幅回路のパラメータのF	理解と演習				4
正帰還回				長原理の理解					4
総合演習	된 를		まと	とめと総合演習					2
								. I. III a sad	計 30
学業成績 法 	りの評価方	2回の定期試験授業への取り施する場合が、	組みり	导点と、課題や授業への取 犬況の比率は7:3とする。	り組み状況から総合的 。その他、必要に応し	的に決党 ごて課是	定する。 夏、小テ	定期試験スト、追	と課題・試験を実
関連科目									
教科書・	·副読本			リーズ 電子回路入門」末枕 の基礎と設計 - 」 宮田武雄		教出版), 参考	書: 「速角	军 電子回
				評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (個	憂)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	マ (可)	未到達	レベルの目安	(不可)
1	電力増幅回路の基本特性 が理解でき、A級、B級、B級PP電力増幅回路の 計算問題が解ける。			が理解でき、A級、B級電	電力増幅回路の基本 が理解でき、A級電力 回路の計算問題が解	」増幅	電力増 が理解*	基本特性	
2	回路と性	的な集積回路の内部 と性能を理解し、基 な計算問題が解ける。 基本的な集積回路の内部 回路について理解し、基 本的な計算問題が解ける。 国路を理解できる。 回路を理解できな							
3	を理解し	国回路の基本特 し、基本的な演 各の性能評価か	育算		演算増幅回路の基本 を理解できる。			福回路の身 できない。	基本特性

授業の形態 授業の進め方 到達目標 1 2 3 4 5	医療福祉機器の 作など、回路 講義 講義を中心とし 予習、復習を行 . 発振回路の 2. AM/FM 呵 3. 演本的ログ・ は、アナログ・ なし	調回路の動作を理解できる 路の特性と動作を理解できる 信方式を理解できる	学年 4	単位 1	開講時数 後期 2時間 を用いた[種別 必修 四路の動			
(Medical Electron Design) 授業の概要 授業の形態 授業の進め方 到達目標 1 2 3 4 5	医療福祉機器の 作など、回路 講義 講義を中心とし 予習、復習を行 . 発振回路の 2. AM/FM 呵 3. 演本的ログ・ は、アナログ・ なし	の開発に不可欠な電子回路技術に関して、回路方式を設計へ向けた応用技術を学ぶ。 して、理解を深めるために演習を取り入れる。 行い自学自習の習慣を身につける。 動作を理解できる 調回路の動作を理解できる 路の特性と動作を理解できる 信方式を理解できる	_		2 時間				
授業の形態 授業の進め方 到達目標 1 2 3 4 5 実務経験と授業内	作など、回路 講義を中心とし 講義を中心とも 予習、発展の 2. 発振/FM 写 3. 漢本ナログ・ は、し	設計へ向けた応用技術を学ぶ。 して、理解を深めるために演習を取り入れる。 うい自学自習の習慣を身につける。 動作を理解できる 調回路の動作を理解できる 路の特性と動作を理解できる 信方式を理解できる	沙演算堆	自幅回路	を用いた[回路の動			
授業の進め方 到達目標 1 2 3 4 5 実務経験と授業内	構義を中心とし 予習、復習を名 . 発振回路の 2. AM/FM 変 3. 演算増幅回 1. 基本的な道 5. アナログ・ なし	テい自学自習の習慣を身につける。 動作を理解できる 調回路の動作を理解できる 路の特性と動作を理解できる 信方式を理解できる							
到達目標 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	予習、復習を行 . 発振回路の g. AM/FM 変 g. 演算増幅回 g. 基本的な通 g. アナログ・ なし	テい自学自習の習慣を身につける。 動作を理解できる 調回路の動作を理解できる 路の特性と動作を理解できる 信方式を理解できる							
2 3 4 5 実務経験と授業内 7	2. AM/FM 変 3. 演算増幅回 1. 基本的な通 5. アナログ・ なし	調回路の動作を理解できる 路の特性と動作を理解できる 信方式を理解できる							
実務経験と授業内な容との関連			発振回路の動作を理解できる AM/FM 変調回路の動作を理解できる 演算増幅回路の特性と動作を理解できる 基本的な通信方式を理解できる アナログ・デジタル変換の原理を理解できる						
実務経験と授業内 なし 容との関連									
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な 関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。									
		講義の内容							
項目		目標				時間			
【後期】									
ガイダンス		目的と内容の説明				2			
発振回路		LC 発振回路、CR 発振回路の理解				4			
AM 変調		AM 変調の原理、変調および復調回路の理解				2			
FM 変調		FM 変調の原理、変調および復調回路の理解				2			
演算増幅器		演算増幅器の復習				2			
応用回路		演算増幅器の応用回路				2			
中間段階のまとめ		まとめと演習				2			
演算増幅器の特性		演算増幅器の非理想的な特性とその影響の理解 演算増幅器の仕様決定の理解と問題演習				4			
雑音特性		雑音の種類、S/N 比				2			
通信方式		無線通信の方式の理解				4			
アナログ・デジタバ	》 変換	A/D 変換器、D/A 変換器の原理の理解				2			
総合演習		まとめと総合演習				2			
						計 30			
┃法	業行う小テス〕	険の得点と、小テストや授業への取組状況から総合的 ト・授業への取組状況の比率は8:2とする。その他 する場合がある。	りに決定 2、必要	言する。 に応じ	定期試験だて課題、小	点数、授 いテスト、			
関連科目									
		きシリーズ 電子回路入門」末松安晴、藤井信生 (実 回路の基礎と設計 - 」 宮田武雄 (コロナ社)	教出版),参考	書: 「速解	军電子回			

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	LC、CR 発振回路の動作 を理解して説明でき、基本 問題を解くことができる。	LC、CR 発振回路の動作 を理解し、基本問題を解く ことができる。	LC、CR 発振回路の動作 を理解できる。	LC、CR 発振回路の動作 を理解できない。
2	AM/FM 変調・復調の原 理を理解して説明でき、変 調・復調回路の問題を解く ことができる。	AM/FM 変調・復調の原 理を理解し、変調・復調回 路の基本問題を解くこと ができる。	AM/FM 変調・復調の原理を理解できる。	AM/FM いずれの変調・ 復調の原理を理解できな い。
3	演算増幅回路の非理想的な特性とその影響、仕様 決定法を理解し、回路動 作に関する問題を解くこ とができる。	演算増幅回路の非理想的な特性とその影響、仕様 決定方法を理解できる。	演算増幅回路の非理想的 な特性とその影響を理解 できる。	演算増幅回路の非理想的 な特性と影響を理解でき ない。
4	通信方式の基本的な特性 を理解して説明でき、基 本的な計算問題を解くこ とができる。	通信方式の基本的な特性 を理解でき、基本的な計算 問題を解くことができる。	通信方式の基本的な特性 を理解できる。	通信方式の基本的な特性 を理解でない。
5	アナログ・デジタル変換の 原理を理解して説明でき、 基本的な計算問題を解く ことができる。	アナログ・デジタル変換の原理を理解し、基本的な計算問題を解くことができる。	アナログ・デジタル変換の原理を理解できる。	アナログ・デジタル変換の 原理を理解できない。

科目名		担当	L子コース シラハス 	学年	単位	P日 =	種別	
[松日石 信号処理 I			以只			開講時数	必修	
信亏処理 I (Signal Processing	g I)	吉田嵩 (常勤)		4	1	後期 2時間		
授業の概要		処理の基礎を学ぶ。この 基礎について学ぶ。	講義では主としてディジ	タル信号	号の基礎	、雑音除	去、信号	
授業の形態	講義							
授業の進め方	講義を中心に行 予習、復習を行	い、必要に応じて信号処 い自学自習の習慣を身に	哩の演習を行う。 つける。					
到達目標	2. 研究や実験の 3. 確率の基礎が	言号処理の基礎的な概念を)場において、計測した信 [;] 理解できる。 的仮説の検定ができる。	理解できる。 号を的確に処理できる技	対術を身	に付ける	ることがて	ごきる 。	
実務経験と授業内 容との関連	なし							
学校教育目標との 関係		合的実践的技術者として、 に関する知識をもち、エ					的な技術	
		講義の	内容					
項目		目標					時間	
アナログとディジ	タル	アナログ信号とディジタル信号の基礎的な概念を理解する。AD 変換及び DA 変換の基本概念と変換の一般的な手法を学ぶ。						
確率論の基礎		信号処理に欠かせない、 標準偏差などを学ぶ。信	なない。 ないでは、ないでは、ないでは、 ないでは、ないでは、 ないでは、ないでは、 ないでは、ないでは、 ないでは	な、確率 基礎を現	分布関数 里解する	数、分散、)。	6	
相関係数	i i	相関係数の算出方法を理					4	
仮説検定		仮説検定の基本的な手順 なる。	と計算方法を学び、仮説植	食定を活	用でき	るように	6	
加算平均・移動平	均	加算平均及び移動平均に	よる雑音除去の手法を理	解する。			6 計 30	
学業成績の評価方 法	期末試験の試験	結果を 70 %、課題を 30	%として評価する。			,		
関連科目								
教科書・副読本	教科書: 「ユー	ザーズ ディジタル信号処	理」江原 義郎 (東京電機	大学出	版局)			
		評価 (ルー	ブリック)					
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)	
	既念を理解し、阝	基 ディジタル信号処理の 広 機的な概念を理解でき		里解で		タル信号ダ 既念を理解		
計測した理できん	研究や実験の場において、研究や実験の場において、研究や実験の場において、計測した信号を的確に処計測した信号を的確に処理できる技術を身に付けってきる技術を身に付けることができ、応用できるさができる。 「研究や実験の場において、研究や実験の場において、計測した信号を処理する」 計測した信号を処理する は関係している。 は、 は、 は、 は、 は、 は、 は、 は							
3 確率の基 用できる	基礎が理解でき、応 確率の基礎が理解できる。 確率の基礎の一部を理解 確率の基礎が理解でる。 した。 い。						犀できな	
	な統計的仮説の き、研究に応用 [・]	策 基礎的な統計的仮説の 定ができる。)検 統計的仮説の検定を 理解できている。		統計的作ない。	仮説の検気	官ができ	

科目名		I			<u> </u>	<u>}</u>	PP = ++ n+- ***	4 3. DII
• *~ / AU +1			担当教員	ŧ	学年	単位	開講時数	種別
数値解析 (Numeric	al Analy	sis)	冨田宏貴 (常勤)		4	1	後期 2 時間	必修
授業の概	要	可欠である. まション技術の習	ム設計や福祉機器の動作制行 た,機器対象が人体であるこ 得が不可欠となる.本講義で 程式などの基本的な数値計算 程を高める.	とから,安全性等を考 では,コンピュータを用	ぎ慮する 引いて計	が要が 上算する	あり,シミ ときの誤差	ミュレー
授業の形	態	演習						
授業の進	め方	る。課題演習に	を中心に,課題演習により理 はコンピュータ演習を含む. fい自学自習の習慣を身につい		実際の)利用法	を体験的に	に学習す
到達目標		2 数値解析の	F法の原理を理解し,説明す F法における利用時の問題を打 プログラムを利用して問題を	把握することができる	•			
実務経験る 容との関係 学校教育	連	なし D (基礎力) 総会	合的実践的技術者として、数	学・白殊科学・白らの	歯門と	する分	野の基本的	かおお術
関係	コホこの		品の失政的技術者として、数 論に関する知識をもち、工学的 講義の内容	的諸問題にそれらを応用				3,43XM
 項目			目標	-				 時間
ガイダン	 ス				方法を野	異解する		2
数値計算			問題の記述と解法,数値解析 て学習する.		– -		•	4
行列演算			行列の四則演算, ピボット選			-		2
連立一次	方程式		連立一次方程式の解法として ボット選択を導入したアルコ	て,ガウスの消去法の 「リズムを理解する.	基本ア	ルゴリ	ズムとピー	4
課題演習離散デー	タ占の婦	1	課題演習を行う. 線形補間,ラグランジュ多項	i式にトス属問む学羽っ	トフ			2 4
課題演習	ノvノf用!		課題演習を行う。	は人による他向で子自り	າ ຈ.			2
数值積分		1	台形公式,シンプソンの公式	について学習する.				2
課題演習			課題演習を行う。					2
常微分方			オイラー法、修正オイラー法		こついて	て学習す	る.	4
電気回路	への適用		微分方程式の解法について学	学習する.				2
出来已往	の気圧士	/ · · · · · · · · · · · · · · · · · · ·	(2) 知時 (4) 極要		- 6/h	人 65.) * 辛	が年みっ	計 30
学業成績の法	の評価力		と6割とし、課題3割、授業へ				半価する.	
関連科目	513+J-		報処理Ⅱ・基礎数学Ⅰ・基礎		形代数	. 1		
教科書・	副読本	教科書: 「数値	計算法基礎」田中敏幸 (コロ					
<u> </u>			評価 (ルーブリ 		1			
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	₹ (可)	未到達	レベルの目安	(不可)
1		- 夕の補間、数値 直解析できる。	積 行列の四則演算やガウス の消去法を用いて1次連 立方程式を数値解析でき る。	理解し、説明するこ	と述で置き	数値解析 理解でき	所の手法 <i>の</i> きない。	原理を
2	利用時のに求め、	重解析の手法における 対値解析の手法における 対用時の問題点を考慮し、 対用時の問題点を把握す 対用時の問題点を把握す がめ、解析手法の計算 解析手法を構築できる。 変を評価することがで					の問題を批	だおける 凹握する
3	から間提	斤で得られた結 夏を解析的・定 頂できる。	果 数値解析のプログラムを 利用して問題を解決でき る。	数値解析で問題を解るためのプログラム 算アルゴリズムから で作成することがで	を計自分	数値解析 利用しない。	折のプロ <i>ク</i> て問題を解	ブラ <u>ムを</u> ムを ないでき

シロク		10 11 +/-		214 F	77 /T	DD 544 - 1	14 mil
科目名		担当教員		学年	単位	開講時数	種別
計測工学 (Measurement		冨田宏貴 (常勤)		4	1	前期 2時間	必修
授業の概要	能を測定し,』	おいて,精度と信頼性の高い機 Eしく評価することが重要である 基礎となる測定の手段・方法,注 する.	る.計測技術は産業現	悲場で必	〉要不可	欠である.	本講義
授業の形態	講義						
授業の進め方	講義を主として 予習,復習を行	た授業を行う.授業中の演習は 行い自学自習の習慣を身につけ	適宜実施する. る.				
到達目標	2. 基本的な測	原理の理解と,測定誤差を正し 定器の構造が理解できる. 原理が理解できる.	く評価できる.				
実務経験と授業 容との関連	内 なし						
学校教育目標と 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					的な技術
		講義の内容	!				
項目		目標					時間
ガイダンス		授業に概要について解説する					2
計測工学の用語	・定義について	計測工学で用いる用語・定義は	について学ぶ。				2
単位と標準/次	元および次元式	単位の種類や成り立ち、次元	および次元式について	て学ぶ。			2
測定方法の原理	と種類について	直接測定と間接測定、絶対測定 の原理について学ぶ。	定と比較測定、偏位法	と零位	法の各	測定方法	2
誤差の種類、測定 いについて	定値の統計的取扱	誤差の種類(系統誤差、偶然 学ぶ。測定値の統計的取扱い	として、定義や統計的	り分布に	こついて	について 学ぶ。	2
測定値の統計的	分布	正規分布の意味について学ぶ。					2
精度について		偶然誤差の性質と取扱い方に、 て学ぶ。	ついて学ぶ。精度(īī	確さ、	精密さ)につい	2
	算術平均について	有効数字の取扱い方について				-	2
長さ測定におけ		長さ測定における誤差要因に、					2
誤差伝播の法則		間接測定における誤差伝播の流		算方法	につい	て学ぶ。	4
角度の測定につ		角度の測定方法の種類と測定し					2
幾何学的形状誤	差について	幾何学的形状誤差として、真正 について学ぶ。	直度・平面度・真円度	の測定	方法と	評価方法	4
期末試験		期末試験を実施する。					2
MANUAL SATE	1. Ict VIA - The ART IN Y	T 2	a. D./etc.). Tri free 1. va. T	<i>₹ 1</i>	⇔ , , ,	2 2 2 3	計 30
学業成績の評価 法	験は実施する.	兄と定期試験を総合的に判定し [、]	て成績を評価する. 言	半曲比₹		6とする.	定期試
関連科目	専門科目全般						
教科書・副読本	教科書: 「機柄	は系教科書シリーズ8 計測工会	学」前田 良昭、木木	一朗	7、押田	至啓 (ニ	ロナ社)
		評価 (ルーブリ	ック)				
到達目標 理想的	勺な到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	そ(可)	未到達	レベルの目安	(不可)
測定	誤差の低減方法に	差の原理を理解し、測定誤差の原理を理解し 対差の低減方法につ に上で測定誤差を正しく 説明することができ き止めることができる。 測定誤差の原理を理解し、測定誤差の原理 測定誤差を正しく評価で きない。 きる。					が理解で
理解 要因	的な測定器の構造 し、測定誤差の発 と低減方法を説明 とができる。	生 理解し、測定器の長所・短	基本的な測定機の構 理解できる。			な測定器の きない。	の構造を
3 各種注 測定 減方 でき	去を説明すること	、、各種測定の原理を理解し、 低 実例と適切に関連付けて が 説明することができる。	各種測定の原理が理 きる。		各種測え	定の原理な	が理解で

科目名	目名 担当教員 学年 単位 開講時数 種						種別
ディジタル回路 (Digital Circuits))	特 (非常勤)		4	1	前期 2 時間	必修
授業の概要	ジタル回路技術がある。本講義では について学び M	はマイクロコンピュータを中 が導入されており、医療福祉 は、真理値表を用いた論理式 MIL 記号による回路設計法を 回路素子の実現方法、各種フ 各の応用としてカウンタや A	工学技術者にはディシ による命題の記述と、 シ学習する、そして	ジタルロ ブーバ 半道体	回路技術 レ代数に いスイ	で理解が よる展開、 スチング重	不可欠で 簡単化 動作を用
授業の形態	講義						
授業の進め方	予習、復習を行い	演習により理解を深める。 い自学自習の習慣を身につけ					
到達目標	2. ディジタル回	論理回路の基本が理解できる 路の基本動作が理解できる いた設計法を理解できる	Ś				
実務経験と授業内 容との関連							
学校教育目標との 関係 		的実践的技術者として、数学 に関する知識をもち、工学的	J諸問題にそれらを応				的な技術
	1-	講義の内容	}				74.00
項目		標	ューボ/戸上込む T田畑 。	L 7			時間
ガイダンス ディジタル情報系	長と回路 デ	≦習の目標、授業スケジュー ディジタルとアナログの違い Oいて学ぶ。			'ル回路	の基礎に	2 2
ブール代数とディ	・ジタル回路	ブール代数と論理式、ド・モルガンの定理、真理値表とその利用による簡 単化について学ぶ。					
ディジタル回路の設計法 MIL 記号法、論理の一致、AND と OR の相互変換について学ぶ。					, o	2	
ディジタル回路の		IIL 記号法、論理の一致、A	ND と OR の相互変換	ぬについ	って学る	, ,	2
課題演習		果題演習を行う。					2
ディジタル回路の		基本素子、TTL ICにつ					$\frac{2}{2}$
ディジタル回路の		·	OS IC、インターフェースについて学習する。 コーダ、デコーダ、データセレクタについて学習する。				
組み合わせ回路 課題演習	1		タセレクタについて	子習する	5 。		2
		₹題演習を行う。 ₹進数の加算減算、半加算機	今加 質界 半減質界	坦 たく	ついて豊	شع ج الع	$\frac{2}{2}$
2 進展昇回路 フリップフロップ		足数の加昇概昇、十加昇版 RS, JK, D, Tフリップ				~~>>°	2
カウンタとレジス		、3,3 K,D,1/// iウンタの基本について学習		∃ ຯ અ ∘			2
総合演習		念合演習を行う。	, 30				2
							計 30
学業成績の評価方 法	中間と期末の試験	倹結果を7割とし、課題と授	後 業の取組状況を3割	として	、総合的	内に評価す	る。
関連科目	電子回路 I·電子	-回路 II・組込みシステム					
教科書・副読本	教科書: 「ディシ 松安晴、藤井信生	ジタル回路」伊原充博他 (コ 生 (実教出版)	ロナ社),参考書:「基	基礎シリ	リーズ	電子回路。	入門」末
		評価 (ルーブリ	ック)				
到達目標 理想的机	は到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	安 (可)	未到達	レベルの目安	(不可)
	ー図を使い、式の簡 できる。	真理値表を使い論理式を 導くことができる。	ブール代数の基本定 使って計算ができる			代数の基Z 計算ができ	
ンタレ	フリップフロップやカウ 基本素子を用いた組み合 ディジタル回路の基本素 ディジタル回路の ンタレジスタの回路につ わせ回路を理解している。 子の回路について理解し 子の回路について いて理解している。 ている。 ている。 ていない。						
用いて る。 定理を	で M I L 記号を 設計する事ができ た、ド・モルガンの 用いて論理素子の)R 変換ができる。	致について理解し、回路図 で表現する事ができる。	MIL記号の表記方 ついて理解している		MIL ついて	記号の表記 理解してv	記方法に いない。

科目名			担当教員	[学年	単位	開講時数	種別
流体力学 (Fluid dy	ynamics)		田村恵万 (常勤)		4	1	前期 2 時間	必修
授業の概	要	空気や水などれまざまな現象での工業上の流れ	込たちのまわりは、「流体」と と理解する上で流体力学は重要 いへ適用した問題を解決するた	総称される物質で満ち である。流体の基礎的 : めの基礎的知識を養	ている りな性質 う。	。流体 質や基礎	における? 式を理解	流れのさ し、実際
授業の形	態	講義						
授業の進	め方	なども適宜行	記布するプリントを使った講義 う。 行い自学自習の習慣を身につけ		異を深め	かるため	の問題演	習・課題
到達目標		2. 流れの基礎	式の物理的な意味について理解 式を利用して、流体の基本的問 れの現象について理解できる	解できる 問題に対する解を求め	ること	ができ	3	
実務経験 容との関	と授業内 連	なし						
学校教育 関係	目標との		合的実践的技術者として、数学 論に関する知識をもち、工学的	7諸問題にそれらを応り				的な技術
			講義の内容	<u> </u>			Т	
項目			目標					時間
ガイダン			講義の概要や関連科目とのつ			って理解	する。	2
	7 理的性質		流体の物理的性質や流れの物		5 。			2
流体の静			流体の圧力、浮力、マノメー	タについて埋解する。				2
流体の静	· · ·		同上	について四知ナフ				2
流体の基 流体の基			連続の式、ベルヌーイの定理 ベルヌーイの定理の応用につ					2
流体の基流体の基			ベルメーイの定埋の心用にう 流体の速度・流量の測定につ	****				$\frac{2}{2}$
演習	班人 3		問題を解き理解度を評価し、		in トネィ	ナス		$\frac{2}{2}$
興日 運動量の	注則 1		運動量の法則について理解す		31.C	<i>-</i> ⊘ ∘		2
運動量の			同上	· 少 o				2
管内流 1			' レイノルズ数について理解す	· る。				2
管内流 2			円管内の層流と乱流について					$\frac{1}{2}$
管内流れ	の圧力損	失1	管内流れの管摩擦損失につい					2
管内流れ	の圧力損	失 2	管路の形状変化による損失と	管路系の総損失につい	って理解	解する。		2
まとめと	演習		問題を解き理解度を評価し、 行う。	解説により理解力を	向上さ	せる。	まとめを	2 ₹4.20
学業成績	の評価方		 (60 %)、小テストや	問題演習の得点、課題の	の提出。	とその内		計 30 返りシー
法			より総合的に評価する。	·W.M. TT MILE AND A	カムインとエ	trike +1	T. W. E.	######################################
関連科目	-	学実験実習Ⅲ、	Ⅱ・物理Ⅲ・基礎数学Ⅰ・基礎 第2学年以降のコース内機械	成工学系科目	¥ 竹字 暑	き碇・恕	が力学・医療 	寮福祉上 ————
教科書・	副読本	教科書: 「図角	翼はじめての流体力学」田村 夏	,				
<u> </u>								
到達目標		到達レベルの目安 (優	,	ぎりぎりの到達レベルの目			レベルの目安	
1	意味につり、教員	基礎式の物理的では ではではないではないでするようには がるように説明	お 意味について、教員の助 相 言なしに説明できる。	流れの基礎式の物理 意味について、教員 言のもとで説明でき	の助しる。	意味に)基礎式の物理的なこのはで理解しておいて理解してお 教員の助言があっ 説明できない。	
2	体の基本 解を教員	は礎式を利用し、 体的問題に対す 員の助言なしに しで求めること	順 解を教員の助言なしに求	体の基本的問題に対	するで	おらず、 題言があっ がき		基本的問 数員の助 めること
3	いて理解の助言な	な流れの現象に 翼していて、教 なしに相手にわ こ説明ができる	[員] いて、教員の助言なしにか 説明ができる。	基礎的な流れの現象 いて、教員の助言の で説明ができる。	もと	いて理角	な流れの5 解しておって 言があって い。	うず、教

科目名			担当教員		学年	単位	開講時数	種別
熱力学 (Thermo	odynamics	s)	山岸勝明 (非常勤)		4	1	後期 2 時間	必修
授業の概	双要	物理で学んだ熱 組合せであるも	ぬ力学を基に、熱・仕事・エネ ナイクルについて学ぶ。	ルギーの関連性、気体	の各種	其 状態変	化及び状態	態変化の
授業の形	/態	講義						
授業の進	態め方	講義と演習を「 予習、復習を行	中心として進める。小テストを 行い自学自習の習慣を身につけ	そ行い、成績の評価と [*] ける。	する。			
到達目標	Hick C	2. 気体の等圧	ギー、仕事の意味とそれらの。 、等温、等積、断熱変化の関係 的サイクルを理解できる	間の関係を理解できる 系式を導き出すことが	できる			
容との関		なし						
学校教育 関係	言標との こうしゅう		合的実践的技術者として、数: 倫に関する知識をもち、工学的					的な技術
			講義の内容	字 字				
項目			目標					時間
ガイダン			講義の概要説明及び熱力学の					2
熱量およ			熱量と比熱の概念について学			-		4
熱力学の)第一法則		熱力学第一法則とその関連項 る。	目を学び、熱と仕事の)等価性	につい	て埋解す	6
	エンタルピを理解する。							
理想気体 理想気体の状態式を理解する。							4	
	食の返却と		中間試験の返却と解答の解説					2
理想気体	体の状態変	化	理想気体の状態変化(等圧変 ロープ変化)を理解する。	化、等積変化、等温変	ど化、断	熱変化	、ポリト	4
熱力学の)第二法則		熱力学の第二法則、サイクル	(熱機関・ヒートポン	⁄プ) を	理解す	る。カル	6
			ノーサイクル、カルノーサイ	クルの熱効率、エン	トロピを	理解す	る。	, and the second
期末試験	険の返却と	解説	期末試験の返却と解答の解説	を行う。				2
^	⊧∧≕/ □ +	1+40 ~ AH4=DH+	丑(2007) 1 問題 12 12 12 12 2	a) を 1) を担目[[12]]]	7 A H	点 (20	0/) = 1-	計 30
┃字業成績 ┃法	りの評価方	疋期試験の結り	果(80 %)と課題および小テク 習意欲と学習態度により減点を	ストなとの提出状況と と行う場合がある。	その内	谷(20	%) によ	り評価す
関連科目		物理I・物理I						
教科書・			 ^る熱力学 」田中宗信 (著), 田		页)			
 			<u> </u>	` , `	,			
到達目標	理想的な	 到達レベルの目安 (優	,	ぎりぎりの到達レベルの目録	당 (可)	未到達	レベルの目安	(不可)
1		ルギー、仕事の			·		・ルギー、イ	` /
1	係性とす 則に関す	共に、熱力学の ける等価性やエ を正しく理解し	法 係性と共に、熱力学の法 ン 則などの基本的な項目を	仕事の関係性を理解	して	がや関 ない	系性を理解	すってい
2	│ 断熱変イ │ 基礎的な	学圧、等温、等程 化を求めるため は式を正しく用い	求めるための 断熱変化を求めるための 断熱変化を求めるための 断熱変化を を正しく用い、 簡単な式を用いて、値を 基本的な式を提示するこ 式を示すこ					るための
	必要な値ることだ	直を適切に導出 バできる	す。導出することができる	とができる				
3	力学的	-サイクルなど サイクルの特性 - その特徴を適 している	を 力学的サイクルの基本的	熱力学的サイクルか ような物であるかを している	理解	熱力学的 ようなれ していれ	的サイク) 物であるな ない	レがどの かを理解

 科目名		── 令和 4 年度 医療福祉工学コース シラバス ── 担当教員	学年	単位	開講時数	 種別		
付日名 機械力学		松下詩穂 (非常勤)	子年 4	<u>早1</u> 2	開講時数 前期	型別 必修		
機関ガチ (Mechanical Dyna		,		_	2 時間			
授業の概要	授業では、身近 インに、調和拡	機械は、構造物としての強度機能と同時に、動くことによって機能を発揮する。それゆえ、振動に関する知識は、安全性や快適性を目的とする機械工学の基幹技術として不可欠である授業では、身近にある振動するものを紹介しながら、振動工学の基礎として1自由度系の振インに、調和振動、自由振動、強制振動、減衰のない振動、減衰のある振動、振動の絶縁に学ぶ。後半は2自由度系の振動までカバー予定。						
授業の形態	講義	義						
授業の進め方	し、また理解用	「るが,授業開始時に前回授業内容の小テスト(教利 度の確認をしながら授業を進めていく. 5い自学自習の習慣を身につける.	斗書より	出題)	を行って行	复習を促		
到達目標	2. 1 自由度系の式から計算でき		ついて各	特性を	•			
	ら計算できる. 4.1自由度系の	O自由振動(減衰あり)の減衰比や減衰係数について O強制振動(減衰なし)の振幅について各特性を理解	し、運	動方程式	式から計算	〔できる.		
	5. 1 自由度系の 算できる.	O強制振動(減衰あり)の振動変位振幅について各特	寺性を理	!解し,	運動方程	式から計		
	6. 振動の絶縁	装置,過渡振動について各特性を理解し,運動方程 の振動の固有振動数と振動モードについて各特性を	式から 理解し	設計でき , 運動	きる. 方程式かり	う計算で		
実務経験と授業内 容との関連	なし							
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						的な技術		
-T.D.		講義の内容			ı	n+ 00		
項目 身近にある振動す	ろもの	目標 身近にある変動または振動するものがわかる。振動	かを起こ	される	強制外力	<u>時間</u>		
調和振動の基礎		がわかる. 変位,振幅,振動数,周波数,位相が計算できる.				2		
1 自由度系の自由掘	感動 (減衰なし)	している. 特性を理解し運動方程式が立てられる.				2		
1 自由度系の自由掘	辰動 (減衰なし)	ばね定数や固有振動数が計算できる.				2		
1自由度系の自由振 ダンパ,クーロン		特性を理解し運動方程式が立てられる。				2		
1自由度系の自由掘 ダンパ,クーロン	最動 (減衰あり,	減衰比や減衰係数が計算できる.				2		
1自由度系の強制振		特性を理解し運動方程式が立てられる.				2		
1 自由度系の強制振	長動 (減衰なし)	振幅が計算できる.				2		
1 自由度系の強制振 ダンパ,変位励振	長動 (減衰あり,)	特性を理解し運動方程式が立てられる。				2		
1 自由度系の強制排 ダンパ,変位励振	辰動 (減衰あり,)	減衰比や減衰係数、振動変位振幅が計算できる.				2		
振動の伝達と絶縁 振動の伝達と絶縁		振動の絶縁装置の設計ができる. 過渡振動の特性を理解し運動方程式が立てられる. ている.	ラプラ	ス変換	を理解し	2 2		
2 自由度系の振動		特性を理解し運動方程式が立てられる。				2		
2 自由度系の振動まとめと演習		固有振動数と振動モードが計算できる。 ◎授業全体のまとめと演習				$\frac{2}{2}$		
あしかし摂日		⊗ IX A LITY & CW CIRCI				計 30		
学業成績の評価方 法	試験および授業 および小テス	美中に実施する小テストの成績から総合的に決定する トの比率は 7:3 とする.	る. 評価	后におけ	る, 定期			
関連科目	工業力学 I・エ	業力学 II・制御工学 I・制御工学 II						
教科書・副読本	教科書: 「振動	九工学 新装版」藤田勝久 (森北出版)						

		令和4年度 医撩偏征工字	<u> </u>				
科目名		担当教員		学年	単位	開講時数	種別
制御工学 I (Control Enginee	ring I)	柴田芳幸 (常勤)		4	1	後期 2 時間	必修
授業の概要 機械・電気システムの特性評価に必要な、制御工学の基礎理論修得を目的とする。各種シス 方程式から、伝達関数とブロック線図を導出する方法とその意味について学習する。					ステムの		
授業の形態	講義						
授業の進め方	講義と演習 予習,復習を行	行い自学自習の習慣を身につけ	· 3.				
到達目標	1. 線形システ	ムにおける伝達関数、およびフ	ブロック線図について	理解で	きる。		
実務経験と授業内 容との関連	実務経験と授業内 なし 容との関連						
学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						的な技術	
		講義の内容	}				
項目		目標					時間
1. 制御の分類		自動制御の種類					2
2. ラプラス変換		代表的な関数 ラプラス変換の基本性質 ラプラス逆変換				10	
3. 伝達関数		液面系や電気回路の伝達関数					4
4. ブロック線図		ブロック線図について ブロック線図の等価変換 液面系のブロック線図と伝達	関数				8
5. システムの応答	李	一次系の応答 二次系の応答					4
6. 電気、機械シス	テムの伝達関数	RCL 回路やバネ・ダンパー力 関数を求める。	7学モデルなど、電気	、機械	システ	ムの伝達	2
)	- DEA						計 30
学業成績の評価方 法		 19年により総合的に評価する。					
関連科目	電子回路 I·流	体力学・機械力学					
教科書・副読本	教科書: 「制御	『工学』下西二郎・奥平鎮正(/				
			ック)				
到達目標 理想的な	対達レベルの目安 (優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目室	(- /		レベルの目安	` /
しまった。 システ で表し	理現象・実験系 運動方程式を立 [*] ムをブロック線 、伝達関数を導 できる。	て、数を求めることができる。	ラプラス変換ができ	る。	ラプラン	ス変換がで	゙ きない。

科目名		- 一	学年	単位	開講時数	種別
		星善光 (常勤)	4	<u> </u>	前期	
(Introduction for	,	,			2 時間	
授業の概要	術を紹介する。)関連科目である。今後学習する医療福祉工学教科 &	と関連す	⁻ る、医 	学の基礎。	上診断技
授業の形態	講義					
授業の進め方	がら授業を行うとび関連する場	らので受講生全員が理解できるように、また興味を愿 う。医学と医療の歴史について知った後、テキストに 実患について診断と治療の基礎知識を得、さらに専 行い自学自習の習慣を身につける。	感じられ に基づき 門分野と	るよう 身体の との関わ	に事例を結構造と生む りについ	召介しな 里機能お て学ぶ。
到達目標		の大系が理解できる。 容が関連専門分野につながる事を理解できる。				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの 論に関する知識をもち、工学的諸問題にそれらを応				りな技術
		講義の内容				
項目		目標				時間
第1回 医学と医		医学と医療の歴史を知り、疾病の概念について学。	-			2
ん化	云子、分化とが			につい	て学ぶ。	2
	上理機能と病態	運動機能に関連する骨格および筋肉の機能と病態を				2
第4回 循環系の空 (1)	生理機能と病態	全身に血液を循環するための心臓の機能と病態を管	学ぶ。			2
第5回 循環系の空(2)	生理機能と病態	全身に血液を循環するための血管およびリンパ系の	の機能と	:病態を	学ぶ。	2
第6回 血液・免疫 と病態	受系の生理機能	全身を循環する血液を構成する要素の機能と病態を	を学ぶ。			2
生理機能と病態	系、感覚器系の	自律神経、運動神経、感覚器の機能と病態を学ぶ。				2
まとめ	の解説、前半の					2
病態	系の生理機能と	脳および脊髄の機能と病態を学ぶ。				2
病態		気管や肺などにおけるガス交換のしくみと病態を	•			2
第11回 消化器系 病態		摂取した食物が消化、吸収、排出されるしくみと	苪態を 学	£\$;		2
機能と病態		身体における物質代謝、エネルギー代謝を学ぶ。				2
能と病態	尿器系の生理機	老廃物や水分の排出のしくみと病態を学ぶ。				2
第14回 システム とその病態		これまで学んださまざまな系を全体のシステムとし 学ぶ。	ての関	わりの	視点から 	2
第15回 期末試験のまとめ	験の解説、全体					2
学業成績の評価士	授業内に与える	果題(60 %)、中間試験及び期末試験の成績(40 %) 1 - F	h 総本i	内に郵価す	計 30
法	3×木円10117日	本窓(UU /0 /、 〒旧印級火火∪別/小科県 (4U %	<i>,</i>	ソルの口口	リソトロナルの	<u>್</u>
関連科目						
教科書・副読本	経科学 -脳の	ぶかわる 人体解剖図」坂井建雄,橋本尚詞 著 (成美 探求-〈改訂版〉」ベアー,コノーズ,パラディー のイラスト生理学」照井直人 編 (羊土社)				

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	医療・医学の大系が理解 でき、応用することがで きる。	医療・医学の大系を理解している。	医療・医学の大系の全体像 がつかめている。	医療・医学の大系の全体像 がつかめていない。			
2	医学概論の内容が、他の 科目や卒業研究に関連す ることが理解でき、応用 できる。	医学概論の内容が、他の 科目や卒業研究に関連す ることが理解できる。	医学概論の内容が、他の 科目に関連していること が理解できる。	医学概論の内容と他の科目との関連が理解できていない。			

〒和4年及 医療価性工学コース ソフハス								
科目名		担当教員	学年	単位	開講時数	種別		
医療福祉工学実験 (Experiments and Medical and Wel- ing III)	d Practice of	Practice of 実務) · 吉村拓巳 (常勤/実務) · 田代裕子 (非常勤/ 4 時間				必修		
授業の概要	マIでは機械を	寮福祉工学実験実習Ⅲは3年次に行った医療福祉工学実験実習Ⅱの内容をさらに発展させ、 Ⅰでは機械系の機械工学応用実験を行う。テーマⅡでは人間工学に基づいた製品製作実習を テーマⅢでは電子系の電子工学応用実験を行う。テーマⅣでは論理回路に関する実験を行						
授業の形態	実験・実習							
授業の進め方	に関する講義と し指導を行う。	近編成で実施し、ローテーションにより1年を4期に分けて実験実習を行う。各実験実習の 関する講義と実験もしくは実習を実施し、レポートを提出を義務づけ、これについて内容を 指導を行う。 習、復習を行い自学自習の習慣を身につける。						
到達目標	解できる。 2. 人間工学に タの処理法をす 3. 実験を行う 4. 電子回路に	棒に対する曲げ、ねじり、圧縮の作用、流体の基本的物性およびベルヌーイの定理について理						
実務経験と授業内 容との関連	なし							
学校教育目標との 関係	E (応用力・実)	践力)総合的実践的技術者として、専門知識を応用し ************************************	問題を	解決する	る能力を育	成する。		
		講義の内容						
項目		目標				時間		
ガイダンス		実験実習の進め方、実験実習に関する諸注意等ガー				4		
テーマ I (通年) 機械工学応用実験	Ī	機械工学系実験として、材料力学実験および流体力学では材料の曲げ試験。材料のねじり試験、材料の強度の考え方について習得する。流体力学実験では摩擦係数について実験を行う。)座屈試	験を行	い、材料	28		
テーマⅡ(通年) 人間工学実習		PCマウスの形状デザインを対象とした人間工学実習を行う。人体寸法計測にはじまり、計測データの取り扱い、特に統計的データの処理法、デザインと形状加工の実践、更に人間工学的製品評価法を習得する。また本学習成果の確認として障害者用のマウスを各自製作する。						
テーマⅢ (通年) 電子工学応用実験	Ī	アナログ、デジタルの信号の特性を理解し、電子回路の応用技術に関する 知識を習得することを目的として、演算増幅回路、パルス回路、アナログ/ デジタル変換等の実験を行う。				28		
テーマIV(通年) 論理回路実験		電子回路により論理回路を構成する手法、論理回路 序回路)の働き、論理回路を応用した組み込み技術 の利用)への展開、それぞれを理解するための実験	各(組み f(組込 倹実習を	合わせ 用コン 実施す	回路、順 ピュータ る。	28		
総括		実験実習全体の実施状況に対する総括を行う。				4 計 120		
学業成績の評価方 法	全ての実験・気により総合的に 補講を行う。	度習を行なうことで評価対象となる。実験・実習中の に評価する。評価の比率は3:7とする。ただし、正	D取組り 当な事	代況、課 由による	題およびる欠席につ	レポート いいては、		
関連科目	材料力学 I・流	体力学・電気回路 I・電気回路 II・ディジタル回路	·					
教科書・副読本	その他: 各テー	-マ毎に資料を配付する。						

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	棒に対する曲げ、ねじり、 圧縮の作用、流体の物性 およびベルヌーイの定理 を応用して現象を考察で きる。	棒に対する曲げ、ねじり、 圧縮の作用、流体の物性 およびベルヌーイの定理 を適用して現象を説明で きる。	棒に対する曲げ、ねじり、 圧縮の作用、流体の物性 およびベルヌーイの定理 の基本事項をある程度理 解している。	棒に対する曲げ、ねじり、 圧縮の作用、流体の物性 およびベルヌーイの定理 の基本事項を理解してい ない。
2	人間工学に基づいた製品 設計、製作、評価法を習得 し実践する。併せて身体 計測および統計データの 処理法を良く理解できる。	人間工学に基づいた製品 設計、製作、評価法を習得 し実践する。併せて身体 計測および統計データの 処理法を理解できる。	人間工学に基づいた製品 設計、製作、評価法を習得 し実践する。併せて身体 計測および統計データの 処理法を一部理解できる。	人間工学に基づいた製品 設計、製作、評価法を習得 し実践できない。併せて 身体計測および統計デー タの処理法を理解できな い。
3	実験を行うアナログ回路、 デジタル回路の動作を良 く理解できる。	実験を行うアナログ回路、 デジタル回路の動作を理 解できる。	実験を行うアナログ回路、 デジタル回路どちらかの 動作を理解できる。	実験を行うアナログ回路、 デジタル回路の動作を理 解できない。
4	電子回路により論理回路 を構成する手法、論理回 路の働き、組み込み技術 について良く理解できる。	路の働き、組み込み技術	電子回路により論理回路 を構成する手法、論理回 路の働き、組み込み技術 について一部理解できる。	電子回路により論理回路 を構成する手法、論理回 路の働き、組み込み技術 について理解できない。
5	実験、実習レポートの作 成手順を習得し、優秀な レポートを作成できる。	実験、実習レポートの作成 手順を習得できる。	実験、実習レポートの作成 ができる。	実験、実習レポートの作成 手順を習得できない。

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	身近にある振動するもの を発展的に考えることが できる.調和振動の発展 的な計算ができる.	身近にある振動するものを応用的に考えることができる.調和振動の応用的な計算ができる.	身近にある振動するものを基本的に考えることができる.調和振動の基本的な計算ができる.	身近にある振動するものを考えることができない. 調和振動の基本的な計算ができない.
2	1 自由度系の自由振動(減 衰なし)の特性を理解し, 発展的な運動方程式を解 き,ばね定数や固有振動 数を計算できる.	1 自由度系の自由振動 (減 衰なし)の特性を理解し, 応用的な運動方程式を解 き,ばね定数や固有振動 数を計算できる.	1自由度系の自由振動 (減 衰なし)の特性を理解し, 基本的な運動方程式を解 き,ばね定数や固有振動 数を計算できる.	1自由度系の自由振動(減 衰なし)の特性を理解する ことができない. 基本的 な運動方程式を解き, ば ね定数や固有振動数を計 算できない.
3	1自由度系の自由振動(減 衰あり)の特性を理解し, 発展的な運動方程式を解 き,減衰比や減衰係数を 計算できる.	1自由度系の自由振動 (減 衰あり) の特性を理解し, 応用的な運動方程式を解 き,減衰比や減衰係数を 計算できる.	1自由度系の自由振動 (減 衰あり) の特性を理解し, 基本的な運動方程式を解 き,減衰比や減衰係数を 計算できる.	1自由度系の自由振動(減衰あり)の特性を理解できない。基本的な運動方程式を解き、減衰比や減衰係数を計算できない。
4	1自由度系の強制振動 (減 衰なし) の特性を理解し, 発展的な運動方程式を解 き,振幅を計算できる.	1自由度系の強制振動 (減 衰なし)の特性を理解し, 応用的な運動方程式を解 き,振幅を計算できる.	1自由度系の強制振動 (減衰なし) の特性を理解し, 基本的な運動方程式を解き,振幅を計算できる.	1自由度系の強制振動 (減衰なし) の特性を理解できない. 基本的な運動方程式を解き,振幅を計算できない.
5	1自由度系の強制振動 (減 衰あり) の特性を理解し, 発展的な運動方程式を解 き,振動変位振幅を計算 できる.	1自由度系の強制振動 (減 衰あり) の特性を理解し, 応用的な運動方程式を解 き,振動変位振幅を計算 できる.	1自由度系の強制振動 (減 衰あり) の特性を理解し, 基本的な運動方程式を解 き,振動変位振幅を計算 できる.	1自由度系の強制振動(減 衰あり)の特性を理解で きない. 基本的な運動方 程式を解き,振動変位振 幅を計算できない.
6	振動の絶縁装置や過渡振動の特性を理解し,発展的な運動方程式を解き,設計できる.	振動の絶縁装置や過渡振 動の特性を理解し, 応用的 な運動方程式を解き, 設計 できる.	振動の絶縁装置や過渡振動の特性を理解し,基本的な運動方程式を解き,設計できる.	振動の絶縁装置や過渡振動の特性を理解できない. 基本的な運動方程式を解き,設計できない.
7	2 自由度系の振動の特性 を理解し, 発展的な運動方 程式を解き, 固有振動数と 振動モードを計算できる.	2 自由度系の振動の特性 を理解し, 応用的な運動方 程式を解き, 固有振動数と 振動モードを計算できる.	2自由度系の振動の特性 を理解し,基本的な運動方 程式を解き,固有振動数と 振動モードを計算できる.	2自由度系の振動の特性 を理解できない。基本的 な運動方程式を解き、固 有振動数と振動モードを 計算できない。

科目名		担当教員		学年	単位	開講時数	 種別	
電気磁気学 III (Electromagnetics	s III)	藤井麻美子 (非常勤)		4	1	後期 2 時間	迭灯	
授業の概要	これまで修得し	てきた電磁気学の知識を再度	考え、電磁気学の諸	問題を角	解く力を	こつける.		
授業の形態	講義	講義						
授業の進め方	現象を自分で解 予習、復習を行	が、授業の多くの時間を演習 き理解してもらいたい. い自学自習の習慣を身につけ	る.			·		
到達目標		方程式にいたる道筋をたどり きる力を付けられる	ながら各テーマ毎にP	内容の理	関解を確	認し、電荷	兹気現象	
実務経験と授業内 容との関連	なし							
学校教育目標との 関係		合的実践的技術者として、数学 に関する知識をもち、工学的	諸問題にそれらを応り				りな技術	
		講義の内容	7					
項目		目標					時間	
電流		物理的(電磁気学的)見地か 電界、電気力線、電流の関係	を理解				6	
磁気		磁気の発生、電流と磁気の関 磁性体の特殊性を理解する					4	
荷電粒子のふるま [ローレンツ力]		電場と電荷粒子の相互作用、i の大きさ、荷電粒子の曲がり	方を演習問題を用いて	て計算、	理解を	深める	2	
電磁誘導現象 電磁誘導は電気と磁気さらに力の相互作用でありその大きさ、向き等を演習により理解する					4			
インダクタンス	インダクタンス 電磁誘導の回路への応用が回路素子の1つのインダクターであり、コイバの自己インダクタンス、複数コイルでの相互インダクタンスを電磁気学の 見地から理解する					4		
磁気回路		磁気回路の特殊性を理解し、 考え。磁気抵抗の概念を理解	する				2	
磁性体		強磁性体の特徴であるヒステ 深め、演習問題でその諸量の	大きさを把握する				2	
MAXWELL 方程		電磁誘導現象をこれまで、習 MAXWELL の方程式であり、 磁気の相互作用を考える。電 行う。	その意味を理解して	もらう。	その」	で電気、	4	
まとめ		授業のまとめを行う					2	
							計 30	
学業成績の評価方 法	中間及び期末記 とし総合的に割	ば験(60 %)を実施し、演習問 ₹価する.	閉題 (10 %)、取り組み	*状況 (10 %),	小テスト	(20 %)	
関連科目								
教科書・副読本	教科書: 「新版	電磁気学の基礎」斉藤幸喜	宮代彰一 高橋清	(森北出	版)			
		評価 (ルーブリ	ック)					
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	₹ (可)	未到達	レベルの目安	(不可)	
も の 解 互 ら る。 の 解 互 き る る る る る の 解 の と る る の 般 と の 般 と の の の の と の の の の と の の の の	学の電流に対すする 方の電流目をいます。 ででは、 ででででででででである。 でででででできる。 でででででできる。 ででででできる。 でででできる。 ででできる。 ででできる。 ででできる。 ででできる。 でできる。 できる。	て 磁気の関係を理解し、その 理 大きさを計算出来る。 電 村 磁気学現象 (電磁誘導) の けいくつかの実用的事例 (コ イルのインダクタンス、ト ランス、モータ、発電機、 メータ) を計算できる。	磁性体の振る舞い(ヒリシス特性)を理解を 明シス特性による逆域 電が算によるルの クタンスの計算がで インダクタンスを含 気回路の電界と配 で量の関係を理解で	す電ンきむ計静る力ダる電算電	起電力で ない。 タンスの	こ流れる電 の関係をを コイルのペ の計算がで 電容量の	十算でき インダク きない。	

科目名		担当教員	学年	単位	開講時数	種別
電気回路 III (Electric Circuits	III)	田代裕子 (非常勤/実務)	4	2	通年 2 時間	選択
授業の概要	電気回路は、電 科目である。打 回路Ⅲでは、込	 気回路は、電子回路、制御工学などに関連し、医用工学を理解する。 目である。授業では基本的な回路を用いて解説し、多くの例題と 路Ⅲでは、過渡現象、回路の周波数特性、分布定数回路につい		.で欠か .用いて する。	すことの [*] 授業を行 [*]	できない う。電気
授業の形態	演習	演習				
授業の進め方	原理について簡単に解説した後、演習問題を通じてクラスメイトと共同し理 数回小テストを行う。 予習、復習を行い自学自習の習慣を身につける。		理解を	深める。記	講義中に	
到達目標	2. 回路の周波	1. 過渡現象を理解して解析できる。 2. 回路の周波数特性を理解し、非正弦波の解析ができる。 3. 電気現象を波動と考える分布定数線路の解析ができる。				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する			りな技術		

	講義の内容	
項目	目標	時間
[前期]		
自主学習	授業に関する内容の自主学習を行う	2
ガイダンス・直流定常回路の時間 解析	授業の進め方,成績のつけ方について理解する.R,L,Cそれぞれの素子について,時間特性を理解する.直流定常回路について,電圧と電流を時間領域で計算できる.	2
直流 RL 回路の過渡解析	直流 RL 回路における過渡現象を微分方程式解法を用いて解析できる。また、電圧と電流の時間特性を図示できる。	2
直流 RC 回路の過渡解析	直流 RC 回路における過渡現象を微分方程式解法を用いて解析できる.また,電圧と電流の時間特性を図示できる.	2
スイッチが 2 回切り替わる場合 の過渡解析	直流 RL・RC 回路について,スイッチを2回切り替えた場合の過渡解析ができる。各素子が回路の状態によって,エネルギーを蓄えたり放出したりすることを理解する。	2
直流 RLC 直列回路の過渡現象	直流 RLC 直列回路の過渡現象を微分方程式解法を用いて解析できる. また,電圧と電流の時間特性を図示できる.	2
【授業内】中間試験	理解度の確認	2
中間試験の解説	中間試験までの授業内容について理解を深める 誤答や未回答部分について正しい解法を確認する	2
ラプラス変換・逆変換	ラプラス変換と逆変換について理解する	2
RL 回路の過渡解析	直流と交流の RL 回路についてラプラス変換を用いて解析できる	2
RC 回路の過渡解析	直流と交流の RC 回路についてラプラス変換を用いて解析できる	2
s回路における網目電流法	回路の過渡現象について、ラプラス変換と網目電流法を用いて解析できる	2
RLC 回路の過渡現象	直流と交流の RLC 回路についてラプラス変換を用いて解析できる	2
【授業内】期末試験	理解度確認Ⅱ	2
期末試験の解説	前期の授業内容について理解を深める 誤答や未回答部分について正しい解法を確認する	2
	試合で水回台即力に フパーし L L U が 解仏で 確認する	計 30
[後期]		
正弦波交流回路の復習	回路の複素数表示について復習する. インピーダンス, アドミタンス, 電圧, 電流, 電力の計算ができる.	2
回路の周波数特性	周波数ごとにインピーダンス、アドミタンスが異なることを理解する。また、インピーダンスとアドミタンスの周波数特性を図示できる。	2
フィルタ	R, L, C からなるフィルタの周波数特性を計算でき、周波数特性を図示できる.	2
合成波の解析	複数の正弦波を印可した場合の電圧,電流,電力を求めることが出来る.	2
フーリエ級数	フーリエ級数の原理について理解する。電気回路で良く用いられる非正弦 波を、フーリエ級数を用いて正弦波に分解できる。	2
非正弦波交流回路の解析	非正弦波を正弦波に分解できる。周波数ごとにインピーダンス・アドミタンスが異なる事を理解し、非正弦波交流の解析ができる。	2
【授業内】中間試験	非正弦波交流回路解析に関する知識を確認する.	2
中間試験の解説	後期中間試験までの授業内容について理解を深める 誤答や未回答部分について正しい解法を確認する	2
伝送線路概論	分布定数回路と集中定数回路の違いを理解する。伝送線路方程式を導出で き、一般解を求められる。	2
基礎方程式	基礎方程式を導出できる。また、特性インピーダンス、伝搬定数、伝搬速度の意味を理解し、計算できる。	2
無損失線路上での伝搬	無ひずみ条件,無損失線路について理解する.受端開放,短絡,特性インピーダンス接続の場合の,送端から見たインピーダンスを計算できる.	2
入射波・反射波・透過波	伝送線路を波動としてとらえ、入射波、反射波、透過波が存在することを 理解する。反射係数の計算ができる。	2
定在波と定在波比	伝送線路上で定在波が発生することを理解する。電圧定在波比(VSR)を計算できる。	2
【授業内】期末試験	伝送線路に関する知識を確認する.	2
期末試験の解説	期末試験までの授業内容について理解を深める 誤答や未回答部分について正しい解法を確認する	2
		計 30
		計 60

学業成績法	りの評価方	定期試験 (70%), 再試は行わない.	課題・小テスト (15%),	演習への取り組み(15%)	とし、総合的に評価する.
関連科目	1				
教科書·	・副読本	教科書: 「続電	気回路の基礎 第3版」西	巻 正郎 他 (森北出版)	
			評価 (ルーブリ	ック)	
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	におい [*] 蓄える ^は	どちらも含む回路 て、エネルギーを 場合も放出する場 力で解ける。	む回路において、エネル	RC 直列回路, RL 直列回路, RC 並列回路, RL 並列回路, RL 並列回路の過渡現象を自力で解析できる	RC 直列回路,RL 直列回路,RC 並列回路,RC 並列回路,RL 並列回路の過渡現象を自力で解析できない
2	し、簡単	周波数特性を理解 単なフィルタの周 答を求めることが	ンスが異なることを理解	非正弦波を正弦波に自力 で分解できる	非正弦波を正弦波に自力 で分解できない
3		数回路の解析がで 反射・透過係数を求 る。	伝送線路のFパラメータ を理解している。双曲線 関数を用い、入出力端子の 電圧や電流が計算できる。	特性インピーダンス、伝播 定数の意味を理解し、分布 定数回路の基礎方程式が 立てられる。	波動現象としての電気が 理解できていない。

科目名		担当教員		学年	単位	開講時数	種別
材料力学 II (Strength of Ma	料力学 II 田宮高信 (常勤) 4 1 前期 2 時間					選択	
授業の概要	の概要 機械や構造物の設計においては部材の材質や寸法は安全性と経済性の観点から決定される. 学は、部材内部に生ずる応力と変形を明らかにする学問であり、機械や構造物の設計に不同る。4年次では物体に作用する応力とひずみの関係についてより深い理解を求める.						材料力 可欠であ
授業の形態	講義						
授業の進め方	講義を中心と 予習,復習を行	し,理解を深めるために演習・ 5い自学自習の習慣を身につけ	小テストを適宜取り <i>)</i> る。	 へれる.			
到達目標	13. ひずみエネ	について理解し、軸の強度計算 応力について理解し、モールの ルギを理解し、エネルギ法を月 について理解し計算できる。	算ができる。)応力円を用いて主応 月いて問題を解くこと:	力を求 ができ	めるこ。	とができる	,
実務経験と授業P 容との関連	りなし						
学校教育目標との 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					的な技術
		講義の内容	7				
項目		目標					時間
軸に作用するね		軸に作用する外力と応力の関					2
ねじり応力とね		軸に発生する変形、ねじり角		求める	5.		2
ねじりに関する		ねじりの不静定問題について	****				2
軸に生じるねじ	りの問題	動力伝達軸に生じるねじりモ					2
組み合わせ応力		組み合わせ応力について説明		は張をは	おこなう	0	2
薄肉円筒		内圧を受ける薄肉円筒の問題	を理解する。				2
		◎まとめと演習					2
モールの応力円	1.64	モールの応力円の作図法とそ		L SHELS L	r w		3
ひずみの座標変	奥	ひずみの座標変換および、ひ					3
ひずみエネルギ	- 7111	ひずみエネルギ(引張圧縮お		こついて	て埋解す	る。	2
Castigliano の定	埋	Castigliano の定理を理解し応					3
長柱の座屈		長柱に関する Euler の座屈公	八を得出する。				3
		◎まとめと演習					2 ≢L 20
 学業成績の評価プ	- 2回の空期封	 験の得点と、授業中に実施する	ホニット・授業への	24m42	ロム、と多	公会的)ヶ洲	計 30 iウナフ
■子未成績の計画) ■法	コーク回り定期訊。一定期試験点数、	映の付点と、反素中に天旭りる 、授業行う小テスト・授業への) かりろド・投業への。) 参加状況の比率は8	参加4人₁ :2 と`	仇かられ する。	公口可りにひ	によりる。
 関連科目	材料力学 I・B	医療福祉工学実験実習 III・機械	 【工学演習				
教科書・副読本	教科書: 「基礎	************************************	政志、小林 秀敏 (森:	北出版)		
37.11	41111	評価 (ルーブリ	,	121-1/104	7		
到達目標 理想的	な到達レベルの目安 (個	憂) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	: (可)	未到達	レベルの目安	(不可)
	発展的な問題について、軸 応用的な問題について、軸 基本的な問題について、軸 基本的な問題について、軸 の強度計算ができる。 の強度計算ができる。 の強度計算ができる。						
モーバ	発展的な問題について、 モールの応力円を用いて 主応力を求めることがで きる。				の応力円で を求めるこ	を用いて	
	【 ネルギ法を用いて問題を ネルギ法を用いて問題を ネルギ法を用いて問題を ネルギ法を用い				去を用いて	て問題を	
解くこ	解くことができる。 解くことができる。 解くことができる。 解くことができる。 解くことができる。 解くことができる。 解くことができる。 解くことができる 解くことができな 発展的な問題について、長 応用的な問題について、長 基本的な問題について、長 柱の座屈について計算で 柱の座屈について計算で さる。 きる。						

科目名			担当教員		学年	単位	開講時数	種別		
機械工学 (Exercise neering)	演習 es on Med	chanical Engi-	内山豊美 (非常勤)		4	1	後期 2 時間	選択		
授業の概	要	をなす数学お 前期までに学習	医な発展とともに機械工学の学院 にび力学の重要性は増しこそする 関した内容から,微積分学,微分 問題演習を行う.	問分野も大きく拡大・ れ,いささかも減ずる 分方程式,工業力学,	変貌を	と遂げて はない. J学,材	いるが, ここでは 料力学,	その基礎 4年次 流体力学		
授業の形	態	演習								
授業の進	め方	受講者は,前も 予課題について され,その指導 予習,復習を行	者は,前もって配布された予課題に沿って,当該科目の復習をしておくものとする.授 題について質疑応答を行ったうえで,本課題の演習を行う.演習課題の答案は添削のう 」,その指導内容を確認することで問題解析能力を確かなものにする. ,復習を行い自学自習の習慣を身につける.							
到達目標		1. 微積分学,後 工学系学科の線	敗積分学,微分方程式,工業力学,機械力学,材料力学,流体力学の各分野について,♪ ≠系学科の編入学試験程度の問題を解くことができる.							
実務経験の関	連	なし								
学校教育 関係	目標との		合的実践的技術者として、数学 論に関する知識をもち、工学的i					的な技術		
			講義の内容			_				
項目			目標					時間		
微積分学	・微分方	程式	関数の微分とその応用					2		
		関数の積分								
			積分法の応用,変数分離型微分	分方程式の解法				2		
			変数分離型微分方程式の応用					2		
			線形微分方程式の解法					2		
工業力学	・機械力	学	力のつり合い					2		
			モーメントのつり合い					2		
			運動方程式,,角運動方程式,	円運動				2		
			1 自由度系の振動					2		
			エネルギー保存則、運動量保存	 亨 則				2		
材料力学			応力とひずみ					2		
			はりのせん断力,曲げモーメン	ント、曲げ応力				2		
			はりのたわみ、不静定はり	, , , , , , , , , , , , , , , , , , , ,				2		
流体力学			静水力学					$\frac{1}{2}$		
וומון אין			連続の式、ベルヌーイの定理、	運動量の法則				2		
				之				計 30		
学業成績の法	の評価方	2回の定期試験 験 25 %, 演習	t,授業中に行う演習課題によ 課題 50 %とする.	り評価を行う.各々の	の重みり	は中間討	【験 25 %,			
関連科目			f学基礎・応用数学 I・応用数学							
教科書・	教科書・副読本 教科書:「新 微分積分 II」高遠・斉藤他 (大日本図書)・「高専の物理 第 5 版」和達 三樹監 暮 陽三編集 (森北出版)・「図解はじめての流体力学」田村 恵万 (科学図書出版)・「基礎が 材料力学」臺丸谷 政志、小林 秀敏 (森北出版)・「振動工学 新装版」藤田勝久 (森北出版 業力学」本江哲行、久池井茂 (実教出版)							から学ぶ		
			評価 (ルーブリ	ック)						
到達目標	理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	マ (可)	未到達	レベルの目安	(不可)		
1		Þ (微分方程式を 形代数,工業力等	学, む), 線形代数, 工業力学,	微積分学 (微分方程式 む),線形代数,工業			学 (微分方 形代数,J			
	材料力学の各分野につい 材料力学の各分野につい 材料力学の各分野につい 材料力学の各分野につい て、発展問題を解くこと て、応用問題を解くこと で、基礎的問題を解くこと だできる。 とができない。						学の各分野 巻的問題	野につい		

71 F 5			DIR I TIX E		コース シフハス	- AV (-	W 21		4-T
科目名				担当教員		学年	単位	開講時数	種別
	アリング ering Desi	デザイン工学 gn)	青代敏行 (常勤)	・後藤和彦 (常	常勤)	4	1	後期 2 時間	選択
授業の概	援要		/により、エンジニ /ジニアリングデ ^ー		ザインの手法を用いて を理解する。	てものつ	がくりを	行う過程を	を実践す
授業の形	態	演習							
授業の進	め方	た、後半は ED じて授業の順者		コンテスト とがある。	えられた課題を ED に 等に出品する機器の7 る。				
到達目標		2. 班のメンバ	-と協力し、グル	ープワークを	月い、課題に対する提 と行うことができる 「く説明する事ができ		ること	ができる	
実務経験 容との関	と授業内]連	なし							
学校教育 関係	育目標との E (応用力・実践力) 総合的実践的技術者として、専門知識を応用し問題を解決する能力を育成								
				講義の内容	F				
項目			目標						時間
ガイダン					クの基礎などを実践を				2
ED 実習	プを作成し発表を行う								
ED 演習					ーションスキルを実品				6
ED 実習	12		ED 実習1で実践	した内容を置	背まえ、「生活支援を目 作品を検討および作品]的とし ませる	た工学	技術アイ	10
まとめ			実習で行った内容			x y S			2 計 30
学業成績 法	の評価方	レポート, 提出 る。各テーマル	出物 40 % 、作業の こおいて 100 点法)取組状況, で担当指導教	チームへの貢献度 40 な員が評価を行い、そ	%、成り の平均・	果発表 : を総合言	20 % とし` 平価とする	て評価す
関連科目	1								
教科書・	副読本	デザイン―製品 高橋栄/共調	品設計のための考; 尺 (培風館)・「エン 上 昌浩, 明石 尚之 斉を配布する	え方」 ナイジ シジニアリン 1, 佐藤 昭規	ション」 大石 加奈子 ェル・クロス/著 デ グデザイン入門―技行 (著), 柴田 尚志 (監修	売木光彦 片の創造	₹/監訳 造と倫理	、別府俊 の基礎」	幸/共訳 林 和伸,
ļ			評 1	価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優) 標準的な到達レヘ	ベルの目安 (良)	ぎりぎりの到達レベルの目	岁 (可)	未到達	レベルの目安	(不可)
1	ンの基礎	ニアリングデザ 楚的な知識を理 ザーの視点に立 ができる	解 ンの基礎的な	知識を理解	エンジニアリングテンの基礎的な知識を している				
2	先してこ	プ全体を把握し、 ファシリテーシ うことができる			班のメンバーと協力 業を行うことができ				
3	ザーの社 やプレイ	f景を踏まえ、ユ 見点に立った作 ヹンを作成し、 事ができる	品 品やプレゼン	を作成し、発	作品やプレゼンを作 発表する事ができる			ンを作成し できない	発表す

科目名			担当教員		学年	単位	開講時数	種別
プロジェ (Project		I	篠崎真良 (非常勤)	-	4	1	前期 2時間	選択
授業の概	要	機械学習と統言 を理解する.	十学の関係性を理解する.Pyt	hon を用いた演習を通	Ĺして,	記述統	計学と多変	变量解析
授業の形	態	演習						
授業の進	め方	各回とも講義と 予習,復習を行	: 演習の組み合わせを基本とし 行い自学自習の習慣を身につけ	て授業を行う. ける.				
到達目標		2. Python を用	いて記述統計量を計算できる いて単回帰・重回帰分析がて いて主成分分析ができる					
実務経験る容との関	と授業内 連	なし						
学校教育 関係	目標との	E (応用力・実践	浅力) 総合的実践的技術者とし		問題を	解決する	る能力を育	成する。
			講義の内容	~				
項目			目標					時間
ガイダン			シラバスの内容と評価方法な					1
	thon 概説と環境構築 Python の概説とプログラミングを行うための環境構築の仕方を学ぶ							3
統計学と			統計学と機械学習の関係につ					2
データサ			データの呼び方, クロス集計		ついて	学ぶ		2
データサ			相関図と共分散、相関係数に					2
データサ		の基本 3	相関比,確率変数と確率分布					2
中間レポ			講義の振り返りを行い、中間					2
	_		線形の単回帰分析について学					4
	_		線形の重回帰分析について学	. <u> </u>				4
	_	学習と統計学	主成分分析について学ぶ					4
機械学習			医工学分野における機械学習					2
まとめと	復習と最	終レポート	授業の総括を行い、最終レポ	ートを作成する				2
								計 30
学業成績(法	の評価方	%と60%とす	·	ら評価する.小課題と	最終レ 	ポート(の点数の害	引合は 40
関連科目		線形代数I,絲	泉形代数Ⅱ,数学特論 I					
教科書・	副読本		学習がわかる統計学入門」涌 D教科書」馬場 真哉 (翔泳社)	井良幸,涌井貞美 (技	術評論	社)・「F	ython C	学ぶあた
			評価 (ルーブリ	「ック)				
到達目標	理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	マ (可)	未到達	レベルの目安	(不可)
1		言語を用いて高 統計量を計算で					Python 言語を用いて記述 統計量を計算できない.	
2		言語を用いて高 骨・重回帰分析が			fがで		言語を用い 回帰分析が	
3 Python 言語を用いて高度 Python 言語を用いて基本 Python 言語を用いて簡単 Python 言語を用いてきる. 公主成分分析ができる. 分分析ができない.								

科目名				学年	単位	開講時数	種別		
プロジェクト科目 (Project 2)	II	養手智紀 (非常勤)		4	1	後期 2 時間	選択		
授業の概要	ついて学んだ後	ムの火付け役である AlexNet ,それを応用した NN を設計 ついて動作の確認を行う.							
授業の形態	演習								
授業の進め方	NN を実際に設	· 15 回:講義と演習を通じて 計し,コンペ形式で精度を競 い自学自習の習慣を身につけ	う	5 9 ~ ∶	10 回:[画像認識の	りための		
到達目標		学習アルゴリズムについて他) NN を自分で設計できる	者に説明できる						
実務経験と授業内 容との関連	なし								
学校教育目標との 関係	E (応用力・実践	(力) 総合的実践的技術者とし	て、専門知識を応用し	問題を	解決する	る能力を育	が成する。		
	講義の内容								
項目		目標					時間		
ガイダンス		科目概要について理解する.							
【浅い NN】									
線形分離可能な問題 単純パーセプトロンを用いて線形分離可能な問題を解ける.						2			
線形非分離な問題 多層パーセプトロンを用いて線形非分離な問題を解ける。						2			
Loss 関数と誤差逆 【深い NN】	逆伝播法について理解	する.			4				
活性化関数	,	代表的な活性化関数について	. 特徴と用途を理解す	ける			2		
畳み込み層、プー		畳み込み NN で用いられる畳			って理解	する.	2		
AlexNet		AlexNet の構造を理解し,推	· · · · · · · · · · · · · · · · · · ·				2		
【応用】		•							
分類と回帰		分類と回帰の違いを理解し,	それに適した NN 構造	告を選べ	べる.		2		
画像認識コンペ		NN を設計し,履修者内で最	も高い認識精度を獲得	する			8		
様々なタスクと N	N	制御など,画像認識以外のタ	スクで用いられる NN	1 につい	って理解	する.	6		
							計 30		
学業成績の評価方 法	演習の取り組み	状況 (60%) とコンペの結果	(40%) で評価する.						
関連科目									
教科書・副読本教科書: 「ゼロから作る Deep Learning — Python で学ぶディープラーニングの理論と実藤 康毅 (オライリー・ジャパン), 参考書: 「深層学習」Ian Goodfellow (著), Yoshua Beng Aaron Courville (著), 岩澤 有祐 (監修), 鈴木 雅大 (監修), 中山 浩太郎 (監修), 松尾 豊 (監管野 雅史 (翻訳), 黒滝 紘生 (翻訳), 保住 純 (翻訳), 野中 尚輝 (翻訳), 河野 慎 (翻訳), 富田 貴大 (翻訳), (KADOKAWA), その他: 適宜資料を配布する						gio (著), 監修), 味			
		評価 (ルーブリ	ック)						
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)		
の構造。	r問題に適したN と学習アルゴリン ハて詳細な説明z	ズズムについて詳細な説明	NN の構造と学習アル ズムの概要を説明で	きる		造と学習 既要を説明			
2 取り組む問題に適した NN を選択し、チューニングでを選択できる 取り組む問題に適した NN を設計できる 一般的なデータセットを認識する NN を設計できる。					 NN の割	対出来	;ない -		

令和4年度 ものづくり工学科 シラバス

		市相4年度 6のライグコ	- 9 11							
科目名		担当教員		学年	単位	開講時数	種別			
卒業研究 (Graduation Stud	ly)	療福祉工学コース教員 (常動	助)	5	8	通年 8 時間	必修			
授業の概要	高専の本科5年間 討を通じて、創造	引にわたる一般教育・専門教 5性、問題解決能力を養うと	育の総仕上げとして、 ともに自主的研究、	各分野 開発、	予の調査 発表能力	・実験考録」を養う。	察など検			
授業の形態	実験・実習									
授業の進め方	究を行うことを重 する。	統き研究室に所属して指導 複し1年間の最後に研究成 1自学自習の習慣を身につけ	果を卒業論文にまとぬ	受ける。 め、さら	自主的 。に卒業	に学習、第 研究発表会	実験、研 会で発表			
到達目標	1. 専門知識、応月 2. 考察力、表現力	『門知識、応用力、研究力を向上させ、研究を遂行できる。 『察力、表現力を身につけ、研究成果を発表できる。								
実務経験と授業内 容との関連	なし									
学校教育目標との 関係	\	造力) 総合的実践的技術者として、工学的立場から地球的視点で社会に存在する問題を 発見した問題を解決する能力を育成する。								
		講義の内容	7							
指導教員	- -	∀								
後 杉 柴 田 富 福 古 星 吉 吉村 田 二 古	唐代 敏行 医療・リハビリテーション機器および運動解析に関する研究 生体電気信号を用いた脳機能解析とその応用に関する研究 医用・生体材料の開発と材料特性制御に関する研究 医用・生体材料の開発と材料特性制御に関する研究 とを と									
教科書・副読本										
		評価 (ルーブリ	ック)							
到達目標 理想的な	な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不									
専門知識	こ参考資料を調べ、 歳、応用力、研究力 させ、研究を遂行で	自主的に、専門知識、応用 力、研究力を向上させ、研 究を遂行できる。	担当教員の助言を受ことで、専門知識、力、研究力を向上され究を遂行できる。	を用した。	し受けて 用力、値	員の助言を ても、専門 研究力を向 研究を追	知識、応			
力、表现究成果	2 自主的に取り組み、考察						力、表現 ず、研究			

		令和4年度 医療偏征工学	<u> </u>						
科目名		担当教員	·	学年	単位	開講時数	種別		
応用物理 II (Applied Physics	II)	藤井麻美子 (非常勤)		5	1	前期 2 時間	必修		
授業の概要	電気磁気学の基	礎および波や光の原理を習得	する。						
授業の形態	講義								
授業の進め方	講義と演習を中 予習,復習を行	心に授業を行う。大学の編入 い自学自習の習慣を身につけ	.学に向けた学習を行 [、] . る。	う。					
到達目標	1. 電界と磁界の 2. 波の性質を理)現象を理解できる Ľ解できる							
実務経験と授業内 容との関連	業内 なし								
学校教育目標との 関係		合的実践的技術者として、数学 に関する知識をもち、工学的					りな技術		
	 講義の内容								
項目		目標					時間		
電荷とガウスの法則 電荷の分布について理解する。							2		
電界と電位電界、電位の関係を理解する。							2		
磁性体と磁気回路 磁化の現象や磁界の関係、磁気回路の性質について理解する。							2		
電磁誘導とインタ	ブクタンス	電磁誘導の現象を理解する。 インダクタンスを理解する。					4		
直線上を伝わる源	ž	直線上を伝わる波の性質につ	いて理解する				4		
平面や空間を伝わ	つる波	平面や空間を伝わる波の性質	について理解する。				4		
音波		音波の性質について理解する	0				4		
光波		電磁波及び光波の性質につい	て理解する。				6		
まとめ		授業のまとめをおこなう。					2		
							計 30		
学業成績の評価方 法	2回の試験 (60	%)、演習 (20 %)、授業の取	組状況 (20 %) を総合	的に判	断して言	平価する。			
関連科目									
教科書・副読本	教科書: 「高専 磁気学」岸野正	の物理 第5版」和達 三横 剛 (電気学会)	監修、小暮 陽三編集	集 (森北	比出版)	・「基本かり	う学ぶ電		
	7,10	<u>評価 (ルーブリ</u>	ック)						
到達目標 理想的な			ぎりぎりの到達レベルの目安	- (司)	李 到诗	レベルの目安	(不可)		
<u> </u>	磁界の現象を理解	· · ·	電界と磁界の現象を			滋界の現象			
┃	磁弁の現象を埋 用的な問題を解してきる。	は、標準的な問題を解く ことができる。	電がと概然の現象を し、説明することが る。	でき	电介とい できない		べて 生件		
┃	音波や光波の性質を理解 ことができる。						質を理解		

1) E 5		〒4 年長 医療価性工学コース ンプバス	34 <u></u>	N/ / I		14.00	
科目名		担当教員	学年	単位	開講時数	種別	
技術者倫理 (Engineering Ethi	·	遠藤信一 (非常勤)	5	1	前期 2 時間	必修	
授業の概要	が果たすべき責理的な判断がと	は、技術者を取り巻く社会・企業といった状況に関す 賃務に関する知識などを身につけ、将来モラルジレン 出来るようになることを目的とする。そのために必 技術や社会が自然に及ぼす影響や効果,及び技術者 める。	′マを 肖 要な講	^{どう場面} 義と演	iに遭遇し` 習を行う.	ても,倫これら	
授業の形態	講義						
授業の進め方 前半は講義,演習,配布するワークシートの完成などを通じて,技術者倫理に必要な知識を獲る。後半はグループワークを取り入れ、事件・事故事例をシミュレーションし、問題解決のを活用し、自分自身が実際に対応できる力を養う。事件・事故事例を自分たちで解決するシレーションを通じて、問題解決演習を行い、その結果を発表する。 予習、復習を行い自学自習の習慣を身につける。							
到達目標	2. 技術者の持 3. グループ演 来る	会的立場について理解できる つべき倫理を理解できる 習・プレゼンテーションを通じて事例を自分のこと るべき姿を追求することができる	と捉え	,適切	な倫理的判	判断が出	
実務経験と授業内容との関連	なし						
学校教育目標との 関係		会性) 総合的実践的技術者として、産業界や地域社 らち、技術者として社会との関わりを考える能力を			こ貢献する	ために、	
		講義の内容					
項目		目標				時間	
(1)技術者に必要 る知識(1) 講義+演習		☆技術者とは何か? 技術者を取り巻く社会・経済・解を深める。 ①技術者とは何か ~社会の中で,技術者はどう思われている ②技術者を取り巻く環境 ~企業内での技術者の立場~ ③経営者と技術者の違いは何か ④企業内技術者は,何をすべきなのか			いて, 理	10	
(2)技術者に必要 る知識(2) 講義+演習		☆プロフェッショナルとしての技術者のあり方つい ①プロフェッショナルとはどういうことなのか ②プロフェッショナルとしての技術者の社会的役割 ③積極的倫理について考える			3。	4	
(3)事例演習		☆倫理的な事件・事例を題材に、アクティブ・ラレーションを行う。その際、問題解決手法を取り入考え方などの向上を図る。 ①事例演習 I 及び発表 ②事例演習 II 及び発表 ③事例演習II 及び発表 ④事例演習IV及び発表	ーニン 、れ,論	グによって理的・	るシミュ 倫理的な	14	
(4) 社会にでて <u>打</u> くために	技術者として働	これからの技術者像				2	
						計 30	
学業成績の評価方 法	①ワークシー ¹ 価する.	ト・小テスト 20 % ②グループワーク 40 % ③レポー	-	受業の耳	文組状況 40) %で評	
関連科目							
教科書・副読本	その他: ワーク	ソシート(プリント)を配布					

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	企業内の技術者の立場を 理解しながらも,技術者 がとるべき倫理的行動に ついて理解し,実際に実 行することが出来る.	企業内で技術者がとるべき倫理的行動について理解を深めており、場に応じて具体的に挙げることができる.	企業内技術者の立場を理解し、立場の違いによる考え方の違いを述べることができる.	企業内技術者の立場を述べることができない。演習等の参加も消極的である。
2	技術者が社会の一員として持つべき倫理を複数挙げることができ、与えられた課題に対して自分の考えを述べることができる.	技術者が社会の一員として持つべき倫理を複数挙 げることができる.	技術者が社会の一員として持つべき基本的倫理を 挙げることができる.	技術者が持つべき倫理を あげることができない. 演習等の参加も消極的で ある.
3	グループ活動において リーダーとして活躍でき る能力を有し、様々な事件 ・ 事故事例に対応し、班 員にも理解を促している.	グループ活動への参加が 積極的で、事例において 複数の立場を理解するこ とがきる.	グループ活動に参加できている。倫理的行動について、問いかけに対して話すことができる。	グループ活動への参加が 消極的で、倫理的な内容 を理解していない.
4	授業内容だけでなく,将 来の社会情勢や技術革新 を予想して,どのような 技術者が今後必要なのか を述べることができる.	授業内容だけでなく,現状の社会情勢を反映して,現在どのような技術者が必要とされているのかを述べることができる.	授業を受けて, どのよう な技術者が必要なのかを 述べることができる.	授業内容が理解できておらず,技術者はいかにあるべきか,具体的に述べることができない.

		令机4年度 医療福祉工学				1				
科目名		担当教員	<u> </u>	学年	単位	開講時数	種別			
信号処理 II (Signal Processing	g II)	吉田嵩 (常勤)		5	1	前期 2 時間	必修			
授業の概要	信号処理 I に引 基礎として、F	き続き、ディジタル信号処理 FT、Z変換等を学ぶ。	について学ぶ。信号処	処理Ⅱで	がは、信	号処理 I	の内容を			
授業の形態	講義									
授業の進め方	講義と信号処理 予習,復習を行	に関する課題を中心に授業を い自学自習の習慣を身につけ	±進める。 ける。							
到達目標	2. 離散値に対す 3. Z変換の基本	るフーリエ変換、高速フー ¹ いな概念を理解できる。	動平均による雑音除去手法について理解できる。 「るフーリエ変換、高速フーリエ変換について理解できる。 に的な概念を理解できる。 「ルの概念と利用方法を理解できる。							
実務経験と授業内 容との関連	なし									
学校教育目標との 関係	対育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的なと基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。									
	 講義の内容									
項目		 目標					時間			
加算平均・移動平	均	加算平均や移動平均を用いて	信号から雑音を除去す	する方法	よを理解	なる。	4			
自己相関・相互相	関	自己相関関数による信号検出	手法及び相互相関関数	数を理解	解する。		4			
DFT と FFT		推散値に対するフーリエ変換及び高速フーリエ変換を理解する。								
Z変換		Z変換の基礎を学び、信号処	理に応用する方法を理	里解する	,		6			
自己回帰モデル		自己回帰モデルの概念を学び	、自己回帰モデルによ	るスペ	クトル	推定手法	4			
田3日3分然		を理解する。	. >>				6			
畳み込み演算		畳み込み演算の基礎を理解する。								
当業は建の証価士	押士学験の学験	:結果を 70 %、課題を 30 % &	・1 マ部年オフ				計 30			
学業成績の評価方 法	共力不可以為中の方式為中	和米で 10 %、	こして評価する。							
関連科目	信号処理 I·電急 号処理	気回路 II・応用数学 I・応用数	対学 II・応用数学 III・	制御工	学I・制	J御工学 II	・生体信			
教科書・副読本	教科書: 「ユー じてプリントを	ザーズ ディジタル信号処理」 配布する。	江原 義郎 (東京電機	大学出	版局),	その他:	必要に応			
		評価 (ルーブリ	ック)							
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	岁 (可)	未到達	レベルの目安	: (不可)			
理を理解に応じて	肉と移動平均の原解し、信号の特徴に 解し、信号の特徴に 手法や値を設定 することができる		加算平均及び移動平 計算できる。	加算平均を 加算平均と移動解できず、計算						
変換、i についることを	に対するフーリ 高速フーリエ変打 て理解し、利用 [・] ができる。	奥 変換、高速フーリエ変換 す について理解できる。	離散値に対するフー 変換、高速フーリェ についてある程度は できる。	変換	変換 変換、高速フー		リエ変換			
	の基本的な概念 ² 解できる。	を Z変換の基本的な概念を 理解できる。	Z変換の基本的な概 ある程度は理解でき	************************************			な概念を			
	帚モデルの概念 法を良く理解で		自己回帰モデルの櫻 利用方法をある程度 解できる。			帰モデルの 法を理解で				

科目名					担当教員		学年	単位	開講時数	種別		
医療福祉 (Medica Technol		学 Velfare Sensor	大畠覚	党 (非常勤	加/実務)		5	1	後期 2 時間	必修		
授業の概	既要	情報をセンサん	こより札 では基ス	検出し、訓 本的なセ≒	診断や治療に役 ンサの種類やエ	ンサが使用されている さてられており、現代 業的な使用法、また影	弋生活に	こなくて	はならなり	いもので		
授業の刑	· 影態	講義										
授業の進		講義と単元ごう。	と単元ごとに行う確認プリントにより講義を進める。必要に応じて小テストおよう									
到達目標	票	1. センサの種 2. センサの基	別、復習を行い自学自習の習慣を身につける。 センサの種類について理解できる センサの基本回路について理解できる 工業的な分野でセンサがどのように利用されているかを理解できる									
実務経験 容との関	食と授業内 関連	なし		,								
学校教育 関係	育目標との				をもち、工学的	学・自然科学・自らの 対諸問題にそれらを応				的な技術		
					講義の内容	学				p+ oc		
項目 センサ	11年4人		目標	ት ኒ ነው ነ- ነ	いいいがの甘土	・ 太阳 紀 十 フ				時間		
	^{既論} 団路の基礎				ンシングの基本 Bいたセンサ同	、を理解りる 路の基本を理解する				$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$		
	日曜の基礎 L学の基礎				について理解す					6		
光センサ	-					ગ				$\frac{0}{2}$		
中間試験				光センサの概要の理解 理解度の確認のため中間テストを行う								
		・フォトトラン								2 4		
磁気セン	ンサの原理	と応用	磁気も	センサの種	種類と原理およ	び応用についての理解	解			2		
温度セン	ンサの原理	と応用	温度も	センサの種	種類と原理の理	具解および応用につい [、]	ての理解	解		2		
圧力セン	ンサの原理	と応用	圧力も	センサの原	原理と応用につ	いて理解する				2		
加速度も	ヒンサの原	理と応用	加速周	度センサの	の原理と応用に	こついて理解する				2		
まとめ			まとぬ	か						2 計30		
学業成績 法	責の評価方	取組状況を 10 施する。	%,讓	思提出る	と 10 %,定期記	式験を 80 % の比率で訂	平価する	る。必要	に応じて	追試を実		
関連科目	■	電子回路 I·電	達子回	BII・デ	ィジタル回路・	組込みシステム						
教科書	・副読本	教科書: 「基礎	きセンサ	ナ工学」	稲荷隆彦 (コロ	ナ社),その他: その他	也、プリ	リント等	を併用し	て行う。		
					評価 (ルーブリ	「ック) <u></u>						
到達目標	理想的な	到達レベルの目安 (優	長) 標	標準的な到達	レベルの目安 (良)	ぎりぎりの到達レベルの目	安 (可)	未到達	レベルの目安	(不可)		
1	解し、派入手した	の種類について 側定したい対象 たいデータに対 なセンサを選択 できる。	や解しの	し、それ 特徴につ	類について理 Lぞれのセンサ いいて関連付け 事ができる。	徴を説明する事がで			センサにつ 明する事z			
2	て理解しを行いた	の基本回路につ し、センサと処 たい事象に合っ 自ら考え提案す きる。	理で	理解し、 準的な回	本回路につい センサごとに 路を理由も含 る事ができる。	て理解し、センサこ標準的な回路を説明	ごとるう		ごとの標準 明する事z			
3	どのよう るかを い対象 合った	な分野では分野ではかける がはいまながり、 はないないでは、 はないでは、 もないでもないでもないでもないでもないでもないでもないでもないでもないでもないで	いたにえ	のように かを理解 野におけ	「野でセンサが 」利用されていな はし、標準ないないないないないないない。 「含めて説明する。	どのように利用され	に 生的 せ さ さ さ ろ る こ る こ る る こ る る ろ る ろ る ろ る ろ る ろ る		な分野にさ ンサを説り ない。			

科目名				担当教員		学年	単位	開講時数	種別	
機構学 (Mechanism	n of Ma	achinery)	青作	犬敏行 (常勤)		5	1	前期 2時間	必修	
授業の概要		機械に目的とう らくり」を構成 目的とする動作	するする	動きをさせるためには原動 る必要がある。このからく 実現するための機械構造を	機と機械要素を特定の りを「機構」と呼ぶ。 創造する技法を修得	D条件に 本科目 するこ	こ従って では機構 とを目的	組み合わず けい概要を 対とする。	せる「かき理解し、	
授業の形態		講義								
授業の進めた		宜行う。		および計算法について教室 自学自習の習慣を身につけ		遅を深め	りるため	の課題、	寅習を適	
到達目標		 対偶や節、 機構の特定 機構の種類 	連鎖 の点 [と特	など機械要素を理解し、目 での速度加速度を求め、機 徴を理解し、設計目的に応	目的とした機構を構築 機構の動作を明らかと ぶじて適切な機構を提	するた するこ 案でき	めの手? とがで? る	去を理解で きる	: きる	
実務経験と抗 容との関連		なし								
学校教育目標 関係	票との			実践的技術者として、数学関する知識をもち、工学的	諸問題にそれらを応				内な技術	
			1 .	講義の内容 	ř			П	 時間	
項目										
	社におけるアクチュエータ 授業ガイダンスおよび最新の医療福祉機器における機構の利用方法について学ぶ ************************************									
機械と機構		の自由度	1	戒を構成する機構と、その					2	
対偶と節、		to til.	1	男と節の意味、またそれを					2	
)種類と判定条件 連鎖の種類、適切な連鎖を構築するための判定条件について理解する 機構 各種リンク機構について学び、それらの動作原理を理解する								2	
リンク機構									$\frac{2}{2}$	
		を 速度・加速		7イラ 機構を超初に干面機 5回転リンク機構の変位運動					4	
度解析		月と歴及・加歴	177	て学ぶ			ンガ ー イル マク:	寺田に ノ	4	
摩擦伝動機 歯車機構	伸		1	察車の構造と働きを学び、 車機構の原理、各種歯車機			コンケ学	÷ >"	2 2	
カム機構			1	A機構の構造と働きを学び					2	
機構の静力	学解析			5回転リンク機構を題材に 同転リンク機構を題材に					4	
特殊な機構		と応用例		ン円板、ハーモニックドラ <i>。</i>					2	
理解度確認		- /	臓	ポンプなど医療福祉機器へ 習と理解度の確認を行い、	の応用例を学ぶ			, 31722	2	
生开火唯恥			1 1	日と注が文が確認と目い	一个元分に フィーで図目:	<i>7 '</i> S			計 30	
学業成績の 法	評価方	授業中の演習の比率は3:	小課 7と	題および理解確認テスト(する。ただし、正当な事由	定期試験と演習まと& による欠席について	か課題) は、補	により 講を行 ^き	評価を行 う。		
関連科目										
教科書・副	読本	教科書: 「基礎	楚か に	ら学ぶ機構学」鈴木健司、	` /					
				評価 (ルーブリ	ック)					
		到達レベルの目安 (優	-+	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目野	` ′		レベルの目安	` ′	
の 複 ア	数式を用いて複雑な機構 数式を用いて複雑な機構 節や対偶、連鎖を理解し、節や対偶、連鎖を理 の限定連鎖条件を判別し、 複雑な機構の変位角度の 入出力関係式を求めるこ とができる							已連鎖条		
に を	こおける を求める	ら機構の全ての 速度、加速度、 ことができる	. 力	動作する機構のうち限定 された点の速度、加速度、 力を求めることができる	動作する簡単な機構 いて、速度、加速度、 求めるための基本的 法を説明できる	力を な手	いて、返 求める7 法を理	る簡単な概 速度、加速 ための基プ 解できない	度、力を 体的な手	
た。 と を り と を り と を り と と を り と り と り と り と	音力機構や直線近似機構 信力機構や直線近似機構 平行リンクなどの簡単な との各種機構や確動力 などの各種機構や確動力 ム、楕円機構などの特徴 ム、楕円機構などについ て特徴を説明することが ことができる ことができる							察車など		

			令机 4 年度 医療福祉工字	<u> </u>						
科目名			担当教員		学年	単位	開講時数	種別		
制御工学 (Control	ź II l Engineer	ring II)	柴田芳幸 (常勤)		5	1	前期 2 時間	必修		
授業の概	要		っ代表的なフィードバック制御 ついて習得する.	系の応答について学習	習し,理	解を深	める。シ	ステムの		
授業の形	態	講義								
授業の進	態め方	講義と演習 予習,復習を行	- 行い自学自習の習慣を身につけ	· 3.						
到達目標	710	1. フィードバ 2. システムの	ック制御系の仕組みや特性を理 安定判別を行うことができる.	里解できる.						
実務経験 容との関	を授業内 関連	なし								
学校教育 関係	言標との こうしゅうしん		基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な 礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。							
			講義の内容	7						
項目			目標					時間		
1. シフ	ステムの応	応答 極と零点 フィードバックシステムの応答・過渡応答 フィードバックシステムの応答・定常特性								
2. 周海	技数応答		周波数応答法 複素平面での解析 ベクトル軌跡・ボード線図	L ZINIAE				8		
3. 安定	定判別		安定判別の概念 ラウス・フルビッツの安定判 ナイキストの安定判別	別				6		
4. フィ 設計	ィードバッ	クシステムの	フィードバックシステムの設 PID 制御	計の概念				6		
5. まと	<u>-</u> め		まとめ					2 計 30		
学業成績 法	りでいる。	試験および課題	夏等の成績から総合的に評価す	·る。						
関連科目	1	制御工学 I								
教科書・	·副読本	教科書: 「制御	『工学』下西二郎・奥平鎮正 (:	コロナ社), その他: 制	御工学	性Iで購	入したもの	のを使用		
			<u>評価 (ルーブリ</u>	ック)						
到達目標	理想的な	到達レベルの目安 (優	() 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目録	岁(可)	未到達	レベルの目安	(不可)		
1	フィーを構築し動をシ	ドバックシステ し、システムの ミュレーション ができる。	ム エクセルや Matlab を用い 挙 て周波数解析ができる。	過渡応答についてク を用いて説明できる	ブラフ :		床が理解で			
2								ぎまない。		

		= 1 >> = = 3			_		
科目名		担当教員		学年	単位	開講時数	種別
人間工学 I (Ergonomics I)		古屋友和 (常勤/実務)		5	1	前期 2 時間	必修
授業の概要	計が重要である]と機械やシステムとの調和を よく発揮するためにはユーザ 。この授業では人間の情報処 : ューマン・マシン・インタフ	理、身体情報、環境対	†応を負	きび、ユ	ーザビリー	安全、安 スの設 ティ、安
授業の形態	講義						
授業の進め方	予習、復習を行	併せて独自のプリント等を使 い自学自習の習慣を身につけ	る。				
到達目標	1. 人間工学のJ 2. ヒューマン	原理を踏まえて人間の種々の特 マシン・インタフェースに関	f性を理解し、設計に する分析・設計手法を	活用す 理解し	ることな	ができる。 することが	できる。
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学 aに関する知識をもち、工学的					りな技術
		講義の内容	?				
項目		目標					時間
人間工学概論		人間工学の定義、社会での人				解する	2
感覚・知覚	====================================	視覚、聴覚、触覚、その他の				7 1- 10	2
人間の情報処埋 (憶)	認知・注意・記	人間の認知、注意、記憶につ	いての情報処埋の特性	まについ	って埋鵤	する	2
人の形態と運動機	能	人間の筋骨格系、作業姿勢、 解する	人体寸法計測、人に関	係する	寸法に	ついて理	2
生理機能と疲労		人間のストレス反応、自律神経		疲労に	こついて	理解する	2
環境		人に影響を与える環境要因に		,			2
入出力機器 人間工学設計プロ	1 la 7	人間-機械系における表示器、			ムマナ、班	細ナッ	2
	/・インタフェー	目標設定、ユーザ要求、設計構想、評価までの設計プロセスを理解する 人を中心としたディスプレイ、操作部などのハードウェアの設計手法について理解する					2 2
	/・インタフェー	人を中心としたグラフィックて理解する	・ユーザ・インタフェ	ースの	設計手	法につい	2
サービス設計		サービスの設計プロセス、評	価について理解する				2
バリアフリーとユ イン	ニバーサルデザ	バリアフリー・ユニバーサル	デザインの定義、設計	手法に	ついて	理解する	2
ヒューマンエラー		ヒューマンエラーの定義、エ			って理解	する	2
人間工学手法とデ	"ータ処理	最新の人間工学手法とデータ		军する			2
まとめ		人間工学設計についての理解	及を唯認する				2 計 30
	定期試験の結り	艮(60%) と、取組状況、課題	レポートの結果 (40 %	() を併	せて評価	 而する。	HI 90
学業成績の評価方 法	/ C / ya He way C - 2 MH /			-) = DI	- \ µ11	, y o	
関連科目	人間工学 II・生	E活支援工学 II・福祉機器設計	· I・福祉機器設計 II				
教科書・副読本	教科書: 「デザ 美術大学出版)	イン人間工学の基本」山岡 俊	樹、岡田 昭、田中兼	一、森	亮太、	吉武 良治	(武蔵野
		評価 (ルーブリ	ック)				
到達目標 理想的な	:到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)
1 人間の に設計 できる。	基本的特性を完 に活用すること	全 人間の基本的特性をある 程度設計に活用すること ができる。	人間の基本的特性を けすれば設計に活用 ことができる。		人間の選理解し	基本的特性 ていない。	生を全く
2 ヒュー タフェ 手法を	マン・マシン・イ	ン ヒューマン・マシン・イン計 タフェースの分析・設計	ヒューマン・マシン・ タフェースの分析・ 手法を手助けすれば することができる。	設計	タフェー	マン・マシ - スの分析 く 理解して	・設計手

科目名				担当教員		学年	単位	開講時数	種別
メカトロ	ニークス		柴田		•	5	1	前期	必修
(Mechat			^\	чи т (ти <i>≅</i> и)			1	2時間	
授業の概	状 要	義について考察	察し、	Þ,工作機械にいたる多く レギー化などを実現するの その基礎となる機械量の トロニクスに関連する最新	センシング、信号処理	動化、/ している 里,アク	小型軽量 メカト パチュエ	量化、信頼 ロニクス ータ技術	性向上、 技術の意 について
授業の形	態	講義							
授業の進	態め方	テストおよび記	課題讠	既念および各種技術につい レポートを適宜行う。 自学自習の習慣を身につけ		う。まか	た、理解	を深める	ため、小
到達目標	<u> </u>	1. メカトロニ 2. メカトロニ 3. 与えられた	クス クス 機能	の概念および特徴を理解で を構成する各種要素を理解 を実現するメカトロニクク	ごきる 異し、特徴を述べるこ ス機器を提示すること	とがで ができ	きるる		
実務経験 容との関	と授業内]連	なし							
学校教育 関係	目標との			実践的技術者として、数学 関する知識をもち、工学的					的な技術
				講義の内容	<u> </u>				
項目			目標						時間
1. ガイタ				イダンス					2
		の種類と特長		カモーター、油圧、空圧、					4
3. センサの種類と特長				変位、速度、加速度、圧		ンサに、	ついて学	学習する	4
4.AD/D		F. 17	1	/DA 変換について学習す					2
5. メカトロニクス機器のシステム・構成				つ中の代表的な電気機械機					4
有				研究や産業界で、どのようなフィードバックシステムが開発され実際に存在しているか学習する ロボットアームのモーションコントロールについて概要を学習する					
l .	ノトモデリ	ング	1			て概要な	を学習す	-る	4
8. システ	rム設計		ホー 	- ルねじによる台座送り機	構の設計を行う				6 計 30
学業成績 法	の評価方	試験および課題	題等は	により総合的に評価する。					
関連科目		制御工学 I·制	刮御工	二学 II					
教科書・	副読本	その他: 資料酢	配布う	予定					
				評価 (ルーブリ	ック)				
到達目標	理想的な	 到達レベルの目安 (優	憂)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	岁 (可)	未到達	レベルの目安	(不可)
1	概念に加 が用いら の利用係	コニクスの特徴 IIえ、これらの機 られる必要性、実 引を理解し、適切 ることができる	幾器 : ミ際 :	メカトロニクスに属する 各要素や電子機器を判別 することができる	メカトロニクスの基 概念と、利用するこ もたらされる効果を できる	とで	メカトロ	ロニクスの果、特徴を	の概念と
2	的確に当 その長所 な用途	や回路、モータ 別別するととも f、短所、どのよ で用いればよい こ説明できる	。に 1 こう ・	センサや回路、モータの特 徴、利用用途、利用方法に ついて説明できる	センサや回路、モー どのメカトロニクス 成する各種要素を半 ることができる	を構	どのメ	や回路、カトロニタ各種要素を	クスを構
3	るする選定	れた課題を達成 で必要な機能を で必要な でのよう で課題を で説明で で説明で で説明で	有器用で	想定された課題を達成す るために必要な機能を有 るために必要な機能を有 るメカトロニクス機器 を選定し、かつそれらの 特徴と選定理由を説明で きる	想定された課題を追るためにロニクス機器 いて提案することか る	れる につ	るためしメカト	れた課題 ^注 に適切と見 に適切と見 ロニクス材 ことができ	思われる 機器を選

科目名		į	担当教員		学年	単位	開講時数	種別
生体物性工学 (Bio-physical Pr neering)	operties Engi-	降矢典雄 (非常勤)			5	1	後期 2 時間	必修
授業の概要	ある。こうした	生体の物理的特性に ことから、生体物性の の電気特性をを解説	の知識は	学分野であり、生体を 欠くことのできない基	注評価す	る上で	必要となるあると言え	る教科でえる。本
授業の形態	講義							
授業の進め方	電気系,機械系 予習,復習を行	の基礎知識を復習し い自学自習の習慣を	ながら, 身につけ	生体に特有な性質をする。	理解で	きるよう	うに講義を	進める。
到達目標	1. 生体の物理	り特性を理解して、生	体を工	学的見地から捉えるこ	とがで	きる。		
実務経験と授業内 容との関連	なし							
学校教育目標との 関係	D (基礎力) 総 と基礎的な理論	合的実践的技術者とし aに関する知識をもち	て、数学 、工学的	学・自然科学・自らの J諸問題にそれらを応り	専門と 用する[する分 能力を育	野の基本的 育成する。	りな技術
		講	義の内容	3				
項目		目標						時間
生体物性の概要				特異性について知るこ	ことがつ	できる。		4
生体の能動的電気	NIN III	活動電位の発生機序に 心臓ペースメーカのD	ン輸送に について 原理を理	ついて知ることができ 理解できる。 解できる。				10
電撃に対する安全生体の受動的電気		電撃に対する安全基準を知り、安全について理解を深めることができる。 物質の電気特性に関して、電磁気学見地からの捉え方と電気回路的見地から理解できる。 細胞構造を知り、細胞・構造レベルの電気的周波数特性について理解でき					2 10	
細胞構造を知り、細胞・構造レベルの電気的周波数特性について理解できる。 高周波特性(波動としての電気)について理解できる。 高周波電流の生体に及ぼす影響について理解できる。 交流障害について理解できる。					4 計 30			
学業成績の評価方 法	中間試験及び期 績と授業への即]末試験の平均を評価。 ス組み姿勢を勘案して	基準点と 、総合評	する。更に必要に応し 酒とする。	じて、割	果題レポ	ートを課	
関連科目								
教科書・副読本	教科書: 「生体	物性/医用機械工学」	池田	肝二 他 (学研メディ	カル秀	閏社)		
		評価(ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優	標準的な到達レベルの[目安 (良)	ぎりぎりの到達レベルの目録	분 (可)	未到達	レベルの目安	(不可)
1 工学的 用がで	考え方を理解し、 きる。	応 工学的考え方を理 業内容を理解でき		授業内容の理解が不 であるが、内容によ は理解している。	十分って	授業内容に欠ける	容を理解せ る。	ず、意欲

			77/11/44		コース シラバス		22.71			
科目名				担当教員		学年	単位	開講時数	種別	
生体信号 (Bio-sign	号処理 nal Proces	sing)	星善光 (常勤)		5	1	後期 2 時間	必修	
授業の概	要	生体信号処理の 解析手法の基礎	D基礎を学ぶ。 陸を学ぶ。	この講義では、	生体信号の特徴を学	び、さら	らに生体	信号処理は	こ役立つ	
授業の形	態	講義								
授業の進	め方	講義を中心に行 予習、復習を行	テい、必要に テい自学自習の	応じて生体信号処 の習慣を身につけ	Ŀ理の演習を行う。 ↑る。					
到達目標	<u> </u>	1. 生体信号の 2. 生体信号処 3. 生体信号の	理に有効な基	きる。 本的な信号処理 処理手法を選択	手法を理解できる。 できる。					
実務経験 容との関	と授業内 連	なし								
学校教育 関係	目標との				学・自然科学・自ら J諸問題にそれらを元				内な技術	
				講義の内容	\$					
項目			目標						時間	
システム	ムとモデル		生体システムび、理解する		の基礎として、シス	テムとモ	ミデルの	概念を学	4	
			生体を解析す理解する。	るために必要な	、生体をシステムとし	して捉え	る考えフ	方を学び、	4	
生体のシ	ノステム解	析	生体の様々な	生体の様々な機能を解析する手法を学ぶ。						
	ブレット変	-	時間周波数解析に関連して、ウェーブレット変換の基礎を理解する。 ディジタルフィルタによる信号処理手法の基礎を学ぶ。 適応フィルタの基礎を学ぶ。						4	
	フルフィル	タの基礎							6	
適応フィ									4	
生体信号	号の処理手	法	筋電図や RR	間隔等、具体的	な例を用いて生体信号	号処理の	特徴を理	里解する。	4	
									計 30	
学業成績 法	の評価方	小テスト(20 えて総合的に	%)、期末試験 評価する。	倹 (25%)、課題	(55%) として基礎	点を算し	出し、授	業態度な	どを踏ま	
関連科目										
教科書・	副読本	村泰伸共著 (二	コロナ社),参	プロジーシリーズ 考書: 「ビギナー プリントを配布で	21 生体システムエー - ズ デジタルフィル ける。	学の基礎 ·タ」中	整」福岡 村尚五(豊,内山 東京電機	孝憲,野大学出版	
				評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	標準的な到	達レベルの目安 (良)	ぎりぎりの到達レベルの目	目安 (可)	未到達	レベルの目安	(不可)	
1		号の特徴を理解し 応用できる。	し、生体信号 きる。	の特徴を理解で	生体信号の種類がオ	つかる。	生体信 ない。	号の種類だ	がわから	
2	本的な信	号処理に有効な 言号処理手法を ∑用できる。		処理に有効な基 号処理手法を理 。	基本的な信号処理 理解できる	手法を	基本的 理解で		信号処理手法が ない。	
3		号の特徴に適し 法を選択でき、 ら。		の特徴に適した を選択できる。	生体信号の特徴に 処理手法をいくつ できる			号の特徴に去を選択で		

		令和4年度 医療福祉工学	<u> </u>					
科目名		担当教員		学年	単位	開講時数	種別	
生体計測工学 I (Bio-medical Mea	surement I)	福田恵子 (常勤/実務)		5	1	前期 2 時間	必修	
授業の概要	本講義では生体	本機能や生体情報を計測するた	めに必要な方法や原理	埋等に、	ついて管	学修する。		
授業の形態	講義							
授業の進め方	講義を中心とし 予習、復習を行	て、理解を深めるために演習 行い自学自習の習慣を身につけ	『を取り入れる。 ↑る。					
到達目標	1. 工業計測と 2. 生体電気信	生体計測の違いを理解できる 号の特徴と検出方法についてE	里解できる					
実務経験と授業内 容との関連	なし							
学校教育目標との 関係		合的実践的技術者として、数4 倫に関する知識をもち、工学的					的な技術	
		講義の内容	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
項目		目標					時間	
ガイダンス		授業の目的と内容を説明する	0				2	
生体計測とは		生体計測と計測法の比較の概	要を理解できる。				2	
電子計測 電子計測の基となる電圧・周波数及び回路素子定数の基本事項ついて理解 できる。 生体電気信号の取得 微弱な生体電気信号の取得に用いられる回路(計装アンプ、検波回路、フィ				4				
ルタなど)に関して理解できる。			る。				4	
生体電気信号の取	:得	生体電気信号に関するその他			里解でき	きる。	$\frac{2}{2}$	
雑音と信号		雑音の影響と信号の評価方法について理解できる。						
生体電気信号の取		アナログ・デジタル変換について理解できる						
生体電気信号の特	•	=	生原理について理解できる。 操体的な計測法(心電図、筋電図、脳波など)ついて理解					
生体電気信号の計	測法	できる。		脳波な	(と) つ	いて埋解	6	
安全性		生体の電気的安全性について	埋解できる。				2	
まとめ		学習内容のまとめを行う。					2 計 30	
学業成績の評価方	完期試験の得り	 点と、課題などの授業への取組	 投湿から総合的に注気	さす ス	完期報	作 路占数 :		
法	小テスト・授美験を実施する場	敞への取組状況の比率は7:3	とする。その他、必要	要に応し	ごて課題	人の一人の一人の一人の一人の一人の一人の一人の一人の一人の一人の一人の一人の一人	ト、追試	
関連科目	生体計測工学	II・医用画像工学・生体物性ニ	匚学・生体信号処理					
教科書・副読本	「ヒト心身状態	派教科書シリーズ8 計測工: の計測技術 - 人に優しい製品[・電子計測工学 (改訂版)- ậ	開発のための日常計測	-」牧川	「方昭は	か (コロラ		
		評価 (ルーブリ	ック)					
到達目標 理想的な	:到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	岁(可)	未到達	レベルの目安	(不可)	
いを理り	解し、計測の際 ついて自ら考え		いを説明することが			測と生体i 明できない		
出方法ル B上の ₅ 測の際の	具体的な違いや	検 生体電気信号の特徴と検 田 出方法について理解し、特 徴や注意点の概要を説明 する事ができる。	出方法について説明	する	出方法	気信号の物 について、 できない。		

科目名				544年度 医療福祉工学 担当教員		学年	単位	開講時数	種別	
生活支援	ng Science	ce and Assis-	星善	光 (常勤)		5	1	前期 2時間	必修	
授業の概	要	進める。生活え	支援工	☆・障害者の支援技術につ □学の概念、障害の概念に 章害者・健常者の認知機能	ついて学ぶ。工学技術	うを用い	ことを いた支援	目的とし、 機器設計の	て授業を のために	
授業の形	態	講義								
授業の進	め方	基本的には座生 予習,復習を行	学を中 行い自	□心として授業を行う。必 目学自習の習慣を身につけ	要に応じて課題や演る。	習を行り	う。			
到達目標		2 人間の基本	的な計	既念について理解できる。 認知特性を理解できる。 身体状態の基本的な変化を 寺性に基づいて支援機器を		0				
実務経験の関	と授業内 連	なし								
学校教育 関係	目標との			実践的技術者として、数学 関する知識をもち、工学的	諸問題にそれらを応				的な技術	
				講義の内容	\$					
項目			目標						時間	
	活支援工学の概念			支援工学の概念について					4	
人間の視覚システム				者、障害者、健常者の視					6	
	人間の聴覚システム			者、障害者、健常者の聴					6 6	
記憶と意	記憶と意思決定			人間の記憶システムと意思決定について学ぶ。高齢者、障害者の記憶システムと意思決定の特徴について学ぶ。						
 脳と行動			人間の動機づけ、情動、言語、注意等の機能について学ぶ。							
まとめ				全体のまとめ、及び期末			. 0		$\frac{6}{2}$	
									計 30	
学業成績(法	の評価方	小テスト(20 えて総合的に		期末試験(25 %)、課題 する。	(55%) として基礎点	を算出	占し、授	業態度な	どを踏ま	
関連科目										
教科書・	副読本	その他: 必要に	こ応じ	てプリントを配布する。						
				評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	憂)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目録	국 (可)	未到達	レベルの目安	(不可)	
1		爰工学の概念に 理解できる。		生活支援工学の概念につ いて理解できる。	生活支援工学の概念 いてある程度は理解 る。	につき	生活支持	援工学の様 解できな↓	既念につ ['] 。	
2	人間の基 を理解で 応用でき	基本的な認知特でき、研究など でき、研究など さる。		人間の基本的な認知特性 を理解できる。	人間の基本的な認知 を一部理解できる。		人間の記を理解	基本的な詞 できない。	忍知特性	
3	の基本的 き、研究 る。	動に伴う身体状態 物な変化を理解で 内な変化を理解で おなどに応用でき さる。 精神活動に伴う身体状態 の基本的な変化を理解で の基本的な変化の一部を 理解できる 理解できる ではなどに応用でき				的な変化な				
4	づいてラ	をや心理特性に を接機器をよく ができる。	考 ~	恩知機能や心理特性に基 づいて支援機器を考える ことができる。	認知機能や心理特性 づいて支援機器をあ 度は考えることがで	る程	づいて	能や心理特 支援機器できない。		

科目名			1	守和 4 年及 医療価値工字 セン教員		学年	出仕	日日 = 井 ロナ 半4	種別
			目目一	担当教員			単位 1	開講時数	
`	tion Engi			『健治 (非常勤/実務)		5	1	後期 2 時間	選択
授業の概	既要	私たちの身の匠 て作るかを基準	回りに 本コ:	こあるものの中から、特に、 ンセプトに、金属学的基礎	金属によって作られると力学的基礎を織りる	ている とぜ、そ	ものを取 とれぞれ	ひ上げ、 の加工法	どうやっ を学ぶ。
授業の刑	沙態	講義							
授業の進	進め方	れる。		等の視覚教材を用い講義を 自学自習の習慣を身につけ		こめ演習	ヨ・ミニ	試験を適分	直取り入
到達目標	元	1. もの作りに。 2. 種々のもの	必要 作り	な基礎知識を習得し、ものの仕組みが理解できる。)作りに関する専門語	が理解	できる。		
実務経験 容との関	後と授業内 関連	なし							
学校教育 関係	育目標との			実践的技術者として、数学 関する知識をもち、工学的					的な技術
				講義の内容					
項目			目標	票					時間
	加工とは			産加工の概要					2
	の基礎知識	•		属材料の JIS 規格、熱処理		の理解			4
3. 塑性加工 (概論)				塑性加工のはたらきについて学ぶ					
	加工(鍛造			セ・鍛造方法・鍛造機械・圧 €方法などの理解	E延機・圧下率・先進	率・圧	延荷重・	トルク・	2
5. 塑性加工(曲げ・押出など) 歴史・曲げ方法・押出方法などの理解						2			
6. 鋳造 砂型鋳造・金型鋳造・ダイキャスト・ロストワックスの理解							2		
7. 身近な塑性加工製品 ボルト・釘・鋼球・アルミ箔・画鋲・ファスナー・注射針の製造法							2		
8. 切削				例の原理・旋盤・フライス					2
	加工・微組	田加工	1	各種研削加工方法・放電加工・レーザ加工・ビーム加工・化学加工の理解					2
10. 接合			1	各種接合法についての理解 各種めっき方法・焼結方法・種類などの理解					2
11. 皮膜		.13 =	1			-i''	ハダン、い	り白いこと	2
ス・ゴム	スチック ム・木製品		製品	ランラップ・ポリ袋・ゴム 品の製造法について学ぶ					2
	・福祉製品		バン 注身	/ソウコウ・丸薬・綿棒・ 付針など医療・福祉製品の	歯ブラシ・紙おむつ・ 製造法について学ぶ	・電子を	本温計・	たわし・	2
14. リサ	イクル・含	全体のまとめ							2
宗茶中	まり 割油ナ	新知中知 	業。(の積極性、ミニ試験によっ	マ並無オフ				計 30
学来成績 法	責の評価方	拟粗扒沉、按	未^^(ソ惧慳性、ミー武駛によう	・(計画りる。				
関連科目		材料力学 I・材	*						
教科書	・副読本			らわかる塑性加工」長田修う 川並高雄 ・久保勝司 ・小					
		,		評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	憂)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目	史 (可)	未到達	レベルの目安	(不可)
1	知識を勧	りに必要な発展 習得し、もの作 る専門語を説明	Fり st	もの作りに必要な応用的 知識を習得し、もの作り に関する専門語を説明で きる。	もの作りに必要な基 識を習得し、もの作 関する専門語を理解 いる。	りにして	識を習徇	りに必要な 得し、もの 専門語を理	り作りに
2		発展的もの作り と理解している。		種々の応用的もの作りの 仕組みを理解している。	種々のもの作りの仕 を理解している。	組み	種々のを理解し	もの作りの していない	の仕組み

NDA		〒44年及 医療価値工子コース シブバス	24 F-	774 /T	PP	14 mil				
科目名		担当教員	学年	単位	開講時数	種別				
福祉機器設計 I (Welfare Instrume ing I)	ents Engineer-	古屋友和 (常勤/実務)	5	1	前期2時間	選択				
授業の概要	する品質工学、 的な知識が必須	成を製品化するには、機械設計に関する知識に加え、 製造コストあたりの機能・性能を最大限にするバリ質である。本講義では、製品設計に必要な知識を学習の作成、システム・部品設計することでこれまで学修 と身に着ける。	「ューエ 別、与	ンジニ えられ	アリング た要件の「	など包括 中で実際				
授業の形態	演習									
授業の進め方	ム・部品設計で	プリント等を使用して進め、演習は与えられた要件 ዸ行うことで実践的な設計手法の習得を目指す。 テい自学自習の習慣を身につける。	での設	計構想	書の作成、	システ				
到達目標	1. 製品設計に 2. 与えられた 3. 与えられた	必要な製品安全、品質工学、バリューエンジニアリ 要件の中で性能・コストを踏まえ設計構想すること 要件の中でシステム・部品まで設計することができ	ングの? ができ る	知識を済る	舌用できる					
実務経験と授業内 容との関連	なし									
学校教育目標との E (応用力・実践力) 総合的実践的技術者として、専門知識を応用し問題を解決する能力を育成する。 関係										
講義の内容										
項目		目標				時間				
福祉工学概論		社会での福祉工学の役割と福祉機器の設計上重要な	な特徴を	理解す	-る	2				
製品安全設計		製品安全設計の基本について理解する				2				
品質工学		製品ばらつきや経時劣化など考慮して安定的な品質を確保する設計手法を 理解する								
バリューエンジニ	アリング	製造コストあたりの機能・性能を最大限にするバリューエンジニアリング を理解する								
ユーザ要求事項の	検討	提示された課題に対するユーザ要求事項を検討・整理し、その手法を身に つける								
既存部品の調査 (ベグ)	ベンチマーキン	いくつかの既存部品を調査し、その優劣の評価と課題抽出を行い、ベンチマーキングの手法を身につける								
品質機能の展開 (0	QFD)	要求事項から設計品質の関係を明確にする品質機能 手法を身につける	展開表	を作成	し、その	2				
設計構想書の作成		製品コンセプト、要求事項、品質目標等を踏まえ、 製品開発するための構想力を身につける	設計構	構想書を	作成し、	4				
システム・部品設	計	福祉機器のシステム・部品設計を行い、組立図・部より、システム・部品設計の基礎を身につける	品図を	作図す	ることに	6				
製品の提案(プレセ	ジンテーション)	製品の訴求点を短い時間で分かり易くプレゼンテーションを行い、技術プレゼンテーション能力の基礎を身に着ける								
学業は建り製作士	細野担山及が	画業の筋組件温によって証価より、とおし化白細 筋	お担山	山並み	い担合は	計30				
学業成績の評価方 法	課題提出及び する。	受業の取組状況によって評価する。ただし指定課題	で掟出	山米な	い場合は	下官恰と				
関連科目	機械設計製図	・機械設計製図 II・機械設計製図 III・人間工学 I・ Ľ学関連科目全般	福祉榜	機器設計	- II					
教科書・副読本	械製図(検定教	裁設計 I(検定教科書)」 (実教出版)・「機械設計 II(枚科書)」 (実教出版)・「図解 Inventor 実習(第三版 レジニアリング・デザインの教科書」別府俊幸 (平凡)」船倉							

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	製品設計に必要な製品安全、品質工学、バリューエンジニアリングの知識を一人で完全に活用できる	製品設計に必要な製品安全、品質工学、バリューエンジニアリングの知識を一人である程度活用できる	製品設計に必要な製品安全、品質工学、バリューエンジニアリングの知識を手助けあれば活用できる	製品設計に必要な製品安全、品質工学、バリューエンジニアリングの知識を全く活用できない						
2	与えられた要件の中で性 能・コストを踏まえ一人 で完全に設計構想するこ とができる	与えられた要件の中で性 能・コストを踏まえ一人 である程度設計構想する ことができる	与えられた要件の中で性 能・コストを踏まえ手助 けあれば設計構想するこ とができる	与えられた要件の中で性 能・コストを踏まえ設計 構想することが全くでき ない						
3	与えられた要件の中でシ ステム・部品まで一人で 完全に設計することがで きる	与えられた要件の中でシステム・部品まで一人で ある程度設計することが できる	与えられた要件の中でシステム・部品まで手助け あれば設計することがで きる	与えられた要件の中でシ ステム・部品まで設計す ることが全くできない						

福祉機器設計 II (Welfare Instruments Engineering II) 古屋友和 (常動/実務) 5 1 後見 2時 1 1 2時 2 1 1 2時 2 1 1 2 2 2 2 2 3 2 3 2 3 3 2 3 3 3 3 3	理解し、品の別別の おいま								
質・コストを踏まえて解決方策を検討する必要な知識を学習し、実際に新しい福祉機器の構想書の作成、製品設計構想するのに必要な知識を学習し、実際に新しい福祉機器の構想書の作成、製品設計を行うことで創造的かつ実践的な力を身に着ける。 演習 と考え、製品設計構想、製品設計を行うことで実践的な開発設計手法の習得を目指す。 予習、復習を行りに対しまりに対しまりに対しまりに対しまりに対しまりに対しまりに対しまりに対しま	動向・カス創出、設計								
授業の進め方									
を考え、製品設計構想、製品設計を行うことで実践的な開発設計手法の習得を目指す。 予習、復習を行い自学自習の習慣を身につける。 1. ターゲットカスタマーのライフスタイルからニーズを引き出す手法を実践できる 2. 福祉機器製品について短い時間で分かり易くプレゼンテーションすることができる 3. 提案製品について短い時間で分かり易くプレゼンテーションすることができる 実務経験と授業内容との関連 学校教育目標との関連 学校教育目標との関連 目標 ガイダンス 市場と技術動向製品のニーズ調査・解決方策の検討 製品のニーズ調査・解決方策の検討 要求事項の検討 設計構想書の作成 要求事項の検討 設計構想書の作成 製品の作成 を考え、製品設計構想書を行い自学自習の習慣を身につける を考え、製品設計構想書に基づき、実際に福祉機器製品全体から部品まで設計を行い									
3. 提案製品について短い時間で分かり易くプレゼンテーションすることができる 実務経験と授業内	を育成する。								
マとの関連 学校教育目標との E (応用力・実践力) 総合的実践的技術者として、専門知識を応用し問題を解決する能力 関係 講義の内容 目標 ガイダンス	を育成する。								
関係 講義の内容 項目 目標 ガイダンス 市場と技術動向 製品のニーズ調査・解決方策の 検討	ど育成する。								
項目									
ガイダンス 市場と技術動向 製品のニーズ調査・解決方策の検討 を対する を対する を対する と表動向、福祉機器の市場動向、最新技術動向を理解する を対する を対する を対する を対する を対する がループワークにより課題の共感、解決方策を検討し、問題解決能力の を対する がループワークにより課題の共感、解決方策を検討し、問題解決能力の を対する がループワークにより課題の共感、解決方策を検討し、問題解決能力の を対する を対する を対する を対する を対する を対する を対する を対する	時間								
市場と技術動向 製品のニーズ調査・解決方策の 検討 ターゲットカスタマーのライフスタイルからニーズを引き出すことを い、その手法を理解する グループワークにより課題の共感、解決方策を検討し、問題解決能力の 礎を身につける 特許の概要、権利化について学ぶ 割出した解決方策の要求事項を検討・整理し、その手法を理解する 副出した解決方策の品質目標を検討し、その手法を理解する 割出した解決方策の品質目標を検討し、その手法を理解する 製品コンセプト、要求事項、品質目標等を踏まえ、製品設計構想書を作 し、製品開発するための構想力を身につける 製品設計	2								
検討 い、その手法を理解する グループワークにより課題の共感、解決方策を検討し、問題解決能力の 礎を身につける 特許の概要、権利化について学ぶ 要求事項の検討 創出した解決方策の要求事項を検討・整理し、その手法を理解する 創出した解決方策の品質目標を検討し、その手法を理解する 設計構想書の作成 製品コンセプト、要求事項、品質目標等を踏まえ、製品設計構想書を作 し、製品開発するための構想力を身につける 製品設計 設計構想書に基づき、実際に福祉機器製品全体から部品まで設計を行い	$\frac{1}{2}$								
グループワークにより課題の共感、解決方策を検討し、問題解決能力の 礎を身につける 特許の概要、権利化について学ぶ 野求事項の検討 品質目標の検討 設計構想書の作成 製品設計 対ループワークにより課題の共感、解決方策を検討し、問題解決能力の 機利化について学ぶ 創出した解決方策の要求事項を検討・整理し、その手法を理解する 創出した解決方策の品質目標を検討し、その手法を理解する 製品コンセプト、要求事項、品質目標等を踏まえ、製品設計構想書を作 し、製品開発するための構想力を身につける 設計構想書に基づき、実際に福祉機器製品全体から部品まで設計を行い	行 4								
要求事項の検討 創出した解決方策の要求事項を検討・整理し、その手法を理解する 品質目標の検討 創出した解決方策の品質目標を検討し、その手法を理解する 設計構想書の作成 製品コンセプト、要求事項、品質目標等を踏まえ、製品設計構想書を作 し、製品開発するための構想力を身につける 設計構想書に基づき、実際に福祉機器製品全体から部品まで設計を行い	基								
品質目標の検討 設計構想書の作成 製品コンセプト、要求事項、品質目標等を踏まえ、製品設計構想書を作 し、製品開発するための構想力を身につける 製品設計 設計構想書に基づき、実際に福祉機器製品全体から部品まで設計を行い	2								
製品コンセプト、要求事項、品質目標等を踏まえ、製品設計構想書を作 し、製品開発するための構想力を身につける 製品設計 設計構想書に基づき、実際に福祉機器製品全体から部品まで設計を行い	2								
し、製品開発するための構想力を身につける 製品設計 設計構想書に基づき、実際に福祉機器製品全体から部品まで設計を行り	2								
製品設計 設計構想書に基づき、実際に福祉機器製品全体から部品まで設計を行い	成 6								
提案製品の評価 (プレゼン)									
 学業成績の評価方 課題提出及び授業の取組状況によって評価する。但し指定課題が未提出の場合は不合意法	計 30 各とする。								
関連科目 機械設計製図 I・機械設計製図 II・機械設計製図 III・人間工学 I・福祉機器設計 I その他、機械工学関連科目全般									
教科書・副読本 参考書: 「機械設計 I(検定教科書)」 (実教出版)・「機械設計 II(検定教科書)」 (実教出版)・「図解 Inventor 実習(第三版)」船倉 一郎、堀北出版)・「UX デザインの教科書」安藤昌也 (丸善出版株式会社)									
評価 (ルーブリック)									
到達目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの	目安 (不可)								
1 ターゲットカスタマーの ターゲットカスタマーの ターゲットカスタマーの ライフスタイルからニー ライフスタイルからニー ライフスタイルからニー ライフスタイルからニー ライフスタイルからニー ライフスタイルからニー ブを引き出す手法を手助 ズを引き出す で完全に実践できる である程度実践できる けあれば実践できる 実践できない	ルからニー								
2 福祉機器製品について一 人で完全に設計構想書を 作成し、提案することが できる 福祉機器製品について一 人である程度設計構想書 助けあれば設計構想書を 作成し、提案することが ができる に対し、提案することが できる									
3 提案製品について一人で 完全に短い時間で分かり ある程度短い時間で分か あれば短い時間で分かり 間で分かり易 易くプレゼンテーション り易くプレゼンテーショ 易くプレゼンテーション することができる ンすることができる することができる	成し、提案┃								

程体付料 (Bio-materials) (Bio-materials) (現代の医療において医用・生体材料は欠かせないものであり、また、近年の医療の急激な過度化には医用材料の発展が大きく貢献している。医用材料は工業的に用いられる電子・機構は異なる特性を要求されることが多く、材料設計の思想も従来の材料とは大きく異なる。本は種々の生体材料の種類とその特性を学び、さらに毒性や生体適合性など、生体と材料とのじる相互作用について理解する。 要業の進め方 教科書、ブリント等を組み合わせて、講義形式で進める。予習、復習を行い自学自習の習慣の対する。予習、復習を行い自学自習の習慣を身につける。 到達目標 1. 種々の生体材料の種類と分類、それぞれの材料の特色を理解できている。 2. 生体材料と生体間に生じる相互作用について理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 4. 生体材料の関連 2 特性について理解できている。 5. 生体材料の定義と分類に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 5. 世体材料の定義と分類 生体材料の種類と特性について理解する。 4. 生体材料の定義と分類 生体材料の種類と特性について理解する。 4. 生体材料の種類と特性について理解する。 4. 生体用無機材料 生体用無機材料 生体内種類と特性について理解する。 4. 生体用に分子材料の種類と特性について理解する。 4. 生体用に合う子材料の種類と特性について理解する。 4. 生体用に合う子材料の種類と特性について理解する。 4. 生体用に会の相互作用 5. 医療機器や福祉機器に対する材料選択について理解する。 5. 世体材料・医療機器の実用化に必要なプロセスや考え方について理解する。 4. 生体材料・医療機器の実用化に必要なプロセスや考え方について理解する。 4. 生体材料・医療機器の実用化に必要なプロセスや考え方について理解する。 4. 生体材料・医療機器の実用化に必要なプロセスや考え方について理解する。 4. 生体材料・医療機器の実用化に必要なプロセスや考え方について理解する。 4. 生体材料・医療機器の実用化に必要なプロ・ロス・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・	は講義で の間に生
図代の医療において医用・生体材料は欠かせないものであり、また、近年の医療の急激な過度化には医用材料の発展が大きく貢献している。医用材料は工業的に用いられる電子・機構は異なる特性を要求されることが多く、材料設計の思想も従来の材料とは大きく異なる。本は種々の生体材料の種類とその特性を学び、さらに毒性や生体適合性など、生体と材料とのじる相互作用について理解する。 授業の形態 講義 投票の進め方 教科書、プリント等を組み合わせて、講義形式で進める。予習、復習を行い自学自習の習慣を身につける。 予習、復習を行い自学自習の習慣を身につける。 予習、復習を行い自学自習の習慣を身につける。 2. 生体材料の種類と分類、それぞれの材料の特色を理解できている。 2. 生体材料と単体間に生じる相互作用について理解できている。 2. 生体材料が実際にどのように用いられているかを理解できている。 実務経験と授業内容との関連 なし なし なし なし なし なし なし な	進歩、高 戒材料と 体講義で ひ間に生
は異なる特性を要求されることが多く、材料設計の思想も従来の材料とは大きく異なる。本は種々の生体材料の種類とその特性を学び、さらに毒性や生体適合性など、生体と材料とのどの相互作用について理解する。	は講義で の間に生
授業の進め方 教科書、プリント等を組み合わせて、講義形式で進める。予習、復習を行い自学自習の習慣で自己している。 予習、復習を行い自学自習の習慣を身につける。 到達目標 1. 種々の生体材料の種類と分類、それぞれの材料の特色を理解できている。 2. 生体材料と生体間に生じる相互作用について理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 ま発経験と授業内容との関連 学校教育目標との関連 学校教育目標との関連 の D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的関係 国目 目標 ガイダンス 生体材料の目的、内容と講義の進め方について理解する。 生体材料の定義と分類 生体材料の定義と分類について理解する。 生体材料の定義と分類 生体材料の種類と特性について理解する。 生体用無機材料 生体用の種類と特性について理解する。 生体用無機材料 生体用無機材料 (バイオセラミックス)の種類と特性について理解する。 生体用高分子材料	 貫を身に
つける。 予習、復習を行い自学自習の習慣を身につける。 到達目標 1. 種々の生体材料の種類と分類、それぞれの材料の特色を理解できている。 2. 生体材料と生体間に生じる相互作用について理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 実務経験と授業内容との関連 学校教育目標との関係 D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 講義の内容 項目 目標 ガイダンス 生体材料の定義と分類 生体材料の定義と分類 生体用金属材料 生体用金属材料 生体用無機材料 生体用高分子材料の種類と特性について理解する。 材料・生体の相互作用 材料と生体間に生じる相互作用とその原理について理解する。 医療機器・福祉機器 医療機器や福祉機器に対する材料選択について理解する。	貫を身に
2. 生体材料と生体間に生じる相互作用について理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 3. 生体材料が実際にどのように用いられているかを理解できている。 実務経験と授業内容との関連 学校教育目標との関連 D (基礎力)総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 講義の内容 項目 目標 ガイダンス 生体材料の目的、内容と講義の進め方について理解する。 生体材料の定義と分類 生体材料の定義と分類 生体用金属材料 生体用金属材料 生体用無機材料 生体用無機材料 生体用無機材料 生体用無機材料 生体用無機材料 生体用無機材料 生体用高分子材料 が料・生体の相互作用 医療機器・福祉機器 と療機器や福祉機器に対する材料選択について理解する。 医療機器や福祉機器に対する材料選択について理解する。	
学校教育目標との B (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的 と 基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 講義の内容	
関係 と基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 講義の内容 項目 目標 ガイダンス 生体材料の目的、内容と講義の進め方について理解する。 生体材料の定義と分類 生体材料の定義と分類について理解する。 生体用金属材料 生体用金属材料の種類と特性について理解する。 生体用無機材料 生体用無機材料 (バイオセラミックス)の種類と特性について理解する。 生体用高分子材料 生体用高分子材料の種類と特性について理解する。 大本用高分子材料の種類と特性について理解する。 を体用高分子材料の種類と特性について理解する。 大本用高分子材料の種類と特性について理解する。 を療機器・福祉機器 医療機器や福祉機器に対する材料選択について理解する。	
項目 目標 ガイダンス 生体材料の目的、内容と講義の進め方について理解する。 生体材料の定義と分類について理解する。 生体用金属材料 生体用金属材料の種類と特性について理解する。 生体用無機材料 生体用無機材料 (バイオセラミックス)の種類と特性について理解する。 生体用高分子材料 生体用高分子材料の種類と特性について理解する。 大科・生体の相互作用 材料と生体間に生じる相互作用とその原理について理解する。 医療機器・福祉機器 医療機器や福祉機器に対する材料選択について理解する。	りな技術
ガイダンス 生体材料の目的、内容と講義の進め方について理解する。 生体材料の定義と分類 生体用金属材料 生体用金属材料の種類と特性について理解する。 生体用無機材料 (バイオセラミックス)の種類と特性について理解する。 生体用高分子材料の種類と特性について理解する。 生体用高分子材料の種類と特性について理解する。 生体用高分子材料の種類と特性について理解する。 大格料・生体の相互作用 医療機器・福祉機器 医療機器・福祉機器	
生体材料の定義と分類 生体材料の定義と分類について理解する。 生体用金属材料 生体用金属材料の種類と特性について理解する。 生体用無機材料 生体用無機材料 (バイオセラミックス) の種類と特性について理解する。 生体用高分子材料 生体用高分子材料の種類と特性について理解する。 材料・生体の相互作用 材料と生体間に生じる相互作用とその原理について理解する。 医療機器・福祉機器 医療機器や福祉機器に対する材料選択について理解する。	時間
生体用金属材料 生体用金属材料の種類と特性について理解する。 生体用無機材料 生体用無機材料(バイオセラミックス)の種類と特性について理解する。 生体用高分子材料 生体用高分子材料の種類と特性について理解する。 材料・生体の相互作用 材料と生体間に生じる相互作用とその原理について理解する。 医療機器・福祉機器 医療機器や福祉機器に対する材料選択について理解する。	2
生体用無機材料生体用無機材料 (バイオセラミックス) の種類と特性について理解する。生体用高分子材料生体用高分子材料の種類と特性について理解する。材料・生体の相互作用材料と生体間に生じる相互作用とその原理について理解する。医療機器・福祉機器医療機器や福祉機器に対する材料選択について理解する。	4
生体用高分子材料 生体用高分子材料の種類と特性について理解する。 材料・生体の相互作用 材料と生体間に生じる相互作用とその原理について理解する。 医療機器・福祉機器 医療機器や福祉機器に対する材料選択について理解する。	6
材料・生体の相互作用 材料と生体間に生じる相互作用とその原理について理解する。 医療機器・福祉機器 医療機器や福祉機器に対する材料選択について理解する。	4
医療機器・福祉機器 医療機器や福祉機器に対する材料選択について理解する。	2
	4
【4.40 M 私 N 、 ● 1生 将 M 等 C () 主 田 4 C 4.40 M 私 N ・ 生 将 M 等 C () 主 田 4 C () 小 里 7 C () 1 + 2 (A 文 考 ? 日 C ~) 1) (TH H E 4 (A) 上	4
工件的科	2
まとめと試験 これまでのまとめと試験を行う	2
	計 30
学業成績の評価方 定期試験とその他(課題, 取組状況等)により評価する。ただし、評価の割合は8:2とす法 た、成績状況によって再試験を行うことがある。	する。ま
関連科目 材料学・医学概論	
教科書・副読本 教科書: 「新版 ヴィジュアルでわかるバイオマテリアル 改訂第3版」古薗 勉、岡田」 研メディカル秀潤社),参考書: 「バイオマテリアル・材料と生体の相互作用・」田中順三, 衛,立石哲也 (内田老鶴圃)	
評価 (ルーブリック)	
到達目標 理想的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (
1 種々の生体材料の種類と 種々の生体材料の種類と 種々の生体材料の種類と 分類、それぞれの材料の特 色を理解し、説明できる。 特色をおおむね理解でき ている。 世界できる。 世界できる。 でいる。 世界できる。 でいる。 世界できる。 でいる。 世界できる。 でいる。 世界できる。 は、それぞれの材料の 特色をおおむね理解でき 世解できる。 世界できる。 は、それぞれの材料の 特色をおおむね理解でき 世解できる。 は、それぞれの材料の 特色を理解できて と、と、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	(不可)
2 生体材料と生体間に生じ 生体材料と生体間に生じ 生体材料と生体間に生じ と体材料と生体間に生じ さ相互作用についておお さ相互作用についておお され理解できている。 書等を参考に理解できる。 できていない。)種類と
3 生体材料が実際にどのよ うに用いられているかを うに用いられているかを 理解し、説明できる。 生体材料が実際にどのよ おおむね理解できている。 教科書等を参考に理解で きる。 世体材料が実際にどのよ うに用いられているかを 教科書等を参考に理解できていない きる。) 種類と) 材料の いない。 間に生じ

科目名		担当教員	Į.	学年	単位	開講時数	種別
バイオメカニクン (Bio-mechanics)	ζ	柴田芳幸 (常勤)		5	1	前期 2時間	選択
授業の概要	バイオメカニク 機構などを工学 スの力学につい	'スとは、バイオ(生体)とメ 学的に考える学問である。本講 ゝて学習する。	カニクス(機械)から 義では、ヒトの歩行機	なる言 幾能を中	葉で、 <i>生</i> P心とし	生物の運動 たバイオ)	が、機能、 メカニク
授業の形態	講義						
授業の進め方	講義、演習、 予習、復習を行	受習 行い自学自習の習慣を身につけ	*る.				
到達目標	1. バイオメカ、 2. バイオメカ、	ニクスの力学に関する専門用語 ニクスの力学に関して、計測や	吾の意味、考え方を理 や推定の手法を理解で	解でき きる。	る。		
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的					的な技術
		講義の内容	2				
項目		目標					時間
ガイダンス		バイオメカニクス研究の歴史	、範囲について学習で	する			2
人体運動器の区分	台	ヒトの体の区分、位置、方向	などを表す用語を理解	解する			2
関節の静力学		ヒトの関節にかかる力とモー	メントの推定方法を	学習する	3		6
ヒトの関節の構成	戉	ヒトの骨、関節の構造について理解する					
ヒトの運動の推算	Ĕ	ヒトの歩行について、動力学	行について、動力学を用いて考察する				
筋		ヒトの筋の機能について理解	を深める				4
脳と神経		ヒトの運動制御に関わる脳神	経系について学習する	3			4
	_						計 30
学業成績の評価方法 法	課題とその内容	字(60%)、本講義への取り組	[み姿勢(40 %)によ	り総合	的に判	断する。	
関連科目	医療福祉工学等	実験実習 II					
教科書・副読本		のバイオメカニクスー運動メ ナ社), その他: プリント配布		アとソ	フトウ	ェアー」牧	川方昭、
		評価 (ルーブリ	ック)				
到達目標 理想的	な到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目録	岁(可)	未到達	レベルの目安	(不可)
域など 運動の に深い	運動、関節の可、基本的なヒト表現方法や考え 要解をもち、議 とができる。	方	用語の意味をなんと 覚えている。	なく	出てくる用語が何なのわからない。		
┃ ┃ ┃ や解析	運動について計 手法を理解し、 考察ができる。	測 講義でならった身体部位 力 の計測や解析が自身で行 える。	バイオメカニクスと 学問があり、力学的 価する手法があるこ 知っている。]に評	何の知語	識も興味も	ない。

	令和4年度 医療福祉工学コース シラバス	1							
	担当教員	学年	単位	開講時数	種別				
	露木章史 (非常勤/実務)	5	1	後期 2 時間	選択				
心、快適に、ま イスの設計が重	:た効率よく発揮するためにはユーザの人間特性に減 重要である。この授業では人間工学Ⅰで学んだことに	適合した	ヒュー	マンイン	ターフェ				
講義	構義								
習や必要に応し	主に独自のプリントを使用して製品や社会における人間工学の実践事例を学び、単元ごとに問習や必要に応じて課題を提示する。 予習、復習を行い自学自習の習慣を身につける。								
2. 人間特性の	2. 人間特性の種々の測定・評価を理解する								
なし									
	命に関する知識をもち、工学的諸問題にそれらを応				内な技術				
	講義の内容								
	目標				時間				
	人間工学の歴史的背景、定義、分野、現代社会にお ついて概説し、測定、分析手法を理解する。	らける人	間工学	の役割に	2				
と特性	生理的・心理的・身体的側面からの概説し、仕組みと特性を理解する。								
機能	人体寸法、動作範囲、運動機能とそれに基づく設計を理解する。								
	視力、視野、明るさ、視知覚、色に関する視覚特性を理解する。								
	聴覚特性、触覚特性、温熱環境等を理解する。								
反応	刺激強度と感覚の関係、反応時間の特性等を理解する。								
疲労・覚醒水準	疲労、身体的負担・精神的負担、覚醒水準、生体リズムの定義とそれらに よる影響や対処を理解する。								
	加齢による生理的・心理的・身体的変化や加齢への配慮を理解する。								
法と計測データ	生体計測データの取り扱い方、官能評価の設計、分析・評価を理解する。								
ラー	ヒューマンエラーの定義、発生する構造と対策、計測、分析・評価を理解する。								
	人間中心設計プロセス、ユニバーサルデザイン手法 ンターフェイスの設計原則を理解する。	去、ヒュ	ーマン	マシンイ	2				
スペリエンス	製品、システムやサービスを使うときのユーザーをの関係性を理解する。	体験や利	用文脈	、社会と	2				
践1	製品開発、生活環境での応用例から人間工学の効また新たな課題を設定し、対策を検討する。	果と必要	要性を理	理解する。	2				
践 2	労働環境、産業現場での応用例から人間工学の効 また新たな課題を設定し、対策を検討する。	果と必要	要性を理	1解する。	2				
	人間の基礎特性とその計測・評価、人間工学的設計に関する理解度の確認 する。				2				
					計 30				
定期試験の結果	₹ (60 %) と、取組状況、課題レポートの結果 (40 %)	6) を併 [、]	せて評価	西する。					
人間工学 I・生	活支援工学 II								
副読本: 「初学	芸者のための生体機能の測り方」加藤象二郎、大久保								
	心イス 講 主習予 1.2.3. な Dと と機 反皮 去 ラ ス 銭 銭 大人 教副 いイス 講 主習予 1.2.3. な Dと と機 反皮 去 ウ ス 銭 銭 大人 し 期間 間 科読 いころ (表) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本	「大田 大田 大田 大田 大田 大田 大田 大田	大川工学は人間と機械やシステムとの調和を考える学問である。製品やシ心、快適に、また効率よく発揮するためにはユーザの人間特性に適合したイスの設計が重要である。この授業では人間工学1で学んだことに加えてスへの応用を含めた社会への実装の視点も加えて講義する。 講義 主に独自のブリントを使用して製品や社会における人間工学の実践事例を予習、役割を行い自学自習の習慣を身につける。 1. 人間の種々の特性を踏まえて人間工学の役割を理解する 2. 人間特性の種々の測定・評価を理解する 3. 人間中心設計に関する基礎的なプロセス、分析、評価の設計ができるなし D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とと基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する指 講義の内容 目標 人間工学の歴史的背景、定義、分野、現代社会における人ついて概説し、測定、分析手法を理解する。 と特性 生理的・心理的・身体的側面からの概説し、仕組みと特性機能 人体寸法、動作範囲、運動機能とそれに基づく設計を理解・複力、視野、明るさ、視知覚、色に関する視覚特性を理解・聴覚特性、触覚特性、温熱環境等を理解する。 刺激強度と感覚の関係、反応時間の特性等を理解する。 類が食を検討する。 加齢による生理的・心理的・身体的変化や加齢への配慮を表と計測データ 生体計測データの取り扱い方、官能評価の設計、分析・評とよ計測データの取り扱い方、官能評価の設計、分析・評とよ計測データの取り扱い方、官能評価の設計、分析・評とは計算が表別を理解する。 製品、システムやサービスを使うときのユーザー体験や利の関係と理解する。 製品、システムやサービスを使うときのユーザー体験や利の関係と理解する。 製品、学ステムやサービスを使うときのユーザー体験や利の関係と生理解する。 製品、対ステムやサービスを使うときのユーザー体験や利の関係と生理解する。 対策を検討する。 人間中心設計での表別に関する。 人間の基礎特性とその計測・評価、人間工学の効果と必要また新たな課題を設定し、対策を検討する。 人間の基礎特性とその計測・評価、人間工学の効果と必要また新たな課題を設定し、対策を検討する。 人間の基礎特性とその計測・評価、人間工学の効果と必要また新たな課題を設定し、対策を検討する。 人間の基礎特性とその計測・評価、人間工学の効果と必要また新な課題を設定し、対策を検討する。 人間の基礎特性とその計測・評価、人間工学の効果と必要また新な課題を設定し、対策を検討する。 人間の基礎特性とその計測・評価、人間工学の効果と必要また新な課題を設定し、対策を検討する。 人間の基礎特性とその計測・評価、人間工学の効果と必要は対策を対象を検討する。 人間の基礎特性とその計測・評価、人間工学の効果と必要な対象を対象を対象を検討する。 人間の基礎特性の発展・対策を検討する。 人間の基礎特別を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を	露木章史 (非常動/実務) 人間工学は人間と機械やンステムとの調和を考える学問である。製品やシステム、快適に、また効率よ、発揮するためにはユーザの人間特性に適合したヒューイスの設計が重要である。この授業では人間工学 I で学んだことに加えて製品やスへの応用を含めた社会への実装の視点も加えて講義する。講義 主に独自のブリントを使用して製品や社会における人間工学の実践事例を学び、予習、複型を行い自学自習の習慣を身につける。 1. 人間の種々の特性を踏まえて人間工学の役割を理解する 2. 人間特性の種々の測定・評価を理解する 3. 人間中心設計に関する基礎的なプロセス、分析、評価の設計ができる なし D (基礎力)総合的実践的技術者として、数学・自然科学・自らの専門とする分を基礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を予講義の内容 目標 人間工学の歴史的背景、定義、分野、現代社会における人間工学ついて概説し、測定、分析手法を理解する。 提力、視野、明るさ、、規力策、色に関する視覚特性を理解する。 規力、視野、明るさ、、規力策、色に専づる機能・人体寸法、動作範囲、運動機能とそれに基づく設計を理解する。 規労・覚軽水準 生理的・心理的・身体的側面からの概説し、仕組みと特性を理解を対象が、実験では、対策をと発質の関係、反応時間の特性等を理解する。 規労、身体的負担・精神的負担、覚醒水準、生体リズムの定義とよる影響や対処を理解する。 対策を使うと意覚の上に対して対していまり、身体的変化や加齢への配慮を理解すまる。 出齢による生理的・心理的・身体的変化や加齢への配慮を理解する。 生生計測データの取り扱い方、官能評価の設計、分析・評価を建まと計測データの取り扱い方、官能評価の設計、分析・評して、カーエーマンンターフェイスの設計原則を登録と対策、計測、分析・評して、カーエーマンス・スペリエンス 製品、生活環境での応用例から、人間工学の効果と必要性を考また新たな課題を設定し、対策を検討する。人間の基礎特性とその計測・評価、人間工学の効果と必要性を考またがたな課題を設定し、対策を検討する。人間の基礎特性とその計測・評価、人間工学的設計に関する理解する。 定期試験の結果(60 %)と、取組状況、課題レポートの結果(40 %)を併せて評別を料書にエンジニアのための人間工学 改訂第5版」横溝克己、小松原明哲(日間読本: 「初学者のための生体機能の測り方」加藤象二郎、大久保堯夫(日本出)を持定に対していましまが表する。人間の基礎特性とその計測・評価、人間工学的設計に関する理解する。人間で表述を検討する。人間の基礎特性とその計測・評価、人間工学の数計に関する理解する。人間の基礎特性とその計測・評価、人間工学の数計に関する理解する。人間の基礎特性とその計測・評価、人間工学の効果と必要性を考またが表述を開始を対しまれば、課題とボートの結果(40 %)を併せて評別を利力に対し、課題と述していまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述と対しまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述しないまれば、表述といまれば、表述の表述といまれば、表述といまれば、表述、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述といまれば、表述を表述といまれば、表述を表述を表述といまれば、表述を表述を表述を表述を表述を表述を表述を表述といまれば、表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表	一次				

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	人間工学の歴史・背景や	人間工学の歴史・背景や	人間工学の歴史・背景や	人間工学の歴史・背景や						
	人間の基本的特性を完全	人間の基本的特性をある	人間の基本的特性を理解	人間の基本的特性を全く						
	に理解し、説明できる	程度理解し、説明できる	している	理解していない						
2	人間特性の測定・評価が一	人間特性の測定・評価が一	人間特性の測定・評価が手	人間特性の測定・評価が全						
	人で完全に出来る	人である程度出来る	助けがあればできる	く出来ない						
3	人間中心設計の分析・評価	人間中心設計の分析・評価	人間中心設計の分析・評価	人間中心設計の分析・評価						
	が一人で完全にできる	が一人である程度できる	が手助けがあればできる	が全く出来ない						

			令机4年度 医療福祉工字						
科目名			担当教員		学年	単位	開講時数	種別	
生体計測 (Bio-me		surement II)	福田恵子 (常勤/実務)		5	1	後期 2 時間	選択	
授業の概	要	生体計測の基礎知識を得た上での、より詳細な機器の説明や身近なトピックについて解説す							
授業の形	態	講義							
授業の進	め方	講義を中心として、理解を深めるために演習を取り入れる。 予習、復習を行い自学自習の習慣を身につける。							
到達目標		1. 生体信号の種類と情報収集方法について理解できる 2. 生体生理計測の方法について理解できる 3. 診断機器の特性について理解できる							
実務経験 容との関	と授業内 連	内 なし							
学校教育 関係	目標との		合的実践的技術者として、数: 論に関する知識をもち、工学的					的な技術	
			講義の内容	容					
項目			目標					時間	
ガイダン			目的と内容の説明					2	
生理計測	リセンサ		日常生活における生理量の変	化の計測原理とセンサ	技術に、	ついてタ	里解する。	2	
日常生活	モニタ		生体信号の収集方法と IoT 技	支術について理解する。	,			2	
生体からの情報収集			生体信号と情報の収集方法(電磁エネルギーの印加など)について理解 する。					4	
画像診断装置 画像診断法(X線、X線CT、MRIなど)の原理と装置について理解で					里解する。	4			
試験			学習内容を確認する。					2	
脳機能影			脳機能診断法の原理を学び、その特徴を理解する。					2	
生体機能	計測		生体機能信号の特性を理解するために NIRS 実験を行う。このための実験 課題を準備し、発表する。					4	
生体機能	計測		NIRS による実験とデータ解析を行う。					6	
まとめ			生体機能信号の特性に関して	、学習内容を発表する	5 。			2	
}	= o===/π→	松坐の時知り	T + 10 0/ = 4774 - 20 0/ 0/ 1/2	なっ部ケーフ ファル	27 ਜਜ) = 1 1 1 0	≠ 3日 日本 - J.	計 30	
	の評価方	担試験を実施	兄を 40 %,試験を 60 % の比≊ する場合がある。	とで評価する。その他	、必安	に心して	(課題、力	ハナスト、	
関連科目	-								
教科書・	副読本	教科書: 「ヒートロナ社)	、心身状態の計測技術 - 人に優	憂しい製品開発のため [。]	の日常	計測 -」	牧川方昭	ほか (コ	
			評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目録	분 (可)	未到達	レベルの目安	(不可)	
1	収集方法	号の種類と情報 去について具体 ができる。						と情報のて説明で	
2	いて具体	里計測の方法に 本的な事例や特 して説明できる。	徴いて具体的な事例を説明	こつ 生体生理計測の方法につ 生体生理計 説明 いて基本的な説明ができ る。				├測の方法につ ゛きない。	
3	的な事例	器について、具 列や特徴を整理 バできる。		診断機器について、基 な説明が出来る。		診断機できない	器につい ^っ	で説明が	

科目名		担当教員	学年	単位	開講時数	種別		
生活支援工学 II	工学 II 古屋友和 (常勤/実務) 5 1 後期							
(Wellbeing Scie	I				2 時間			
tive Technology	II)	ーニノバー、 いの四人の母そらばわせせ	+34の34T:	<u> </u>	おおき加き	ボナッ 1		
授業の概要	しいう観点から	ーマライゼーションの理念の浸透や障害者基 自立した生活を支援する観点へと大きく転換	した。よって	て 身体	的な特性の	や障害に		
	一かかわりなく、	より多くの人々と生活をするために支援機器	を活用するこ	ことが社	会で求めり	られてい		
	│る。この科目で │識を習得する。	は、その社会における必要性や実用事例を通	して、文援が	機器の技	/	ための知		
授業の形態	講義							
授業の進め方	受業の進め方 講義は、独自のプリント等を使用して進め、小テスト、演習を設定している。 予習、復習を行い自学自習の習慣を身につける。							
到達目標	1. 生活支援の 2. 支援機器を打	背景、障害、暮らしの中の必要性を理解し、記 技術開発する上での重要なポイントを理解し、	^{説明できる} 解決策を提	案でき	る。			
実務経験と授業内 容との関連	あり							
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・ 論に関する知識をもち、工学的諸問題にそれら				的な技術		
	·	講義の内容						
項目		目標				時間		
概論		支援機器の定義、背景、工学的アプローチを	理解する			2		
障害		高齢者・障害についての概要を理解する	フー・ニー	타고 10 ·	्रा अस्ता	2		
視覚支援機器		視覚を支援する機器の事例より、技術開発す解する				2		
聴覚支援機器		聴覚を支援する機器の事例より、技術開発す 解する				2		
発話支援機器		発話を支援する機器の事例より、技術開発する上での重要なポイントを理 解する						
移動支援機器		移動を支援する機器の事例より、技術開発する上での重要なポイントを理 解する						
コミュニケーシ	ョン支援機器	コミュニケーションを支援する機器の事例より、技術開発する上での重要 なポイントを理解する						
基本生活支援機制	器	基本生活を支援する機器の事例より、技術開 を理解する	発する上での)重要な	ポイント	2		
義肢装具		義肢装具の事例より、技術開発する上での重要なポイントを理解する						
建築・交通のバ		建築・交通におけるバリアフリーの概要を理		ATT 677 1		2		
ユニバーサルデ	ザイン	工業製品やサービス等のユニバーサルデザイルズボビザル・ストスの円根度はなった。	ンの概要を	埋解する	•	2		
まとめ1		生活支援機器についての理解度を確認する	2002屋に	へいて班	細ナッ	2		
まとめ2		最新の研究事例をもとに、生活支援機器の今	仮の	フいて母	三件96	2 計 30		
 学業成績の評価方		%)、小テスト・演習(30 %)により総合的に	こ評価する。			н эо		
関連科目		・生体信号処理・人間工学 I・人間工学 II・/						
教科書・副読本		を福祉工学」手嶋 教之、相川 孝訓、相良 二						
		』口昌樹、竹田一則、村上満 (コロナ社)・「生活 ・ーション工学協会 共編 (コロナ社)・「電子情						
		- フョンエ子励云 共禰 (コロケ社) ・ 電 」 同 ³ 福部 達 (コロナ社)		, r - -	, , ,	-20 7世代に		
		評価 (ルーブリック)						
到達目標 理想的	な到達レベルの目安 (優	,	:ルの目安 (可)	未到達	レベルの目安	(不可)		
1 生活支 らしの	援の背景、障害、 ウ中の必要性を完	暮 生活支援の背景、障害、暮 生活支援の背景 全 らしの中の必要性をある らしの中の必要	要性の概要	らしの	爰の背景、 中の必要性	障害、暮 生を全く		
	とし、説明できる。				ていない	日交上っ		
トでの	後器を技術開発す)重要なポイント	を 上での重要なポイントを 上での重要な /	ポイントを		器を技術別 重要なポィ			
┃ 見全に	.理解し、発展的 そと提案すること	な ある程度理解し、応用的 ある程度理解 が な解決策を提案すること を提案すること ができる。	し、解決策	理解して	でおらず、f ることがで	解決策を		
	<u> </u>							

科目名					担当教員		学年	単位	開講時数	種別
組込みシ	/ステム		吉村	村拓巳 (常勤			5	1	後期	選択
	,					2 時間				
授業の概	要		家電製品や IoT 機器に使用されるマイコンの原理について理解し、実際にプログラムを用い する技術を身につける。					いて利用		
授業の形	態	講義								
授業の進	態め方		義と演習を組み合わせ授業を行う。必要に応じて中間テストおよび追試を行う。 習,復習を行い自学自習の習慣を身につける。							
到達目標		2. C 言語を用	マイコンの原理について理解できる C言語を用いた組込みプログラムを作成できる センサとマイコンを組み合わせた回路を理解し作成できる							
実務経験 容との関	と授業内 連	あり	b h							
学校教育 関係	目標との				をもち、工学的	学・自然科学・自らの 対諸問題にそれらを応				的な技術
					講義の内容	字 				
項目			目標		, 	S. O. A. J. L. L. THE - INVEST.	क्ष्मान क्ष्म	L ->		時間
はじめに						ンの動作原理の概略を				4
マイコン		ムの開発環境				を用いた制御方法に~ 話よび開発方法につい			0	$\frac{4}{2}$
		ムの開光原現 込みプログラム				ねよい開発力伝にうい 御方法を理解する。	って埋	牛りつ		4
l .		込みプログラム				T岬カ仏と垤肝する。 対たプログラミングル	こついて	ア珊解す	- Z	6
IoT の櫻			1		いて理解する			、		2
1		込みプログラム	1	IoT や無線技術を用いた組込み機器について理解する						6
まとめ	.,		1	組み込み機器についてのまとめ、プレゼン発表					2	
										計 30
学業成績 法	の評価方	課題提出、取締	組状	況を 20 %,	プレゼン評価	を 40 %,試験を 40 %	るの比率	区で評価	する。	
関連科目		電子回路 I·電	子回	□路 II・ディ	ジタル回路・	医療福祉センサ工学				
教科書・	副読本				_	Iassimo Banzi、Micha てプリント等を配布す		oh 著	、船田 巧	訳 (オ
					評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	₹)	標準的な到達し	· レベルの目安 (良)	ぎりぎりの到達レベルの目録	보(可)	未到達	レベルの目安	(不可)
1	マイコン	ノのハードウエ	ア	マイコンの	ハードウエア	マイコンのハードウ	エア	マイコ	ンのハート	ドウエア
	構成につ	ついて理解して	おじ	構成につい	ては理解して	構成については理解			ついて理角	
	ウエアの	コグラムとハー の関連を説明す	る	ドウエアの	1グラムとハー関連を完全に	いるが、プログラムとドウエアの関連を訪	明す	ドウエ	プログラムアの関連や	ら説明す┃
	ことが出				とはできない。	ることはできない。			ができない	
2	センサギ 情報を ∄	やアナログ回路 A/D変換した情	ら 報	センサやア 情報を A/D	ナログ回路の 変換した情報	センサやアナログ回 情報を A/D 変換した		センサ [。] 情報を	やアナロク A/D 変換	ブ回路の した情報
	から、タ	処理を行い、モ	-	から、処理	を行い、モー	をディスプレイや F	PC を	をディ	スプレイキ	PC を
	ターの制 ディマン	側御などが出来る プレイや PC を	る。 · 田		などが出来る。 イや PC を用	用いて表示するプロ ムを作成できる。	!グラ],		表示する? 成できない	
	いて情報	収の表示を行う	プ	いて情報の	表示を行うプ	~ CIF/W C C 30		- CIPA	~ C G G V	0
		ムを作成できる Γの技術を用い		ログラムを	作成できる。					
		ラミングが出来								
3		ヒマイコンをつ			えられたセン	デジタル出力のセン			指示により	
	ぐアナロ 行える	コグ回路の製作 デジタル出力	がし	サ凹路やア 製作が行う	ナログ回路の る。デジタル	複数個組み合わせた を教員の指示のもと		ル凹路で	やアナロク 行うことな	/ 凹路の バできた
	センサる	を複数個組み合	わし	出力のセン	サを複数個組	することができる。		۲۶° اله ۱۲۳ ها	13 / 1	, , , , ,
	せた回路	格を自分で作成 バできる。		指示のもと	回路を教員の 作成すること					
				ができる。						

扒口力		+17 \1/1 ±/- 12		兴ケ	光上		4手DII			
科目名		担当教員		学年	単位	開講時数	種別			
L/T 演習 (Exercises of Le ing)	arning by Teach-	吉村拓巳 (常勤/実務)		5	1	後期 2 時間	選択			
授業の概要	に対する理解を	は講義は、L/T(Little Teacher)スタッフとして下級生を指導することで、デザイン思考の₹こ対する理解を深めるとともに、自己の総合的学習経験に基づくコミュニケーション能力の向 義論を円滑に進めるファシリテーション能力の向上を図る。								
授業の形態	演習	· 習								
授業の進め方	指導を行う。な 動報告書に実施 施した後、最終	原則として、W4「エンジニアリングデザイン工学」へファシリテータとして参加し、下級 指導を行う。なお、演習前に担当教員が事前指導を行う。L/T 演習を行った際は、L/T 動報告書に実施内容について毎回記録し、担当教員に必ず提出する。また、全ての L/T 演 もした後、最終報告レポートを担当教員に必ず提出する。 予習、復習を行い自学自習の習慣を身につける。								
到達目標	2. ファシリテー	たコミュニケーションを取るションスキルを用いて、議論の概念について理解できてい	命を円滑に進めること	ができ	る					
実務経験と授業F 容との関連										
学校教育目標との 関係		-ション力) 総合的実践的技術 りするために、論理的に考え	、適切に表現する能力			取り組んで	どり国際			
		講義の内容								
項目		目標					時間			
ガイダンス		講義の概要と進め方を理解する。 コミュニケーション力やファシリテーション力の重要性と意義を理解する。								
事前指導	f	エンジニアリングデザインやデザイン思考の概念、具体的なプロセスを理解する。 コミュニケーションを円滑にする種々の手法について理解する。								
L/T 演習		議論を円滑に進める様々なフ ファシリテータとして演習に に、コミュニケーションスキ より修得する。	参加し、デザイン思考	の理解	を深め	るととも	18			
まとめ		これまでの総括を行い、最終					2 計 30			
学業成績の評価 法 	,	選集状況、活動報告書および最		り総合 	的に判と	新する。 				
関連科目		グデザイン工学・エンジニア								
教科書・副読本	デザイン―製品 高橋栄/共訳	-1 1 / -	ェル・クロス/著 - 荠 グデザイン入門―技術 (著), 柴田 尚志 (監修	デ木光彦 青の創造	三/監訳 こと倫理	別府俊 の基礎」	幸/共訳 林 和伸,			
ļ		評価 (ルーブリ 	, , , , , , , , , , , , , , , , , , ,	Т						
	かな到達レベルの目安 (優)	標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目野	·		レベルの目安	` ′			
にコ	生と打ち解け、円滑 ミュニケーションを ことができている		下級生とおおむねコ ニケーションが取れ る			とコミュニケーシ 収れていない。				
ンス ³ プ討 ことな	義を円滑に進行する ができる	ファシリテーショ ファシリテーションスキ グループ討議において、議 グループ討議によ を使って、グルー ルを使って、グループ討 論の進行役ができる 論を進めることに と円滑に進行する 議の進行役ができる								
	イン思考の概念を理 説明できる	型 デザイン思考の概念をお おむね理解できている	デザイン思考の概念 科書等を参考にしな 理解できる			ン思考のホ ていない	既念を理			

科目名			担当教員	学年	単位	開講時数	種別		
福祉環境工 (Welfare l neering)		oments Engi-	山本靖樹 (非常勤/実務)	5	1	前期 2時間	選択		
授業の概要		的支援も喫緊のなのか。本講拿全ての人を対象	日本は未だかつてない超高齢化社会の到来を迎えている、その一方で、教育を含めた若年層 り支援も喫緊の課題として浮上してきている。持続力のある福祉環境を実現するためには何 なのか。本講義ではわが国の福祉環境を取り巻く状況の変化を学びながら、社会的弱者にな 全ての人を対象にした創造的な福祉社会を実現すべく、特にソーシャルデザインの観点から 解決策を考えていく。						
授業の形態		講義							
授業の進め		2. 各自の興味	. 福祉環境の諸状況について、講義形式で学ぶ . 各自の興味・関心領域に応じたソーシャルデザイン活動案を演習形式で作り上げる 予習、復習を行い自学自習の習慣を身につける.						
到達目標		1. 社会科学的	見地から、福祉環境の拡張に向けた施策の抗	是案力を身につ	ける。				
実務経験と		なし							
学校教育目 関係	標との	,	合的実践的技術者として、数学・自然科学 論に関する知識をもち、工学的諸問題にそれ				的な技術		
			講義の内容						
項目			目標				時間		
1. ガイダ	゛ンス		前期講義のガイダンス。社会科学的見地(環境充実の必要性を考える。	ソーシャルデサ	·イン):	から福祉	2		
2. 空間と	コミュ	ニティ	日本に於けるコミュニティの構造について知る。日本固有の歴史的背景から日本の都市構造を考察し、その特殊性を学ぶ。						
3. 社会保	障と医	療の課題	社会保障の構造と超高齢化社会における医考察する。	療のあり方課題	見と今後	の課題を	2		
4. ケア社	会への	視点	ケアモデルの事例と進化の行方を考察する。				2		
5. 都市政	5. 都市政策と福祉政策		従来別々に検討されてきたまちづくりと福祉環境の統合の必要性を知ることにより、都市の暮らしの中での福祉環境という視座を身につける。				4		
6. 新しいコミュニティ活動			とにより、都市の暮らしの中での福祉環境	という視座を見	必要性	る。			
6. 新しい	コミュ	ニティ活動	とにより、都市の暮らしの中での福祉環境 新しいコミュニティ活動の必要性、事例や	という視座を具	身につけ	る。	4		
6.新しい7.福祉環				という視座を歩 トレンドを考察 各人の興味・関	身につけ 客する。 『心領域	る。	4 6		
	境施策	の拡張	新しいコミュニティ活動の必要性、事例や 福祉環境を拡張する施策について考える。	という視座を身 トレンドを考察 各人の興味・関 観点から考え、	身につけ 客する。 『心領域 てみる。	る。			
7. 福祉環	境施策	の拡張	新しいコミュニティ活動の必要性、事例や 福祉環境を拡張する施策について考える。 を探し出し、自分は何ができるか、という 新たな社会的課題に応えうるソーシャル活	という視座を身 トレンドを考察 各人の興味・関 観点から考え、	身につけ 客する。 『心領域 てみる。	る。	6		
 福祉環 レポー 	境施策ト課題	の拡張と発表	新しいコミュニティ活動の必要性、事例や 福祉環境を拡張する施策について考える。 を探し出し、自分は何ができるか、という 新たな社会的課題に応えうるソーシャル活	という視座を与 トレンドを考察 各人の興味・関 観点から考え、 動として、福祉	身につけ 客する。 『心領域 てみる。	る。	6 8		
7. 福祉環 8. レポー 学業成績の	境施策ト課題	の拡張と発表	新しいコミュニティ活動の必要性、事例や福祉環境を拡張する施策について考える。を探し出し、自分は何ができるか、という新たな社会的課題に応えうるソーシャル活立企画を立案する。	という視座を与 トレンドを考察 各人の興味・関 観点から考え、 動として、福祉	身につけ 客する。 『心領域 てみる。	る。	6 8		
7. 福祉環 8. レポー 学業成績の 法	境施策· ト課題 評価方	の拡張 と発表 レポート (80 9	新しいコミュニティ活動の必要性、事例や福祉環境を拡張する施策について考える。を探し出し、自分は何ができるか、という新たな社会的課題に応えうるソーシャル活立企画を立案する。	という視座を歩たレンドを考察各人の興味・関係点から考え、動として、福祉	身につけ 客する。 『心領域 てみる。	る。	6 8		
7. 福祉環 8. レポー 学業成績の 法 関連科目	境施策· ト課題 評価方	の拡張 と発表 レポート (80 9	新しいコミュニティ活動の必要性、事例や福祉環境を拡張する施策について考える。を探し出し、自分は何ができるか、という新たな社会的課題に応えうるソーシャル活立企画を立案する。	という視座を歩たレンドを考察各人の興味・関係点から考え、動として、福祉	身につけ 客する。 『心領域 てみる。	る。	6 8		
7. 福祉環 8. レポー 学業成績の 法 関連科目	境施策· 卜課題 評価方 読本	の拡張 と発表 レポート (80 9	新しいコミュニティ活動の必要性、事例や 福祉環境を拡張する施策について考える。 を探し出し、自分は何ができるか、という 新たな社会的課題に応えうるソーシャル活 立企画を立案する。 6)、取組・課題(20%)により総合的に評価 に応じて事例やデータを考察する資料を準備 評価(ルーブリック)	という視座を歩たレンドを考察各人の興味・関係点から考え、動として、福祉	身につけ 客する。 引心領る。 上環境 N	る。	6 8 計 30		

-1-1						ı				
科目名		担当教員		学年	単位	開講時数	種別			
医用画像工学 (Medical Imagin	9	長井裕 (非常勤/実務)		5	1	後期 2 時間	選択			
授業の概要	超音波、X線、 発生装置、X 得手法、およ	置音波、X 線、CT、MRI という一般的な画像描出法を工学的観点より講義する。具体的には 発生装置、X 線 CR、X 線 CT、MRI 等の医用画像(生体情報)の必要性と装置の基礎原理 导手法、およびその診断画像応用について講義する。								
授業の形態	講義	義								
授業の進め方	を習得するべ	構義、教科書、超音波診断装置の操作体験を組み合わせて進める。論理的な思考構築のテク と習得するべく進めて行く。 と習、復習を行い自学自習の習慣を身につける。								
到達目標	1. 超音波診断 得方法、画像	超音波診断装置を主軸に、種々の医用機器の原理と構成を学び、診断に寄与する生体情報 方法、画像構築理論、各種医用画像の特徴と共に論理的思考手法が習得できている。								
実務経験と授業内 容との関連	なし									
学校教育目標との 関係		合的実践的技術者として、数学 論に関する知識をもち、工学的	諸問題にそれらを応				りな技術			
		講義の内容								
項目		目標					時間			
超音波診断装置	実習	備品の超音波診断装置を操作し 得するために必要な解剖などで	も合わせて学ぶ。				4			
超音波診断装置	原理	媒質内における超音波の伝搬、反射、屈折などの基礎的な音響工学理論を 習得する。 低侵襲で動画像が得られる特徴を有する音波超診断装置の回路構成、動作 原理を習得する。さらに、超音波診断装置の特徴であるドプラ効果を応用 した血流診断方法についても習得する。					8			
X 線および X 紡	ł CT	X 線および、CT 画像の描出原理を習得する。さらに、X 線の透過像と CT 画像の構築像が診断に与える影響についても学ぶ。					2			
MRI		核磁気共鳴による画像の描出原理を習得する。					2			
その他医用画像	幾器	PET (Positron emission tomography)、レーザドプラ、レーザ質分析、などの画像装置について学ぶ。					2			
診断について		医用画像が目的とする診断について、その歴史を含めエンジニアとして必要な知識を習得する。					4			
PBL		学んだ知識、既存の技術を基礎に、自由な発想から独自の発想による理論 展開の手法 (緒言・仮説・推論・証明) を習得する。					6			
まとめ		学習した内容をまとめ、各自のプレゼンテーションにより確認をする。					2 計 30			
学業成績の評価/ 法	試験とレポー	ト・発表結果・日頃の取組姿勢	により評価する。				.,			
関連科目										
教科書・副読本	副読本: 「絵~	でみる超音波 改訂第3版」長男	井裕 (南江堂)							
		評価 (ルーブリ [、]	ック)							
到達目標 理想的	<u> </u>	腰準的な到達レベルの目安 (良)		安 (可)	未到達	レベルの目安	(不可)			
田神に高足田・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	記念を 記念と 記念と 記念と でを でを でを でを でを でを でを でを でを でを	原 医用画像機器の構成・原理・特徴と生体情報・医用理・特徴と生体情報・医説明 画像について理解しる問題がある問題がある。いそれを解決した。といるための課題と仮説を	超音波診断装置を中心 医用画像機器の構成 理・特徴と生体情報・ 画いる。い、まれる で提起しいままれを述べ をまれてきるとができる。	・医解し点す	題点が現 自ら開 決をい きない。	象機器の原 選集 選集 製 製 製 製 製 関 製 関 、 は い 。 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	いない。 出し、解 ことがけ			

科目名				=	学年	単位	開講時数	種別				
	ニアリング	デザイン演習	吉村拓巳 (常勤/実務)・杉本聖一 (常勤) 5 2 前期									
		gineering De-	gineering De-					選択				
授業の概	既要	方や手法を実践	第4学年で行った ED 演習の内容をさらに発展させ、グループワークやデザインシン思考 5や手法を実践を通して学ぶ。企業や社会のニーズに対して、グループワークで解決策を検 体的なものづくりを行う。									
授業の刑	沙態	演習	·····································									
授業の進	進め方	習で構成する。	ずインシ思考の方法などを習得する演習と、出された問題を解決する製品のものづくりを行う 習で構成する。進捗をレポートで提出すると共に、プレゼンを行う。 で習、復習を行い自学自習の習慣を身につける。									
到達目標	景	2. グループワー	. エンジニアリングデザインの検討手法を実践を通して修得することができる . グループワークによりユーザーのニーズを元に解決案を提案する事ができる . これまで修得した技術を用い、自分たちの提案を具体化する事ができる									
実務経験 容との関	後と授業内 関連	なし										
学校教育 関係	育目標との	E (応用力・実践	銭力) 総合的実践的技術者とし		問題を	解決する	る能力を育	が成する。				
			講義の内	容								
項目			目標					時間				
ガイダン			EDの進め方についてガイク	- • • •		- \		2				
ED演習	-		アイデア発想法、ファシリ					14				
E D実習			第4学年で行ったED工学 する	の内容を踏まえ、問題	を解決	する製	品を製作	40				
まとめ			実習で行った内容を総括する	5				4 計 60				
学業成績 法	責の評価方	チームの貢献 に100点法で	度40%、作業の遂行状況。 評価を行い教員が総合的に	40% 成果発表20% 判断して評価する。	%として	で評価す	る。各テ					
関連科目		エンジニアリン	√グデザイン工学・L/T 演習									
教科書・	・副読本	デザイン―製品 高橋栄/共訓		ジェル・クロス/著 デ ングデザイン入門―技術 ! (著), 柴田 尚志 (監修	売木光彦 版の創造	₹/監訴 造と倫理	、別府俊 の基礎」	幸/共訳 林 和伸,				
	T		評価 (ルーブ	<u> </u>								
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目気	安 (可)	未到達	レベルの目安	(不可)				
1	ンの手法 グルー 要な手法	ニアリングデザ 法を理解しており プワークの中で 去を自ら選択し ることが出来る。	、 ンの手法を理解しており 必 グループワークの中で提	、ンの手法を理解は浅 と グループワークの中	いが、 ロで提 ロて検	ンの手 ず、グル	ニアリン? 法を理解 シープワー ることが出	しておら クの中で				
2	ユーザ [・] を的確 <i>は</i>	案を提案するこ	ズ を考慮し、グループワー 切 クにより解決案を提案す	- し、グループワーク	によっこと	ること:	ーニーズ が出来ず、 クを行う	グルー				
3	で習得! 的に身! ちいて実際!	た解決案をこれ した技術や、自 こつけた技術を グループきる で使用できる プを作成できる。	主 で習得した技術を持ちレ 	ゝ で習得した技術を持 ₹ て、グループワーク	fちい で動 プを	で習得 て、グ 作可能	た解決案を したが ループロト なない。	を持ちい -クで動				