科目名		担当教員	学年	単位	開講時数	種別
専攻科インターンミ (Internship)	ンップ	専攻科特別研究・専攻科ゼミナール担当教員	1	2	夏季集 中	必修
授業の概要		算と各企業で10日間以上のインターンシップを行う ともに取り組むことも可能である.	5. 企業	きの持つ	課題を専り	攻科ゼミ
授業の形態	実験・実習					
授業の進め方	ナール教員とと	-ルにおいて,専攻科インターンシップの事前調査を もに打ち合わせを行い決定をする.修了後,報告会を い自学自習の習慣を身につける.				業,ゼミ
到達目標	知識を活かして2. 外部組織と対	ンップを通して,製造現場につながるものづくりの応 論理的に課題解決に取り組むことができる. 共同して物事に取り組む社会性を身につけ,派遣先機 (り組むことができる.				,
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	で活躍したりす С (人間性・社会	- ション力) 総合的実践的技術者として、協働しても るために、論理的に考え、適切に表現する能力を育成 会性) 総合的実践的技術者として、産業界や地域社会 、技術者として社会との関わりを考える能力を育成	成する。 、国際ネ			
		講義の内容				
項目		目標				時間
インターンシッフ 明会	『事前調査・説	インターンシップ先の企業について,専攻科特別研究打ち合わせを行う. インターンシップの説明会への参加.	究・ゼミ	ナール	の教員と	2
インターンシップ 保険説明会,諸注 (連絡)		インターンシップ申込書の作成. 保険加入の説明を受け,理解して加入する. 実習直前にインターンシップにおける注意を受け,ネ 事前に企業訪問して打ち合わせを行う.遠方の場合は を用いて打ち合わせを行う.	_儀・マ は電話・	ナー等を FAX・	を考える. メール等	4
インターンシップの	の実施	実習先でインターンシップを実施する. 10日(写する.	€働60	時間)	以上実施	60
インターンシップ 発表会	報告書の作成,	インターンシップ報告書を作成する. 内容には企業に考慮のうえ完成させる. 発表および質疑を行う.	泌密等を	記載し	ないよう	4
						計 70
		自学自習				
		目標				時間
企業探索	掲示物や WEB サイトで希望する企業の調査および	申込書	等の作品	戈を行う.	10	
報告書の作成と発表会準備 インターンシップ報告書の作成と発表会の準備を行う.				10 ⇒1, 20		
你△兴习□+□□		# · · · · · · · · · · · · · · · · · · ·				計 20
総合学習時間	オンカーン(*)。	講義 + 自学自習 ・プ活動中の取り組ま、 タ種坦山書類 ノンターンシ	プ のシ	千重十七八十	ことり今不	計 90
学業成績の評価方 法 インターンシップ活動中の取り組み,各種提出書類,インターンシップの活動報告より合否を判定する.ただし,受け入れ先機関・企業での活動期間が実働 10 日以上であることを必須とする.						
関連科目						
教科書・副読本 その他: しおりを配布する. その他各指導教員の指示による.						

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	み,発見した課題に対し て専門知識を論理的に使 用し,その解決に導くこと	派遣先の分野における課題と,技術トレンドを体き、技術トレンができた。また,それら最新技術が自らの専門知識にど明するかを理解することができた。		派遣先の現場における工学的課題や適用されている技術を理解することができず、自らのできなかった.
2	標準的到達レベルに加え, 関係者間の連絡調整を円 滑にこなすことができ,インターンシップ活動にお ける課題解決に取り組み,派遣先の組織内で自らに 与えられた役割を他者と 協調して果たすことがで きた.	自らに託された社会的責任を理解し、関係者との間でビジネスコミュニケーションをこなすことができた. それらにより必要な手続きや、活動を自律的にこなすことができた.	必要なビジネスコミュニ ケーションを指導者の助 言によりこなすことがで	報告・連絡・相談をこなす ことができず,関係者と連 携することができず,イン ターンシップ活動に支障 を来した.

専攻科インターンシップ 専攻科特別研究・専攻科ゼミナール担当教員 1 2 夏季集 必修作(Internship) 授業の概要 企業・大学・研究機関等での10日間以上のインターンシップを通じて、人と社会・社会と技術・技術と人の関係を考え、技術者として社会で活躍するための基本的な行動・考え方を修付することを目標とする。 大路・大智・大学・研究機関等での10日間以上のインターンシップのチーマを決定する。10日間以上のインターンシップを実施する。実営終了後にインターンシップの実業能を行う。ラ智、復意を行い自学自習の習慣を対して対象。 授業の進め方 インターンシップ先およびインターンシップの乗車指を行う。ラ智、復意を行い自学自習の習慣を対して対象。 10日間以上のインターンシップを実施する。(10日間以上のインターンシップを実施するについてのよりに対することができる。(10日間以上のインターンシップを実施経験と授業内容との関連を表していることができる。(10日間以上のイ間ようなとができる。(10日間以上の人の大学なのよりを表していることができる。(10日間以上のよりを表したができる。(10日間以上の人の大学を表していることができる。(10日間以上のようなとができる。(10日間は大学校教育目標として破点することができる。(10日間は大学校教育目標をとしていることができる。(10日間に大学校教育目標をとしていることができる。(10日間に大学校教育目標を表していることができる。(10日間に大学校教育目標の子を表別を表別する。(10日間に大学校教育目標を表別する。(10日間に大学校教育としていることができる。(10日間に大学校教育としていることができる。(10日間に大学校教育としているのように対することができる。(10日間に大学を表別を表別する。(10日間に大学を表別を作成し、担当者の企業をもらう、インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。(10日間に対するシーブリックを用いて、各別達目標を評価する。ただし、評価はインターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。(10日間に対するシーブリックを用いて、各別達目標を評価する。ただし、評価はインターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。(10日間に対するシーブリックを用いて、各別達目標を評価する。ただし、評価はインターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。(10日間に対するシーブリックを用いて、各別達員を経過する。(10日間に対するシーブリックを発力と議論し、インターンシップ報告会の資料を作成する。(10日間に対するシーブを表別を表別する。(10日間に大学校教育の資料を作成する)(10日間に大学校教育の表別を表別する。(10日間に大学校教育の表別を表別を表別する。(10日間に大学校教育の表別を表別する。(10日間に大学校教育の表別を表別する。(10日間に大学校教育の表別を表別を表別する。(10日間に大学校教育の表別を表別する。(10日間に大学校教育の表別を表別する。(10日間に大学校教育の表別を表別する。(10日間に大学校教育の表別を表別する。(10日間に大学校教育の表別を表別を表別する。(10日間に大学校教育の表別を表別する。(10日間に大学校教育を表別を表別する。(10日間に大学校教育を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を							
(Antenship)	科目名		担当教員	学年	単位	開講時数	種別
と人の関係を考え、技術者として社会で活躍するための基本的な行動・考え方を修得することを目標とする。 と表験・実習 授業の進め方 実験・実習 授業の進め方 インターンシップ先およびインターンシップの所工を決定する。10 日間以上のインターンシップを実施する。実習終了後にインターンシップの所果報告を行う。予省、後習を行い自与自習の習慣を身につける。 10 日間以上のインターンシップを実施する。実習終了後にインターンシップの原果報告を行う。予省、後習を行い自与自習の習慣を身につける。 12 記鑑について報酬することができる。 B-5 (i) 2. 課題について報告をすることができる。 B-5 (i) 4. 課題について報告をすることができる。 B-5 (i) 5. 社会に対する技術者の役割を考える力を身につけることができる。 C-3 (b) 変技教育目標との関係 B (コミュニケーションカ) 総合的実践的技術者として、協働してものづくりに取り組んだり国際社会で活躍したりするために、論理的に考え、適切に表現する能力を育成する。 C (人間性・社会性) 総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。 C (人間性・社会性) 総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。 4 インターンシップ実施 インターンシップ実施にあたり、単位修得の条件を理解する。 4 インターンシップ実施 インターンシップ市の成果を報告する。 2 計・64 自学自習 時間 日標 インターンシップ大を決定する。 4 インターンシップ大統定 インターンシップの成果を報告する。 4 インターンシップ大統和音音と議論した内容を整理して記録を作成し、担当者の施認をもらう。 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の施認をもち。 4 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の施認をもち。 4 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の施認をもち、インターンシップを用とする。 4 オンターンシップの担当者と議論した内容を整理して記録を作成し、担当者の施認をもち、インターンシップの担当者と議論し、インターンシップ報告会の資料を作成する。 インターンシップの担当者と議論した内容を整理して記録を作成し、担当者の施認をもち、インターンシップを用とする。 4 オンターンシップを用はでする。 4 オンターンシップを用はする。 4 オンターンシップを用はを認定を含む。 4 オンターンシップを用はでする。 4 オンターンシップを用はできる。 4 オンターンシップを用はでする。 4 オンターンシップを用はでする。 4 オンターンシップを用はでする。 4 オンターンシャプの理論を開きる。 4 オンターンシャプの手を記述を用はできないませんでは関係を対する。 4 オンターンシャプの手を開きる。 4 オンターンシップの手を発見を作成する。 4 オンターンシャプの手を開きる。 4 オンターンシャプのよりに対している。 4 オンターンシャプのよりに対している。 4 本の対域を関係を関係している。 4 オンターンシャプのよりに対している。 4 オンターンシャプを対する。 4 オンターンシャプを持定などのではなどがよりに対している。 4 本の対域を対する 4 本の対域を対する 4 本の対域を対する 4 本の対域を対する 4 本の対域を対する 4 本の対域を対する 4 本の対域を対域を対する 4 本の対域を対する 4 本の対域を対する 4 本の対域を対する 4 本の対域を対する 4 本の対域を対する 4 本の対域を対域を対する 4 本の対域を 4 本の対	専攻科インターン: (Internship)	<u></u> シップ	専攻科特別研究・専攻科ゼミナール担当教員	1	2		必修
投業の進め方	授業の概要	と人の関係を考					
実施する、東宮終了後にインターンシップの成果報告を行う。 子智、復習を行い自学自習の習慣を身につける。 到達目標	授業の形態	実験・実習					
2. 課題について相談することができる。 B-5 (i) 3. 課題に対して議論することができる。 B-5 (i) 4. 課題について報告をすることができる。 B-5 (i) 5. 社会に対する技術者の役割を考える力を身につけることができる。 C-3 (b) 字務経験と授業内 容し 容し 容し 容し で活躍したりするために、論理的に考え、適切に表現する能力を育成する。 C (人間性・社会性・総合的実践的技術者として、協働してものづくりに取り組んだり国際社会で活躍したりするために、論理的に考え、適切に表現する能力を育成する。 C (人間性・社会性・総合的実践的技術者として、企業界や地域社会、国際社会に貢献するために、豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。 日標 日標 内の容 日標 内の容 日標 インターンシップ実施にあたり、単位修得の条件を理解する。 インターンシップの手続きについて理解する。 インターンシップの手続きについて理解する。 2 インターンシップ報告会 インターンシップ先で担当者の指導の下、インターンシップのテーマを遂行する。 4 インターンシップ先の担当者を報告する。 2 計 64 自学自習 日標 日曜 時間 日曜 日曜 日曜 日曜 日曜 日曜 日曜 日	授業の進め方	実施する。実習	『終了後にインターンシップの成果報告を行う。	0 日間場	以上のイ	インターン :	シップを
容との関連 特核教育目標との で活躍したりするために、論理的に考え、適切に表現する能力を育成する。 C (人間性・社会性) 総合的実践的技術者として、確業界や地域社会、国際社会に貢献するために、豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。 項目 目標 時間 インターンシップ実施にあたり、単位修得の条件を理解する。 インターンシップの手続きについて理解する。 インターンシップをで担当者の指導の下、インターンシップのテーマを遂行する。 2 インターンシップのテーマを遂行する。 60 申 自学自習 項目 目標 申問 インターンシップ先の根果を報告する。 2 計 64 事目 日標 インターンシップ大次定 インターンシップ先の検補を調査し、インターンシップ先を決定する。 インターンシップ先の検捕を調査し、インターンシップ先を決定する。 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の確認をもらう。 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の確認をもらう。 インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。 18 18 4 日報・週報を整理する。 インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。 総合学習時間 講義 + 自学自習 計 26 総合学習時間 講義 + 自学自習 計 90 学業成績の評価方法 到達目標に対するルーブリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。 財産はインターンシップ 先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。 関連科目 10	到達目標	 課題についる 課題に対しる 課題についる 	て相談することができる。	。 C-	3 (b)		
関係 で活躍したりするために、論理的に考え、適切に表現する能力を育成する。 C (人間性・社会性)総合的実践的技術者として、産業界や地域社会、国際社会に貢献するために、豊かな教養をもち、技術者として社会との関わりを考える能力を育成する。	実務経験と授業内 容との関連	なし					
項目 目標 時間 ガイダンス インターンシップ実施にあたり、単位修得の条件を理解する。 インターンシップの手続きについて理解する。 インターンシップの手続きについて理解する。 インターンシップの成果を報告する。 2 インターンシップ報告会 インターンシップの成果を報告する。 2 計 64 自学自習 項目 目標 時間 インターンシップ先決定 インターンシップ失済を決定する。 インターンシップ実施打合せ 報告資料作成等 インターンシップ先の候補を調査し、インターンシップ先を決定する。 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当 インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。 インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。 計 26 総合学習時間 講義 + 自学自習 計 90 学業成績の評価方 法 到達目標に対するルーブリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ 先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。 計 90 関連科目 関連科目	学校教育目標との 関係	で活躍したりす C (人間性・社	「るために、 [、] 論理的に考え、適切に表現する能力を育成 会性) 総合的実践的技術者として、産業界や地域社会	成する。 、国際社			
ガイダンス インターンシップ実施にあたり、単位修得の条件を理解する。 インターンシップの手続きについて理解する。 2 インターンシップ集施 インターンシップ先で担当者の指導の下、インターンシップのテーマを遂行する。 インターンシップの成果を報告する。 60 1 自学自習 1 日標 日本・過報を整理する。 インターンシップ先決定 インターンシップ先の候補を調査し、インターンシップ先を決定する。 インターンシップのテーマを決定する。 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の確認をもらう。 インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。 18 2 計 26 総合学習時間 講義 + 自学自習 計 90 学業成績の評価方法 到達目標に対するループリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。 計 90 関連科目 財政報告の評価が可以上の場合に単位修得を認める。 18			講義の内容				
インターンシップ実施 インターンシップ先で担当者の指導の下、インターンシップのテーマを遂行する。 60 インターンシップ報告会 インターンシップの成果を報告する。 2 項目 目標 時間 インターンシップ先決定 インターンシップ先の候補を調査し、インターンシップ先を決定する。 4 インターンシップ実施打合せ報告費料作成等 インターンシップのテーマを決定する。 4 日報・週報を整理する。インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の確認をもらう。インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。 18 総合学習時間 講義 + 自学自習 計 26 総合学習時間 講義 + 自学自習 計 90 学業成績の評価方法 到達目標に対するループリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。 財 90 関連科目 日本の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。 日本の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。	項目		目標				時間
インターンシップ報告会する。 インターンシップの成果を報告する。2 計 64項目目標ド間インターンシップ先決定 インターンシップ実施打合せ 報告資料作成等インターンシップ先の候補を調査し、インターンシップ先を決定する。 インターンシップのテーマを決定する。 日報・週報を整理する。 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の確認をもらう。 インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。18総合学習時間講義 + 自学自習計 26総合学習時間講義 + 自学自習計 90学業成績の評価方法 法知達目標に対するルーブリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。関連科目	ガイダンス			理解する	00		2
自学自習	インターンシップ	実施		ンシッフ	゚゚゚のテー	マを遂行	60
1 日標 日標 時間 日標 日標 日標 インターンシップ先を決定する。	インターンシップ	報告会	インターンシップの成果を報告する。				2
項目							計 64
インターンシップ先決定			自学自習				
インターンシップ実施打合せ インターンシップのテーマを決定する。 4 報告資料作成等 日報・週報を整理する。 インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の確認をもらう。 インターンシップ先の担当者と議論し、インターンシップ報告会の資料を作成する。 計 26 総合学習時間 講義 + 自学自習 計 90 学業成績の評価方法 到達目標に対するルーブリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。 関連科目	項目		1111				時間
報告資料作成等				ップ先を	決定す	る。	4
インターンシップ先の担当者と議論した内容を整理して記録を作成し、担当者の確認をもらう。		実施打合せ					4
総合学習時間講義 + 自学自習計 90学業成績の評価方法到達目標に対するルーブリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ 先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。関連科目	報告資料作成等		インターンシップ先の担当者と議論した内容を整理 者の確認をもらう。				18
総合学習時間講義 + 自学自習計 90学業成績の評価方法到達目標に対するルーブリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ 先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。関連科目関連科目			成する。				∌L o.c
学業成績の評価方 法 到達目標に対するルーブリックを用いて、各到達目標を評価する。ただし、評価はインターンシップ 先の担当者が行う。全ての到達目標の評価が可以上の場合に単位修得を認める。 関連科目	⟨⟨⟨⟩ ⟨ ⟩ ⟨ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩		=#*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
法		到達日煙に対っ		ただし	並編)。	ナインター	
1.00-1.00	法						
教科書・副読本 その他:	関連科目						
	教科書・副読本	その他:					

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	積極的に挨拶し、職場の雰 囲気を活性化できる。	自分から挨拶することが できる。	挨拶されれば挨拶を返す ことができる。	挨拶することができない。
2	受けた相談に対応するこ とができる。	自分から相談をすること ができる。	促されれば相談をするこ とができる。	相談をすることができない。
3	他者と自分の意見の違い を理解し、折り合いをつけ ることができる。	自分から意見を出すこと ができる。	促されれば意見を出すこ とができる。	意見を出すことができない。
4	簡潔かつ論理的に報告を することができる。	自分から報告をすること ができる。	促されれば報告をするこ とができる。	報告をすることができない。
5	社会における技術者の役割を、実務体験と関連付け て説明することができる。	社会における技術者の役割を説明することができる。	社会における技術者の役 割を考えることができる。	社会における技術者の役割を考えることができない。

		令和 6 年度 専攻科 シラバス				
科目名		担当教員	学年	単位	開講時数	種別
専攻科インターン: (Internship)	シップ	専攻科特別研究・専攻科ゼミナール担当教員	1	2	夏季集 中	必修
授業の概要		究機関等での 10 日間以上のインターンシップを通じ ぎえ、技術者として社会で活躍するための基本的な行				
授業の形態	実験・実習					
授業の進め方	実施する。実習	・プ先およびインターンシップのテーマを決定する。1 『終了後にインターンシップの成果報告を行う。 『い自学自習の習慣を身につける。	0 日間均	以上のイ	ンターン :	シップを
到達目標	 課題についる 課題に対しる 課題についる 	することができる。 B-5 (i) C相談することができる。 B-5 (i) C議論することができる。 B-5 (i) C報告をすることができる。 B-5 (i) G技術者の役割を考える力を身につけることができる。	. C-	3 (b)		
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	で活躍したりす C (人間性・社	- ション力) 総合的実践的技術者として、協働しても るために、論理的に考え、適切に表現する能力を育成会性) 総合的実践的技術者として、産業界や地域社会 、技術者として社会との関わりを考える能力を育成で	伐する。 、国際社			
		講義の内容				
項目		目標				時間
ガイダンス		インターンシップ実施にあたり、単位修得の条件をF インターンシップの手続きについて理解する。	里解する	00		2
インターンシップ	実施	インターンシップ先で担当者の指導の下、インター、 する。	ンシッフ	゚゚のテー	マを遂行	60
インターンシップ	報告会	インターンシップの成果を報告する。				2
						計 64
		自学自習				
項目		目標				時間
インターンシップ	先決定	インターンシップ先の候補を調査し、インターンシャ	ップ先を	決定す	る。	4
インターンシップ	実施打合せ	インターンシップのテーマを決定する。				4
報告資料作成等		日報・週報を整理する。 インターンシップ先の担当者と議論した内容を整理 者の確認をもらう。 インターンシップ先の担当者と議論し、インターン 成する。				18
						計 26
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法		するルーブリックを用いて、各到達目標を評価する。 すう。全ての到達目標の評価が可以上の場合に単位修行			はインター	ンシップ
関連科目	専攻科ゼミナー	-ル・専攻科特別研究 I・専攻科特別研究 II				
教科書・副読本	その他: しおり	を配布する。その他専攻科特別研究指導教員の指示に	こよる。			

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	積極的に挨拶し、職場の雰 囲気を活性化できる。	自分から挨拶することが できる。	挨拶されれば挨拶を返す ことができる。	挨拶することができない。
2	受けた相談に対応するこ とができる。	自分から相談をすること ができる。	促されれば相談をするこ とができる。	相談をすることができない。
3	他者と自分の意見の違い を理解し、折り合いをつけ ることができる。	自分から意見を出すこと ができる。	促されれば意見を出すこ とができる。	意見を出すことができない。
4	簡潔かつ論理的に報告を することができる。	自分から報告をすること ができる。	促されれば報告をするこ とができる。	報告をすることができない。
5	社会における技術者の役割を、実務体験と関連付け て説明することができる。	社会における技術者の役割を説明することができる。	社会における技術者の役 割を考えることができる。	社会における技術者の役割を考えることができない。

			1	_		
科目名		担当教員	学年	単位	開講時数	種別
専攻科ゼミナール (Seminar)		下記教員一覧参照	1	2	通年 4 時間	必修
授業の概要		て専門技術を課題解決に結びつける授業である。複ジングデザインで創出したアイデアを技術的な観点をF				で、専攻
授業の形態	実験・実習					
授業の進め方	員の知見を取り 野の探求を実施	-アリングデザインのテーマを用いて、これまで修得 入れ、問題解決に結びつく社会実装を行う。また、 iする。ゼミナールの進捗についての中間報告および fい自学自習の習慣を身につける。	必要に原	芯じて発	展的な専	
到達目標	 計画に基づる 進捗状況や呼ば必要な技術的 	リングデザインのアイデアを具現化するための計画をき作業を進め、進捗の報告を行うことができる 中間発表、ゼミナール担当からのアドバイスにより、 Jな問題点の解決を図ることができる C PDCA サイクルを継続的に実践することができる				、具体化
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	A (学習力) 総行	合的実践的技術者として、自主的・継続的に学習する	能力を言	育成する	00	
		講義の内容				
所属キャンパス		担当教員				
荒川キャンパス(柞	幾械)	青代 敏行、宇田川真介、大貫 貴久、草谷 大郎、己、柴田 芳幸、杉本 聖一、鈴木 拓雄、瀬山 夏 恵万、冨田 宏貴、中野 正勝、真志取 秀人、宮野	彦、田宮	宮 高信	、田村	
ゼミナール題目一	覧 (機械)	弾性媒体内の応力やひずみの挙動解析、ロケット推定能向上に関する研究、衝撃波を伴う高速流れに関する機械の性能向上に関する研究、メカトロニクス技術な祉機器への応用に関する研究、人間工学に基づく機能に関する研究、他	る実験的 の生体力	为基礎研 7学情報	究、流体 ・医療福	
荒川キャンパス(電気電子)	笠原美左和, 齋藤 敏治、鈴木 達夫、高崎 和之, 子、星 善光、堀 滋樹、源 雅彦、山本 昇志、吉 吉田 嵩、他				
ゼミナール題目一覧	5 (電気電子)	情報工学及び電子工学を用いた宇宙観測手法の研究、 くインターフェイス構築の研究、ソフトウェア無線 関する研究、単原子層物質の電子状態の理論的研究、 ネットワークを用いた観測・計測に関する研究、動同立体像表示法の研究、段差踏破ロボットに関する研究 を用いた人間の生活を豊かにする支援ツールの開発、 関する研究、福祉機器医療機器の開発に関する研究、	支術を用 が型の ボッカック が が が が が が が が が が が が が が り に り に り に	引いた電)計測・ ブラフロニ フトロニ	波通信に 通信機器 に基づく クス技術	
指導教員の確定		前期の履修申請時までに、よく話し合った上で指導 ミナールの実施内容等については、ガイダンスの他、 等を確認の上相談のこと.				
ゼミナールの実施		専攻科エンジニアリングデザインと連携を取り、またながら、各課題についてゼミナールを行う。専攻科シンを発展させ、複数の指導教員による PBL 方式でプログラミングや回路設計、機械設計など広い意味でンジニアリングデザインのアイデアを具現化すること	エンジニ ゼミナー でのもの	ニアリン ールを身)づくり	グデザイ ξ施する。	
法	ゼミナールに耳	(り組む姿勢、プレゼンテーション、レポート等により	判断す	る。		
関連科目						
教科書・副読本	その他: テーマ	毎に必要に応じて教材を配布				

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	エンジニアリングデザインのアイデアを具現化する作業計画を、主体的に立てることができる。	エンジニアリングデザインのアイデアを具現化するアイデアを具現化する作業計画を、教員やチームで相談しながら立てることができる。	エンジニアリングデザインのアイデアを具現化する作業計画を、教員の指導の下で立てることができる。	全く作業計画を立案でき ない。
2	作業計画に基づき自発的 に作業を進めることがで きる。	作業計画に基づき、ある程 度自発的に作業を進める ことができる。	教員の援助があれば、作業 計画に基づき、作業を進め ることができる。	作業計画に基づき自発的 に作業を進めることがで きない。
3		進捗状況や中間発表、ゼミナール担当からのアドバイスにより、技術的課題を把握し、改善しながら計画的に作業を進めることができる。		現在の状況を把握できず、 計画を改善しながら作業 を進めることができない。
4	PDCA サイクルを意識し、 自ら進んで継続的に課題 の発見や解決に努めるこ とができる。	PDCA サイクルを意識し、 チームの仲間と一緒に継 続的に課題の発見や解決 に努めることができる。	PDCA サイクルを意識し、 教員の援助により継続的 に課題の発見や解決に努 めることができる。	PDCA サイクルを意識し、 継続的に課題の発見や解 決に努めることができき ない。

							1		
科目名				担当教員		学年	単位	開講時数	種別
専攻科ゼ (Semina	ミナール r)		下記教	收員一覧参照		1	2	通年 4 時間	必修
授業の概	腰	指導教員の下で立案したテーマに関連して、国際的に広く知られている同様の研究報告や研究手法にも視野を広げ、文献調査やそれらを基にした実験や解析などを行い、課題抽出に始まり問題解決に至る研究活動の感覚を養う。活動内容についてレポートやプレゼンテーションにより複数の教員に報告する。							解決に至
授業の形	態	実験・実習							
授業の進	め方	状況を確認し、 る。	自発的	助計画を立案し、その計画 りに継続可能な活動計画は 学自習の習慣を身につける	こ更新する。活動報告(
 到達目標		1. 関連研究の記 2. 関連研究につ 3. 調査・実践記	調査・第 ついて記 計画を再	実践計画を立案することだ調査・実践することができ 調査・実践することができ 再スケジューリングし実行 に多様な観点からの評価	ができる。(A-1)[g] きる。(A-2)[g] うできる。(A-3)[g]	g]			
実務経験 容との関	さ授業内]連	なし							
学校教育 関係	育目標との	A (学習力) 総f	合的実品	践的技術者として、自主的		能力を	育成する) ₀	
				講義の内容					
所属キャ			担当教						
品川キャ	・ンパス			改、伊藤聡史、伊藤幸弘、 文文、齋藤博史、嶋﨑守、				要田勝実、	
案 2. 研究の		び 活動計画の立	文献訓行う。	牧員と共に研究テーマおる 周査や実験・解析などを行 内容についてレポートやフ	テい、課題抽出から問 題	夏解決!		究活動を	
法		ゼミナールに耳	文り組む	①姿勢、プレゼンテーショ 	コン、レポート等によ	り判断で	する。		
関連科目	-	20/14 -	- W 1. 1a	ンボルウンとおけるごと					
教科書・	副読本	ての他: アーマ	(ことに	こ必要に応じて教材を配布 					
				評価 (ルーブリ	,				
到達目標		到達レベルの目安 (優	_	標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目安	·		レベルの目安	` ,
1	立案でき		を	半期単位の研究活動計画立案できる。	半期単位の研究活動を立案できる。		ない。	動計画を立	
2	らも提案研究を実践	指導教員の提案に加えらも提案し、自発的に関研究を調査もしくはそらを参考にした実験や析を実践できる。		導教員の提案を参照し、 発的に関連研究を調査 しくはそれらを参考に た実験や解析を実践で る。	指導教員の提案を参 指導教員の支援のも 連研究を調査もしく れらを参考にした集 解析を実践できる。	と関はそ	析を全く	咒の調査や く実践でき	ない。
3		位で研究活動計画を 4 半期単位で研究活動計画 4 半期単位で研究活動計画 4 半期単位 ケジューリングでき を再スケジューリングで を再スケジューリングで を再スケジ きる。 きる。 きる。							
4	報や結り 術論文の 自ら発気	助から得られた 果を継続的かつ の参照などによ くする手法によ は対できる。	学 報 り 発	究活動から得られた情 や結果を継続的かつ自 的に評価・検討できる。	研究活動から得られ 報や結果を継続的に 検討できる。	平価・		動から得ら 具を評価・	

原文料ゼミナール 下記数員一覧参照 1 2 通年 4 時間 を修 4 時間 2 通年 4 時間 2 2 通年 4 時間 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
接案の概要 専攻科特別研究チーマに関連する関連研究を調査する。関連研究を主体的に調査することにより、学 生の主体的かつ報熱的に学習する力を育成する。 関連研究に関する論文の調査を実施する。調査 に当たって、1)調査計画(分野・論文誌等の決定)を立案、2)論文の関集および精査、3)論文の理解、4)調査した論文に関する報告等の作成を実施する。	科目名		担当教員	学年	単位	開講時数	種別		
世の主体的かつ継続的に学習する力を自成する。 提業の進め方 指導教員と特別研究テーマを議論し、テーマ決定後に関連研究に関する論文の調査を実施する。調査に当たって、1)調査計画(グ野・論文誌等の決定)を立案、2)論文の収集および精査、3)論文の理解、4)調査した論文に関する報告書から成を実施する。 予習、復習を行い目字目の習慣を身につける。 1、関連研究の調査計画を立案することができる。(A-1)[8] 2、関連研究を調査することができる。(A-2)[8] 3、護査計画書を再スケジューリングできる。(A-3)[8] 4、関連研究を理解し要約することができる。(A-4)[8] 字校教育目標との関係	専攻科ゼミナール (Seminar)		下記教員一覧参照	1	2		必修		
接業の進め方	授業の概要								
に当たって、1) 調査計画(分野・論文誌等の決定)を立案、2) 論文の収集および精査、3) 論文の 理解、4) 調危した論文に関する総計を同なを実施する。子習、復習を行い自学自習の習慣を身につける。 到達目標 1. 関連研究の調査計画を立案することができる。(A-1)[g] 2. 関連研究を調査することができる。(A-2)[g] 3. 調査計画書を再スケジューリングできる。(A-3)[g] 4. 関連研究を理解し要約することができる。(A-4)[g] 字校教育目標との A (学習力) 総合的実践的技術者として、自主的・継続的に学習する能力を育成する。関係	授業の形態	実験・実習							
2. 関連研究を調査することができる。(A-2)[g] 3. 調査計画書を再スケジューリングできる。(A-3)[g] 4. 関連研究を理解し要約することができる。(A-3)[g] 空校教育目標との 関係 おし 第義の内容 が成れ、 がアーエレクトロニクスの応用に関する関連研究を調査し理解する。 活電、機能・大き、関連研究を調査し理解する。 の情に基・格力 では、一般では、一般では、一般では、大き、調査と関連研究を調査し理解する。 がアーエレクトロニクスの応用に関する関連研究を調査し理解する。 がアーエレクトロニクスの応用に関する関連研究を調査し理解する。 がアーエレクトロニクスの応用に関する関連研究を調査し理解する。 を修する。 多倍長精度数値計算法を用いた数値計算に関する関連研究を調査し理解する。 の情に能モータ駆動制御に関する関連研究を調査し理解する。 制御工学に基づく移動ロボットに関する関連研究を調査し理解する。 制御工学に基づく移動ロボットに関する関連研究を調査し理解する。 を関する。 の事性能モータ駆動制御に関する関連研究を調査し理解する。 制御工学に基づく移動ロボットに関する関連研究を調査し理解する。 を関する関連研究を調査し理解する。 を関する関連研究を調査し理解する。 を関するがある。 を関するがある。 を関する関連研究を調査し理解する。 を関するがある。 を関するがある。 を関する関連研究を調査し理解する。 を関する関連研究を調査し理解する。 を関する関連研究を調査し理解する。 を関する関連研究を調査し理解する。 を関する関連研究を調査し理解する。 を関する関連研究を調査し理解する。 を関するのが性測定および測定装置の開発に関する関連研究を調査し理解する。 を認めるのが性測定および測定装置の開発に関する関連研究を調査し理解する。 を記めるのが性測定および測定装置の開発に関する関連研究を調査し理解する。 「対策力・対策の評価が、対策の解析の、対策の解析が、対策の解析の、対策の解析の、対策の解析の、対策の関連研究を調査し、対策の関連研究を調査し、対策の、対策の、対策の、対策の、対策の、対策の、対策の、対策の、対策の、対策の	授業の進め方	に当たって、1 理解、4)調査)調査計画(分野・論文誌等の決定)を立案、2)論 Eした論文に関する報告書の作成を実施する。	する論文の収集	文の調査 集およて	を実施すば精査、3	る。調査) 論文の		
容との関連 学校教育目標との 関係 講義の内容 講義の内容	到達目標	 関連研究を記 調査計画書 	間査することができる。(A-2)[g] E再スケジューリングできる。(A-3)[g]						
関係 超当教員 超当教員 電力エネルギーの応用技術に関する関連研究を調査し理解する。	実務経験と授業内 容との関連	なし							
所属キャンパス	学校教育目標との 関係	A (学習力) 総介		能力を言	育成する) ₀			
石橋 正基・相良 拓也 電力エネルギーの応用技術に関する関連研究を調査し理解する。			講義の内容						
石橋 正基	所属キャンパス		担当教員						
様沢 栄基 黒木 啓之 多倍長精度数値計算法を用いた数値計算に関する関連研究を調査し理解する。 多倍長精度数値計算法を用いた数値計算に関する関連研究を調査し理解する。 曹 梅芬 曹 梅芬 直世解する。 高性能モータ駆動制御に関する関連研究を調査し理解する。 制御工学に基づく移動ロボットに関する関連研究を調査し理解する。 当の世界では、大学の人の通信方式に関する関連研究を調査し理解する。 とは、大学の人のののののでは、というのでは、というのでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	石橋 正基・相良 ៛	石也	電力エネルギーの応用技術に関する関連研究を調査し理解する。						
黒木 啓之 多倍長精度数値計算法を用いた数値計算に関する関連研究を調査し理解する。 多倍長精度数値計算法を用いた数値計算に関する関連研究を調査し理解する。 電磁波散乱問題の数値解法とマイクロ波ミリ波受動回路に関する関連研究を調査し理解する。 制御工学に基づく移動ロボットに関する関連研究を調査し理解する。 と 数理工学に基づく非線形システムに関する関連研究を調査し理解する。 と 国	石橋 正基		パワーエレクトロニクスの応用に関する関連研究を	調査し理	1解する	0			
集崎 年彦・浅川 澄人 電磁波散乱問題の数値解法とマイクロ波ミリ波受動回路に関する関連研究を調査し理解する。 高性能モータ駆動制御に関する関連研究を調査し理解する。制御工学に基づく移動ロボットに関する関連研究を調査し理解する。 山本 哲也 宮田 尚起 川崎 憲広 稲毛 契	椛沢 栄基			する関連	頭	調査し理			
曹 梅芬 高性能モータ駆動制御に関する関連研究を調査し理解する。 高性能モータ駆動制御に関する関連研究を調査し理解する。 制御工学に基づく移動ロボットに関する関連研究を調査し理解する。 数理工学に基づく非線形システムに関する関連研究を調査し理解する。 宮田 尚起 RF 技術及びその通信方式に関する関連研究を調査し理解する。 間波数利用効率の改善に向けた周波数共用に関する関連研究を調査し理解する。 稲毛 契 周波数利用効率の改善に向けた周波数共用に関する関連研究を調査し理解する。 椛沢 栄基・岩田 修一 電子デバイスのための物性測定および測定装置の開発に関する関連研究を調査し理解する。 アワーエレクトロニクスの応用に関する関連研究を調査し理解する。 プワーエレクトロニクスの応用に関する関連研究を調査し理解する。 学業成績の評価方法 文献リスト、文献調査報告資料等を用いる。到達目標1~4 の全て(可)のレベル以上の者に単位修得を認める。成績評価は各ルーブリックの評点の合計点とする。エビデンス:スケジュール計画表・論文調査一覧表・文献調査報告資料	黒木 啓之			関連研	究を調	査し理解			
制御工学に基づく移動ロボットに関する関連研究を調査し理解する。 数理工学に基づく非線形システムに関する関連研究を調査し理解する。 宮田 尚起 川崎 憲広		登人	調査し理解する。		する関	連研究を			
宮田 尚起 川﨑 憲広 稲毛 契 稲毛 契 椛沢 栄基・岩田 修一 同部 晃大 学業成績の評価方法 対域リスト、文献調査報告資料等を用いる。到達目標に対するルーブリックの評点の合計点とする。エビデンス:スケジュール計画表・論文調査一覧表・文献調査報告資料	曹 梅芬		制御工学に基づく移動ロボットに関する関連研究を認	調査し理					
川崎 憲広 稲毛 契 電力エネルギーの応用技術に関する関連研究を調査し理解する。 周波数利用効率の改善に向けた周波数共用に関する関連研究を調査し理解する。 電子デバイスのための物性測定および測定装置の開発に関する関連研究を調査し理解する。 でプリアーエレクトロニクスの応用に関する関連研究を調査し理解する。 がフーエレクトロニクスの応用に関する関連研究を調査し理解する。 がフーエレクトロニクスの応用に関する関連研究を調査し理解する。 学業成績の評価方法 対達目標に対するルーブリックを用いて、各到達目標を評価する。評価には、スケジュール表、調査文献リスト、文献調査報告資料等を用いる。到達目標 1~4 の全て (可) のレベル以上の者に単位修得を認める。成績評価は各ルーブリックの評点の合計点とする。エビデンス:スケジュール計画表・論文調査一覧表・文献調査報告資料	山本 哲也					る。			
稲毛 契 周波数利用効率の改善に向けた周波数共用に関する関連研究を調査し理解する。					- 0				
対る。 電子デバイスのための物性測定および測定装置の開発に関する関連研究を調査し理解する。 アワーエレクトロニクスの応用に関する関連研究を調査し理解する。 学業成績の評価方 法 到達目標に対するルーブリックを用いて、各到達目標を評価する。評価には、スケジュール表、調査 文献リスト、文献調査報告資料等を用いる。到達目標 1~4 の全て (可) のレベル以上の者に単位修得 を認める。成績評価は各ルーブリックの評点の合計点とする。エビデンス:スケジュール計画表・論 文調査一覧表・文献調査報告資料						, ,			
査し理解する。 パワーエレクトロニクスの応用に関する関連研究を調査し理解する。 パワーエレクトロニクスの応用に関する関連研究を調査し理解する。 学業成績の評価方法 到達目標に対するルーブリックを用いて,各到達目標を評価する。評価には、スケジュール表,調査文献リスト、文献調査報告資料等を用いる。到達目標 1~4 の全て (可) のレベル以上の者に単位修得を認める。成績評価は各ルーブリックの評点の合計点とする。エビデンス:スケジュール計画表・論文調査一覧表・文献調査報告資料 関連科目			する。						
学業成績の評価方 法 到達目標に対するルーブリックを用いて,各到達目標を評価する。評価には、スケジュール表,調査 文献リスト、文献調査報告資料等を用いる。到達目標 1~4 の全て (可) のレベル以上の者に単位修得 を認める。成績評価は各ルーブリックの評点の合計点とする。エビデンス:スケジュール計画表・論 文調査一覧表・文献調査報告資料		爹一	査し理解する。						
法 文献リスト、文献調査報告資料等を用いる。到達目標 1~4 の全て (可) のレベル以上の者に単位修得を認める。成績評価は各ルーブリックの評点の合計点とする。エビデンス:スケジュール計画表・論文調査一覧表・文献調査報告資料 関連科目	阿部 晃大		パワーエレクトロニクスの応用に関する関連研究を	調査し理	[解する	0			
	学業成績の評価方 法	文献リスト、対 を認める。成績	C献調査報告資料等を用いる。到達目標 1〜4 の全て 遺評価は各ルーブリックの評点の合計点とする。エビ	(可) のに	ノベル以	(上の者に	単位修得		
教科書・副読本 その他: 研究毎に必要な教材を配布	関連科目								
	教科書・副読本	その他: 研究毎	に必要な教材を配布						

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	月単位の計画を立案でき る。	4 半期単位の計画を立案で きる。	半期単位の計画を立案で きる。	関連研究調査の計画を立 案できない。			
2	6 編以上の文献を調査で きる。	4 編以上の文献を調査できる。	2 編以上の文献を調査できる。	自身で文献を全く調査で きない。			
3	月単位で学習計画を再ス ケジューリングできる。	2ヶ月単位で学習計画を再 スケジューリングできる。	4 半期単位で学習計画を再 スケジューリングできる。	進捗に応じて文献調査の 計画を再スケジュールで きない。			
4	6 件以上の文献を理解し, その内容を要約できる。	4 編以上の文献を理解し、 その内容を要約できる。	2 編以上の文献を理解し, その内容を要約できる。	全く文献内容を理解できない。			

		令和 6 年度 専攻科 シラバス 						
科目名		担当教員	学年	単位	開講時数	種別		
専攻科ゼミナール (Seminar)		下記教員一覧参照	1	2	通年 4 時間	必修		
授業の概要	価される研究の て調査計画を再	旦当教員の下で、専攻科特別研究のテーマに関連する国際的な関連研究文献を調査し、国際的に認める研究の感覚を養う。また、文献調査の計画を立て、計画に沿って調査を実施し、進捗に応 関査計画を再調整することを通じて継続的な学習力を養う。調査した結果をまとめ、合同輪講で に学コースメンバーに紹介する。						
授業の形態	実験・実習							
授業の進め方	ACM 等の論文 同輪講等で発表	究のテーマに関連した文献調査に対して学習計画を式誌や国際会議プロシーディングの文献調査を実施す する。進捗状況を把握・改善しながら主体的、継続所い自学自習の習慣を身につける。	る。調査	至した結	i果を、年			
到達目標	2. 国際的な関 3. 調査計画を	周査計画を立案することができる。A-1 (g) 車研究を調査することができる。A-2 (g) 再スケジューリングできる。A-3 (g) ついて複数の国際的な文献を理解し紹介することがで	きる。 <i>[</i>	A-4 (g)				
実務経験と授業内 容との関連	なし	:し						
学校教育目標との 関係	A (学習力) 総介	合的実践的技術者として、自主的・継続的に学習する	能力をす	育成する) ₀			
		講義の内容						
所属キャンパス		担当教員						
1. 調査計画の立案 2. 関連研究調査の 3. 調査計画の再調 4. 調査結果の発表	実施 整	関連研究調査に対して学習計画を立案する。 国際的な関連技術・関連研究を調査し理解する。 進捗に応じて関連研究調査計画を再調整する。 調査結果を研究室メンバー等に紹介する。さらに調 講で、情報工学コースメンバー等に紹介する。	査結果を	全年2回	の合同輪			
担当教員								
小林 弘幸 小早川 倫広·横井	⊭ 健•岩田 湍	画像処理システムに関する文献を調査し理解する。 情報管理技術に関する文献を調査し理解する。						
黒木 啓之	NI	高性能計算技術に関する文献を調査し理解する。						
小早川 倫広・岩		情報セキュリティに関する技術を調査し理解する。						
知念 賢一・佐藤		次世代情報インフラに関する文献を調査し理解する。						
田中 覚		暗号理論に関する文献を調査し理解する。 						
学業成績の評価方 法	文献リスト、対める。	 	不可」	がない場	場合に単位	修得を認		
関連科目	専攻科特別研究	E I・専攻科特別研究 II						
教科書・副読本	その他: 各指導							

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	月単位の関連研究調査計 画を立案できる。	4 半期単位の関連研究調査 計画を立案できる。	半期単位の関連研究調査 計画を立案できる	関連研究調査の計画(目標・スケジュール)を立案できない。						
2	8 編以上の国際的な関連研 究を調査できる。	4 編以上の国際的な関連研 究を調査できる。	2編以上の国際的な関連研 究を調査できる。	2 編以上の国際的な関連研 究を調査できない。						
3	月単位で関連研究調査計 画を再スケジューリング できる。	4 半期単位で関連研究調査 計画を再スケジューリン グできる。	半期単位で関連研究調査 計画を再スケジューリン グできる。	進捗に応じて文献調査の 計画を再スケジュールで きない。						
4	8編以上の国際的な文献を 理解し、情報工学コースメ ンバーに紹介できる。	4 編以上の国際的な文献を 理解し、情報工学コースメ ンバーに紹介できる。	2編以上の国際的な文献を 理解し、情報工学コースメ ンバーに紹介できる。	・2 編以上の国際的な文献を理解できない。・情報工学コースメンバーに文献紹介できない。						

科目名		担当教員	学年	単位	開講時数	種別
専攻科エンジニア (Seminars with Ensign)		宇田川真介 (常勤/実務)・杉本聖一 (常勤)・堀滋樹 (常勤)	1	2	半期 4 時間	必修
授業の概要	学習・実習・調査・報告を包括した専門演習を行う。演習の内容は特別研究 I、専攻科ゼミナ 専攻科インターンシップと関連づけられ、専門分野の幅を広げユーザーの隠れた問題や技術的 をデザイン思考を用いてグループワークで解決する。これにより専門科目の技術向上とコミューション能力を修得する。					
授業の形態	実験・実習					
授業の進め方	を応用し、デサ	ノーション・評価など、広い意味での「ものづくり」 デイン思考を用いて解決に取り組み、その成果を報告 近い自学自習の習慣を身につける。		に課題を	発見し、『	専門知識
到達目標	2. 与えられた制	幾つかの基礎的な専門知識を複合して応用し、課題の 訓約の下で身に付けた専門知識を基に計画的に問題を 果題に対してチームで解決案を検討しアイデアを発表	解決する	ることが	できる。	きる。
実務経験と授業内 容との関連	あり					
学校教育目標との 関係	E (応用力・実)	践力) 総合的実践的技術者として、専門知識を応用し	問題を角	¥決する	能力を育り	成する。
		講義の内容				
項目		目標				時間
ガイダンス		自身の専門技術や強みを振り返り、グループワークでどのような役割を担えるのかを確認する。また、デザイン思考の考え方についてガイダンスを 行う。				
1. 導入		例えば、検証を想定した開発工程の理解、グループワークのための手法、議 論手法、課題発見のための調査手法等、基礎的な知識を得る。				
2. 製作ガイダンス		課題に取り組むための項目(プログラミング手法、電子回路作成法、製作に対してコストの考え方、安全性等)について理解する。				4
3. プロトタイプ製		グループワークにより各専門技術を生かしてものづくりを実践し、プロトタ イプを製作する。				
挿入)	の検証:(適宜	プロトタイプの製作の途中、適宜、検証を行い、より良いものとなるよう作業を進める。				
5. 成果報告		目標に対する成果を明確に報告する。				
6. 分析及び総括		結果分析から次提案を検討できる能力を培う				4
						計 60
		自学自習				
項目		目標				時間
学習計画		ブラッシュアップしながら効果的な学習計画にする。	,			2
調査		関連事項の調査を行い、理解を深める。				4
プロトタイプ製作		講義時間外の製作作業を行い、プロトタイプを完成	させる。			16
成果のまとめ		成果をまとめて発表資料を作成する。				
発表練習と発表資料の改訂 発表資料を改訂しつつ、発表の練習を行い、明確な報告に繋げる。					2	
					計 30	
総合学習時間 講義 + 自学自習			計 90			
学業成績の評価方 法	エンジニアリン る。評価は 100	/グ・デザインに取り組む姿勢、プレゼンテーション) 点法とする。	、製作物	勿、レオ	パートによ	り評価す
関連科目	関連科目					
教科書・副読本	た本 その他:教科書は特に指定しない。各指導教員の指示による。					
<u> </u>						

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	身に付けた幾つかの基礎 的な専門知識を主体的に グループでの協力を働き かけて複合して応用し、課 題の解決に取り組むこと ができる。	身に付けた幾つかの基礎 的な専門知識をグループ の協力を得て複合して応 用し、課題の解決に取り組 むことができる。	教員のサポートがあれば、 身に付けた幾つかの基礎 的な専門知識をグループ の協力を得て複合して応 用し、課題の解決に取り組 むことができる。	身に付けた幾つかの基礎 的な専門知識を複合して 応用し、課題の解決に取り 組むことができない。
2	与えられた制約の下で身に付けた専門知識を基に計画的に問題を解決することができる。	与えられた制約の下で身に付けた専門知識を基に、ある程度計画的に、問題の一部を解決することができる。	教員のサポートがあれば、 与えられた制約の下で身 に付けた専門知識を基に、 ある程度計画的に問題の 一部を解決することがで きる。	与えられた制約の下で身に付けた専門知識を基に計画的に問題を解決することができない。
3	チーム内で積極的にコミュニケーションをとりながら、自ら与えられた課題の解決アイデアを提案・検討し、成果を発表することができる。	チーム内でコミュニケーションをとりながら、与えられた課題の解決アイデアを検討し、成果を発表することができる。	教員のサポートがあれば、 チーム内でコミュニケー ションをとりながら、与え られた課題の解決アイデ アを検討し、成果を発表す ることができる。	チーム内でコミュニケー ションをとりながら、与え られた課題の解決アイデ アを検討することができ ず、成果を発表することが できない。

科目名		担当教員	学年	単位	開講時数	種別
専攻科エンジニア (Seminars with Ensign)		長谷川収 (常勤)	1	2	半期 4 時間	必修
授業の概要		3下において、課題の解決に向けた設計、実装、評価を 2なるため、デザイン力、制約下での作業力、チーム力				
授業の形態	実験・実習					
授業の進め方	報告を行う。	夏をチームで議論し、設計、実装、評価をチームで集 fい自学自習の習慣を身につける。	施する	,チー』	ムの成果を	まとめ、
到達目標	 5. 与えられた。 3. 要求仕様にまる。 4. 設計に基づき。 5. 実装したプロージャングを 	でに課題の成果(プロトタイプ、成果報告書)を提出 課題をチームで議論し、課題に対する要求仕様を作成 基づき設計することができる。E-3(e) きプロトタイプを実装することができる。E-3(e) コトタイプを評価することができる。E-3(e) バーとして割り当てられた役割を果たすことができる	すること	こができ	(h) :る。 E-3	(e)
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	E (応用力・実 	践力) 総合的実践的技術者として、専門知識を応用し	問題を角	解決する	能力を育	成する。
		講義の内容				
項目		目標				時間
ガイダンス		エンジニアリングデザインの目的、進め方についてヨ	理解する	0 0		2
課題提示・理解		提示された課題の内容を理解する。				4
概念設計		与えられた課題の要求をヒアリングで収集・分析し、	概念部	計を行	う。	8
詳細設計		・詳細設計を行う。 ・使用機材の選定・決定を行う。 ・役割分担を決定する。				
プロトタイプ実装		割り当てられた役割に基づきプロトタイプを実装し動作確認を行う。				
単体テスト・結合	テスト	個人が実装した機能を単体テストする。 チームで結合テストする。				4
成果報告		成果報告を行う。				4
						計 60
		自学自習				
項目		目標				時間
ヒアリング		要求を収集・分析する。				2
設計		システムの概念設計・詳細設計を実施する。				8
実装		割り当てられた役割に基づきプロトタイプを実装し		を行う	0	16
報告書作成		プレゼンテーションの準備、成果報告資料の作成を行	行う。			4
						計 30
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 課題に対する要求仕様・設計・実装・評価に対する報告を実施する。この時、到達目標 2~5 に関 成果評価シートを用いて複数の教員で評価する。到達目標 6 についてはチーム力評価シートを用い 教員及び学生が評価する。ただし、各到達目標の評価に「不可」がない場合に単位修得を認める。 エビデンス:成果評価シート(教員)・チーム力評価シート(教員・学生)・週報・スケジュール表 ロトタイプ・成果報告会レジュメ・発表資料					を用いて める。	
関連科目	日常的に行われ	1る、ものに対する観察、必要なものに対する気づき				
教科書・副読本	その他: 必要に	応じて配付する.				

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	締め切りまでに課題の成 果(プロトタイプ・成果報 告会レジュメ)を提出で きる。	(なし)	(なし)	締め切りまでに課題の成 果を提出できない。
2	ヒアリング等を複数回実 施して要求事項を整理し、 要求仕様を作成できる。	ヒアリング等を 1 回だけ 実施して、要求仕様を作成 できる。	チーム内だけで議論し、要 求仕様を作成できる。	要求仕様が作成できない。
3	要求仕様を実現するため の合理的な設計ができる。	(なし)	要求仕様を実現するため の必要最低限の設計がで きる。	要求仕様を実現するため の設計ができない。
4	設計に基づいてプロトタ イプを実装できる。	(なし)	設計に基づいてプロトタ イプを実装できるが、一部 に不具合がある。	設計に基づいてプロトタ イプを実装できない。
5	テスト結果に基づいて考 察できる。	設定したテスト項目に従ってテストを実施できる。	テスト項目を設定できる。	評価のためのテスト項目 が設定できない。
6		分担した役割を自力で果 たすことができる。	チームメンバーから支援 を受けることにより、分担 した役割を果たすことが できる。	分担した役割を果たすこ とができない。

科目名		担当教員	学年	単位	開講時数	種別
専攻科エンジニア (Seminars with Ensign)		1	2	半期 4 時間	必修	
授業の概要		査・報告を包括した専門演習を行う。演習の内容は特 シップと関連づけられ、専門分野の幅を広げ応用し				
授業の形態	実験・実習					
授業の進め方	を応用して解決	ィーション・評価など、広い意味での「ものづくり」 とに取り組み、その成果を報告する。 い自学自習の習慣を身につける。	について	に課題を	発見し、『	専門知識
到達目標		&つかの基礎的な専門知識を複合して応用し、課題の 訓約の下で身に付けた専門知識を基に計画的に問題を				きる。
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	E (応用力・実)	践力)総合的実践的技術者として、専門知識を応用し	問題を角	解決する	能力を育り	成する。
		講義の内容				
項目		目標				時間
1. 導入		例えば、検証を想定した開発工程の理解、グループワークのための手法、議 論手法、課題発見のための調査手法等、基礎的な知識を得る。			4	
2. 課題の発見		導入において得られた知識に基づいて、取り組む課題	題を発見	しする。		4
3. プロトタイプ設	計・製作	グループワークにより各専門技術を生かしてものづくりを実践し、プロトタイプを製作する。 なお、中間報告会を実施する。			36	
4. プロトタイプ 挿入)	の検証:(適宜	プロトタイプの製作の途中、適宜、検証を行い、よ 業を進める。	り良いも	のとな	るよう作	8
5. 成果報告		目標に対する成果を明確に報告する。				4
6. 分析及び総括		結果分析から次提案を検討できる能力を培う				4
						計 60
		自学自習				
項目		目標				時間
学習計画		ブラッシュアップしながら効果的な学習計画にする。				2
調査		関連事項の調査を行い、理解を深める。				4
プロトタイプ製作		講義時間外の製作作業を行い、プロトタイプを完成な	させる。			16
成果のまとめ		成果をまとめて発表資料を作成する。				6
発表練習と発表資料	料の改訂	発表資料を改訂しつつ、発表の練習を行い、明確な特別で	報告に繋	ぎげる。		2
						計 30
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	エンジニアリン る。評価は 100	· グ・デザインに取り組む姿勢、プレゼンテーション) 点法とする。	、製作物	勿、レオ	ペートによ	り評価す
関連科目						
教科書・副読本	その他: 教科書	は特に指定しない。各指導教員の指示による。				

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	グループでの協力を働き	的な専門知識をグループ の協力を得て複合して応 用し、課題の解決に取り組		応用し、課題の解決に取り						
2	与えられた制約の下で身に付けた専門知識を基に計画的に問題を解決することができる。	3 . 2 2 2	与えられた制約の下で身 に付けた専門知識を基に、	与えられた制約の下で身に付けた専門知識を基に計画的に問題を解決することができない。						

科目名		担当教員	学年	単位	開講時数	種別
専攻科エンジニア (Seminars with Ensign)		小早川倫広 (常勤)	1	2	半期 4 時間	必修
授業の概要	与えられた制約下において、課題の解決に向けた設計、実装、評価をチームで実施する。先端 ICT 技術者として活躍するため、デザイン力、制約下での作業力、チーム力を身につけることを目的とする。					
授業の形態	実験・実習					
授業の進め方	報告を行う。	夏をチームで議論し、設計、実装、評価をチームで集 fい自学自習の習慣を身につける。	施する	,チー』	ムの成果を	:まとめ、
到達目標	 与えられた。 要求仕様に。 設計に基づ。 実装したプリー 	でに課題の成果(プロトタイプ、成果報告書)を提出 課題をチームで議論し、課題に対する要求仕様を作成 基づき設計することができる。E-3(e) きプロトタイプを実装することができる。E-3(e) コトタイプを評価することができる。E-3(e) バーとして割り当てられた役割を果たすことができる	すること	こができ	(h) :る。 E-3	(e)
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	E (応用力・実 	践力) 総合的実践的技術者として、専門知識を応用し	問題を角	幹する	能力を育り	成する。
		講義の内容				
項目		目標				時間
ガイダンス		エンジニアリングデザインの目的、進め方についてヨ	理解する	0 0		2
課題提示・理解		提示された課題の内容を理解する。				
概念設計		与えられた課題の要求をヒアリングで収集・分析し、	概念部	計を行	う。	8
詳細設計		・詳細設計を行う。 ・使用機材の選定・決定を行う。 ・役割分担を決定する。				8
プロトタイプ実装		割り当てられた役割に基づきプロトタイプを実装し動作確認を行う。				
単体テスト・結合	テスト	個人が実装した機能を単体テストする。 チームで結合テストする。				4
成果報告		成果報告を行う。				4
						計 60
		自学自習				
項目		目標				時間
ヒアリング		要求を収集・分析する。				2
設計		システムの概念設計・詳細設計を実施する。				8
実装		割り当てられた役割に基づきプロトタイプを実装し		を行う	0	16
報告書作成		プレゼンテーションの準備、成果報告資料の作成を行	行う。			4
						計 30
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方法 課題に対する要求仕様・設計・実装・評価に対する報告を実施する。この時、到達目標 2~5 に関し 成果評価シートを用いて複数の教員で評価する。到達目標 6 についてはチーム力評価シートを用い 教員及び学生が評価する。ただし、各到達目標の評価に「不可」がない場合に単位修得を認める。エビデンス:成果評価シート(教員)・チーム力評価シート(教員・学生)・週報・スケジュール表・ロトタイプ・成果報告会レジュメ・発表資料					を用いて める。	
関連科目	電子情報工学第	E験実習 III				
教科書・副読本	その他: 特に指	定しない。				

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	締め切りまでに課題の成 果(プロトタイプ・成果報 告会レジュメ)を提出で きる。	(なし)	(なし)	締め切りまでに課題の成 果を提出できない。
2	ヒアリング等を複数回実 施して要求事項を整理し、 要求仕様を作成できる。	ヒアリング等を 1 回だけ 実施して、要求仕様を作成 できる。	チーム内だけで議論し、要 求仕様を作成できる。	要求仕様が作成できない。
3	要求仕様を実現するため の合理的な設計ができる。	(なし)	要求仕様を実現するため の必要最低限の設計がで きる。	要求仕様を実現するため の設計ができない。
4	設計に基づいてプロトタ イプを実装できる。	(なし)	設計に基づいてプロトタ イプを実装できるが、一部 に不具合がある。	設計に基づいてプロトタ イプを実装できない。
5	テスト結果に基づいて考 察できる。	設定したテスト項目に従 ってテストを実施できる。	テスト項目を設定できる。	評価のためのテスト項目 が設定できない。
6		分担した役割を自力で果 たすことができる。	チームメンバーから支援 を受けることにより、分担 した役割を果たすことが できる。	分担した役割を果たすことができない。

科目名		担当教員	学年	単位	開講時数	種別
専攻科特別研究 I (Advanced Resear	rch I)	下記教員一覧参照 1 6 前期 4時間 後期 8時間				必修
授業の概要		見点から自ら社会に存在する問題を発見し、解決方法 fい、試作して評価する。期限内に特別研究Ⅰ審査会 >て発表する。				
授業の形態	実験・実習					
授業の進め方		(員の下で研究を実施する。 fい自学自習の習慣を身につける。				
到達目標	できる 2. 問題を解決	景を把握した上で課題を見出し、工学研究を通して自 するための研究計画を立て、自ら研究を推進できる能 資料をまとめ、プレゼンテーションにより成果の発表	力を習行	导できる)	力を修得
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、工学的立場から地球的視点 ·解決する能力を育成する。	で社会	に存在す	する問題を	発見し、
		講義の内容				
所属キャンパス		担当教員				
目指導教員(機械)	工学)	鈴木拓雄:弾性媒体内の応力やひずみの挙動解析(複				
目指導教員(機械)	工学)	中野正勝:ロケット推進装置の効率化と耐久性能向				
目指導教員(機械)	工学)	宇田川真介:衝撃波を伴う高速流れに関する実験的基礎研究				
目指導教員(機械)	工学)	小出輝明:流体機械の性能向上に関する研究(補:				
荒川キャンパス: 目指導教員(機械	工学)	する研究(補:喜多村拓)				
目指導教員(機械)	工学)	古屋友和:人間工学に基づく機械とのインタラクションに関する研究				
目指導教員(電気	・電子工学)	山本昇志:センシング情報に基づくインターフェ/ 田嵩)				
荒川キャンパス: 目指導教員(電気	・電子工学)	和之)	に関する	5研究(補:髙﨑	
荒川キャンパス: 目指導教員(電気	・電子工学)					
荒川キャンパス:着 目指導教員(電気	・電子工学)	高田 拓:小型の計測・通信機器ネットワークを用い研究		・計測	に関する	
荒川キャンパス:着目指導教員(電気	・電子工学)		の研究			
荒川キャンパス:着目指導教員(電気	・電子工学)		* ## 1 \.	- 1- w -1-	Let	
荒川キャンパス:着目指導教員(電気	・電子工学)	堀 滋樹:メカトロニクス技術を用いた人間の生活にの開発	と豊かに	-する文	援ツール	
荒川キャンパス:学修総まとめ科 福田恵子:生体機能の計測技術に関する研究 目指導教員(電気・電子工学)						
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学) 吉村拓巳:福祉機器医療機器の開発に関する研究(補:星善光)						
学業成績の評価方 法		「る評価は、審査会発表資料・発表等を用いて複数の 「不可」がない場合に単位修得を認める。	教員で記	平価する	。ただし、	各到達
関連科目 専攻科インターンシップ・専攻科エンジニアリングデザイン						
教科書・副読本						

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	自ら探索した社会状況から課題を見出し、これまで学んできた基礎工学知識を発展させながら可決策を導出することができる	自ら探索することで課題 を見出し、これまで学んで きた基礎工学知識を確実 に活用しながら可決策を 導出することができる	指導を受けながら課題を 見出し、工学的な知識を活 用して解決策を定めるこ とができる	社会的背景のない独自の 考えで課題設定して、工学 的手段で解決策を探るこ とができない						
2	的確な研究計画を立てる とともに、問題が発生した 時の対処策を備えて、自ら の研究を推進することが できる	自ら研究計画を立てると ともに、担当教員と議論を 積極的に行い、自らの研究 を推進することができる	指導を受けながら研究計画を立て、フォローを受けつつも自ら、研究を推進することができる	実効的な研究計画を立てられず、研究が進まずに目標を達成することができない						
3	期限内に審査会に関わる 書類(審査会用レジュメ、 審査会用発表資料)を提出 できる。	期限内に必要書類を提出 して、相手に理解してもら うことを重視した発表を することができる。	期限内に必要書類を提出 して、その成果を発表する ことができる。	期限内に必要書類を提出 できず、発表もわかりに くい。						

		Т	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			1			
科目名			担当教員		学年	単位	開講時数	種別	
専攻科特5 (Advance	別研究 I ed Resear	rch I)	下記教員一覧参照	下記教員一覧参照 1 6 前期 4時間 後期 8時間					
授業の概要	要	特別研究の内容		バホームページにて掲 載	見するの	で確認	すること。		
授業の形態	態	実験・実習							
授業の進む	め方	ける。	、研究内容、実験に関する指導 い自学自習の習慣を身につける		習を行い	ハ自学自	習の習慣	を身につ	
到達目標		2. 問題解決のた	引知識を活用し、研究課題についための手法を提案し、解決手法 所究成果(前刷り、発表資料)	を実現するための活動ス			発表でき	る。	
実務経験。 容との関連		なし							
学校教育 関係	目標との		合的実践的技術者として、工学 解決する能力を育成する。	的立場から地球的視点	で社会	に存在す	する問題を	発見し、	
			講義の内容	\$					
所属キャ	ンパス		担当教員						
品川キャ	ンパス		伊藤敦, 伊藤聡史, 伊藤幸弘, 君塚政文, 齋藤博史, 嶋﨑守,	稲村栄次郎, 大野学, 長谷川収, 松澤和夫,	工藤 吉田西	正樹,累 女弘	厚田勝実,		
1. 研究テーマの決定 2. 研究※の実施 3. 審査会			影響を考え、研究テーマを指導問題解決のための手法を提案計,製作、評価を行う. その際前に十分に確認して責任をもっ	プローバルな視点から社会に存在する問題を調査し、研究課題の社会貢献や響を考え、研究テーマを指導教員と共に決定する. 題解決のための手法を提案する.提案した解決手法を実現するための設立、製作、評価を行う.その際、研究内容および倫理的問題がないことを事に十分に確認して責任をもって遂行する. を含金で研究成果を発表し、質疑応答を行う.					
下記,担證機械工学	当教員一覧 分野)	覧(品川 CP	※下記,研究課題名一覧(個表 は集約)		枚員で同	可一課題	名のもの		
栄次郎, ナ	、野学,君 笑,齋藤	伊藤幸弘, 稲村 塚政文, 工藤正 専史, 嶋崎守, 長 吉田政弘	メカトロニクスに基づく管内擦・摩耗機構に関する研究,後力学に基づく機械要素解析に関学理論の応用技術に関する研究に関する研究,機械力学理論の特性に関する研究・金属材料の究,特殊加工の加工現象評価の	数細加工および高精度言 関する研究,熱流体輸送 党,電磁加工や材料の3 D応用技術に関する研9 D電磁力接合における掲	十測に閉 送形 変形 変形 金 で の の の の の の の の の の の の の の の の の の	関する研 ける研究 ミおよび 属材料に 面状態に	究,材料 ,機械力 数値解析 組織と諸		
学業成績(法	の評価方	研究に取り組む	姿勢、プレゼンテーション、記	命文及び審査会の結果等	等により) 合否の	判断する。		
関連科目									
教科書・	副読本	その他: テーマ	ごとに必要に応じて教材を配布	ī					
		•	評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)	
1	基礎的な専門知識を応用し、研究課題について調査できる。			研究課題について調査 することができない					
2	解決手法を実現するため 問題に対する具体性のあ 問題解決のための手法を 問題解決のため の活動ができる。 問題に対する具体性のあ 提案できる。 提案できない。					手法を			
3	を理解し	こおいて質問内 して過不足なく 『答できる。					こおいて仮 ごきない。	开究成果	

科目名		担当教員	学年	単位	開講時数	種別	
専攻科特別研究 I (Advanced Resear	rch I)	下記教員一覧参照	1	6	前期 4 時間 後期 8 時間	必修	
授業の概要	発展させること	文科特別研究では指導教員の下での研究以外に、専攻科インターンシップで見出した独自の課題 民させることもできる。なお、複数の指導教員による PBL 的な指導体制での研究もある。特別 D内容については、ガイダンスおよびホームページにて掲載するので確認すること。					
授業の形態	実験・実習						
授業の進め方	ける。	の下で、研究内容、実験に関する指導を受ける。予習、復習を行い自学自習の習慣を身につ 習を行い自学自習の習慣を身につける。					
到達目標	2. 自らの研究: 3. 問題解決のが 4. 解決手法を記 5. 解決手法を記 6. 研究成果(記 7. 審査会におい 8. 審査会におい	ローバルな視点から社会に存在する問題を考えることができる。(F-1)[a] の研究テーマの社会的貢献は何かを考えることができる。(F-1)[b] 関解決のための手法や新たな工夫を提案できる。(F-2)[e] できまと実現するための活動ができる。(F-2)[e] できまと評価するための方針を示すことができる。(F-2)[e] では、前刷り、発表資料)を作成できる。(F-3)[f] では、おいて研究成果を論理的に発表できる。(F-3)[f] では、おいて質問内容を理解し論理的に回答できる。(F-3)[f] では、おいて質問内容を理解し論理的に回答できる。(F-3)[f] では、おいて質問内容を理解し論理的に回答できる。(F-4)[h]					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		(創造力)総合的実践的技術者として、工学的立場から地球的視点で社会に存在する問題を発見し、 見した問題を解決する能力を育成する。					

		_
講義の	ᇄ	1 /2/2
ロ出ませてノ	ᅥ	4

所属キャンパス

担当教員

電力エネルギーの応用技術に関する研究(石橋 正基・相良 拓也)

電力エネルギーの応用のための検討・試験・評価手法と問題点の解決能力を修得する。例えば、パルス大電流エネルギー応用である電磁接合・成形の実用化に向け、金属材料に応じた接合・成形条件、評価試験、解析を行う。また、高電圧応用として、放電現象により創成されるナノ炭素材料を生成し、評価を行う。 得られた成果を審査会に報告する。

パワーエレクトロニクスの応用技術に関する研究(石橋 正基)

電気電子回路やパワーエレクトロニクスの専門知識を生かした電源回路の実用的なシステムの構築手法と課題解決能力を修得する。実験で用いる試験装置は設計から製作まで行い、適切な計測器を使用して試験装置の総合的なシステムの性能を評価する。 得られた成果を審査会に報告する。

誘電体, 磁性体を用いた高周波デバイスの開発(椛沢 栄基)

電子物性と高周波回路の専門知識を生かした課題解決能力を修得する。試料作製に必要な物理的・化学的な合成技術と評価技術、また高周波測定技術及び解析方法を学習し、実際に高周波用デバイスの開発を行う。得られた成果を審査会に報告する。

多倍長精度数値計算法を用いた数 値計算に関する研究(黒木 啓之) コンピュータ、数値計算とそれを応用とした電磁波の専門知識を生かした 課題解決能力を修得する。多倍長精度数値計算や並列処理とその応用である GPGPU などを使った計算手法を学習し、これらの手法を電磁波散乱問 題に適用して数値解析を行い、自然/物理現象と対比させて検証・評価する。 得られた成果を審査会に報告する。

電磁波散乱問題の数値解法とマイクロ波ミリ波受動回路に関する研究(柴崎 年彦・浅川 澄人)

電磁波散乱問題の数値解析法、マイクロ波ミリ波受動回路技術及び RF 回路技術の専門知識を活かした課題解決能力を修得する。マクスウェル方程式などの基本方程式に基づく数値解析法により対象とする散乱問題を数値解析して電磁現象を定量的かつ物理的に捉え、アンテナやフィルタ、発振器、検波器などを設計・作製して、実機の性能を評価する。 得られた成果を審査会に報告する。

高性能モータ駆動制御に関する関 連研究(曹 梅芬)

電気機器と制御工学の専門知識を生かした課題解決能力を修得する。電磁気現象を定量的に捉えるパワーエレクトロニクス技術と制御法や構成機器の性能・最適な使用方法を学習し、シミュレーション解析等を通じて総合的なシステム性能を明らかにする。更にシミュレーション結果を実験検証し有効性を確認する。 得られた成果を審査会に報告する。

制御工学に基づく移動ロボットに関する関連研究(曹梅芬)

電気工学と制御工学の専門知識を生かした課題解決能力を修得する。自然/物理現象を定量的に捉えるロボティクス技術、制御法や構成機器の性能、最適な使用方法を学習し、シミュレーション解析等を通じて総合的なシステムの性能を明らかにする。更にシミュレーション結果を実験検証し、有効性を確認する。 得られた成果を審査会に報告する。

数理工学に基づく非線形システム に関する研究(山本 哲也) 非線形システムの数理モデリングおよび数値解析手法に関する専門知識を生かした課題解決能力を修得する。自然/物理現象等を正確且つ定量的に捉えるために安定解析手法を学ぶ。また、様々な数値計算手法や最適な使用方法を学習し、必要に応じた手法を用い総合的にシステムの特性を明らかにする。得られたデータは様々な解析手法を用いて処理し、評価を行う。得られた成果を審査会に報告する。

周波数利用効率の改善に向けた RF 技術及びその通信方式に関す る研究(宮田 尚起)

無線通信における周波数利用効率の改善をめざし、RF 技術及びその通信方式に関する専門知識を活かした課題解決能力を修得する。無線端末を構成する RF フロントエンド部として、物理的な特徴を活かしたフィルタに代表される RF 回路の設計、製作を行う。また、通信方式を具体的に考慮した RF性能や、RF 性能を考慮したシステムの周波数利用効率の性能を評価する。得られた成果を審査会に報告する。

電力エネルギーの応用技術に関する研究(川崎 憲広)

電気電子工学の専門知識を生かした電力エネルギーの応用のための検討・試験・評価手法と問題点の解決能力を修得する。例えば、太陽光発電の入力である日射量を気象衛星画像を用いてリアルタイムに推定する手法や機械学習を用いて予測する手法を開発し、その推定値の分析・評価を行う。また、電力系統安定運用のためのエネルギー貯蔵も含めたシステム提案し、電力の需要と供給を一致させ再生可能エネルギー導入量を増やせる運転手法を開発して、分析・評価を行う。得られた成果を審査会に報告する。

周波数利用効率の改善に向けた周波数共用に関する検討(稲毛 契)

無線通信における周波数利用効率の改善をめざし、電波伝搬を始めとする時空間的に捉えた周波数資源に探知とその資源を利用した通信方式に関して、専門知識を活かした課題解決能力を修得する。複数の端末あるいは複数の無線システムが周波数資源を共用しあう中で、利用可能な資源探知、与干渉の制御、自身の通信性能改善などを行う手法をシステム運用の観点から検討を行い、評価する。得られた成果を審査会に報告する。

電子デバイスのための物性測定 および測定装置の開発(椛沢 栄 基・岩田 修一) 各種デバイス開発に関わる電子物性(物性物理)の専門知識を生かした課題解決能力を修得する。電気伝導の基礎となる輸送現象、界面、電子状態を学習し、その測定装置を開発する。ま t た、得られた知見を元とした電子デバイスの開発も行う。 得られた成果を審査会に報告する。

学業成績の評価方 法	研究に取り組む姿勢、プレゼンテーション、論文及び審査会の結果等により判断する。
関連科目	
教科書・副読本	

	デ価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	グローバルな視点から社 会に存在する様々な問題 を調査し、考察できる.		グローバルな視点から社 会に存在する様々な問題 を調査できる.					
2	研究の社会的必要性を理解し、新規性のある研究 テーマを決定できる。		研究の社会的必要性を理解し、研究テーマを決定できる。					
3	問題に対する具体性のあ る解決手法を提案できる.		問題に対する解決手法を 提案できる.	問題に対する解決手法を 提案できない.				
4	解決手法を実現するため の活動ができる.			解決手法を実現するための活動ができない.				
5	解決手法を評価するため の方針を示すことができ る.			解決手法を評価するため の方針を示すことができ ない.				
6	研究成果(前刷り、発表資料)を論理的にまとめることができる.		研究成果(前刷り、発表資料)を作成することができる.	研究成果(前刷り、発表資料)を作成できない.				
7	審査会において研究成果 を設定された時間内に論 理的に発表できる.		審査会において研究成果を発表できる.	審査会において研究成果 を発表できない.				
8	審査会において質問に対 して論理的に回答できる.		審査会において質問に対し,自分なりの考えを回答できる.	審査会において質問に対し回答できない.				
9	期限内に審査会に関わる 書類を提出できる.			期限内に審査会に関わる 書類を提出できない.				

科目名	担当教員							
専攻科特別研究 I (Advanced Research I) 1					前期 4 時間 後期 8 時間	必修		
授業の概要		l点から自ら社会に存在する問題を発見し、解決方法 fい、試作して評価する。期限内に特別研究審査会書 表する。						
授業の形態	実験・実習							
授業の進め方		対員の下で研究を実施する。 近い自学自習の習慣を身につける。						
到達目標	2. 研究テーマの 3. 問題に対する 4. 提案手法を 5. 設計に基づい 6. 提案手法を 7. 研究成果(1 8. 審査会におい 9. 審査会におい	1. グローバルな視点から社会に存在する問題を考えることができる。(F-1) [a] 2. 研究テーマの社会的意義を考えることができる。(F-1) [b] 3. 問題に対する解決手法を提案できる。(F-2) [e] 4. 提案手法を実現するための設計ができる。(F-2) [e] 5. 設計に基づいて実装できる。(F-2) [e] 6. 提案手法を評価できる。(F-2) [e] 7. 研究成果(レジュメ、発表資料)を作成できる。(F-3) [f] 8. 審査会において研究成果を発表できる。(F-3) [f] 9. 審査会において質問に対して回答できる。(F-3) [f] 10. 期限内に審査会に関わる書類を提出できる。(F-4) [h]						
実務経験と授業内容との関連)a+++.	上 っ 日日日高 少	- 3% El 1		
学校教育目標との関係		合的実践的技術者として、工学的立場から地球的視点 解決する能力を育成する。	で社会	に存在	する問題を	発見し、		
		講義の内容						
所属キャンパス		担当教員						
1. 研究テーマの決 2. テーマ発表会 3. 研究の実施 4. 審査会 研究テーマ・課題		課題を調査し、研究テーマを決定する。 テーマ発表会で研究テーマを発表し、質疑応答を行う。 問題に対する解決手法を提案する。提案する解決手法を実現するための設計・試作・評価をする。 審査会で研究成果を発表し、質疑応答を行う。 課題の内容						
画像処理システムし 究(小林 弘幸)	に関する基礎研		発し、評価を行う。画像処理は膨大な情報を取り扱う 的なアルゴリズムの実装を心がける。実装にあたり、 を学習し、実際に要求分析、仕様策定、評価を行う。					
情報管理技術に関 (小早川 倫広・樹 満)								
高性能計算技術の原 究(黒木 啓之)	応用に関する研	高性能計算技術と人工知能・ニューラルネットワーク技術を画像処理など の認識技術や電磁波散乱問題に応用して、解決手法を提案し、実装・評価を 行う。						
情報セキュリティ! 早川 倫広・岩田		情報セキュリティ実習 I ~Ⅲで習得したスキルを応 演習環境システムの提案および情報セキュリティに 提案を行う。提案するシステムや解決手法を実際に	関するテ	データ解	析手法の			
(知念 賢一・佐藤	喬)	新たな情報基盤の可能性の探究や既存システムの問 プの設計・実装そして評価を行う。						
暗号理論とその応用に関する研究 (田中 覚) 社会における問題に対し、暗号技術及び応用技術を活用した、安全な暗号を活用したサービスの構築を実現する上での問題を抽出し、その問題を解決するアルゴリズムを検討し、具体的な実装を行って性能評価を行う。					な暗号を を解決す			
学業成績の評価方 法	【審査条件】到達目標 (10) 審査会発表資料・レジュメの全てを提出期限内に提出した者に対して、特別研究 I 審査会で審査を行う。 【評価方法】到達目標(1~9)をルーブリックで評価し、全ての評価項目に対し「可」以上である場合に単位修得を認める。評価は、審査会に出席した情報工学コースの全教員が行う。							
関連科目	専攻科特別研究	専攻科特別研究 II・専攻科ゼミナール・専攻科インターンシップ						
教科書・副読本 その他: 研究毎に必要な教材を配布								

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	グローバルな視点から、社 会に存在する様々な問題 を調査し、新たな問題を発 見することができる。	グローバルな視点から、社会に存在する様々な問題 を調査し、自分の視点で考察できる。	グローバルな視点から、社 会に存在する様々な問題 を調査できる。	グローバルな視点から、社 会に存在する様々な問題 を調査できない。			
2	研究の社会的必要性を理解し、自ら新規性が高い研究テーマを決定できる。	研究の社会的必要性を理解し、自ら研究テーマを決定できる。	研究の社会的必要性を理解し、教員の助言により研究テーマを決定できる。	・研究テーマと社会の関係 を理解できない。・倫理的 観点が欠如した研究テー マである。			
3	問題に対する独創的な解 決手法を提案できる。	問題に対する合理的な解 決手法を提案できる。	問題に対する必要最低限 の解決手法を提案できる。	問題に対する解決手法を 提案できない。			
4	提案手法を実現するため の独創的な設計ができる。	提案手法を実現するため の合理的な設計ができる。	提案手法を実現するため の必要最低限の設計がで きる。	提案手法を実現するため の設計ができない。			
5	設計に基づいて試作がで きる。	(なし)	設計に基づいて試作でき るが、一部に不具合があ る。	設計に基づいて試作でき ない。			
6	評価結果に基づいて考察 できる。	設定した評価項目に従っ て評価を実施できる。	評価項目を設定できる。	評価項目を設定できない。			
7	研究成果(レジュメ、発表 資料)が作成でき、簡潔か つ論理的に記述されてお り、さらに説得力がある。	研究成果が作成でき、論理 的に記述されている。	研究成果を作成できるが、 論理的に記述されていない。	研究成果を作成できない。			
8	審査会において研究成果 を簡潔かつ論理的に説明 でき、さらに説得力があ る。	審査会において研究成果 を論理的に説明できる。	審査会において研究成果 を発表できるが、説明が論 理的でない。	審査会において研究成果 を発表できない。			
9		審査会において質問に対して論理的に回答できる。	審査会において質問に答 えているが、回答が論理的 でない。	審査会において質問に対 して一つも回答できない。			
10	期限内に審査会に関わる 書類を提出できる。	(なし)	(なし)	期限内に審査会に関わる 書類を提出できない。			

			令和 6 年度 専攻科	ンフハス				
科目名			担当教員		学年	単位	開講時数	種別
	文科特別研究 II 下記教員一覧参照 Ivanced Research II)				2	8	通年 8 時間	必修
授業の概要	の概要 特別研究の内容については、ガイダンスおよびホームページにて掲載するので確認すること。							
授業の形態	影	実験・実習						
授業の進め	か方	ける。	、研究内容、実験に関する指導 い自学自習の習慣を身につける		習を行い	い自学自	習の習慣を	を身につ
到達目標		2. 論理的もしく	立て、課題に対して既修得知識 、は科学的に研究課題を解決す 研究成果(前刷り、発表資料)	るための活動ができる。				3 .
実務経験と 容との関連		なし						
学校教育目 関係	目標との		合的実践的技術者として、工学 ·解決する能力を育成する。	的立場から地球的視点	で社会	に存在っ	する問題を	発見し、
			講義の内容	<u> </u>				
所属キャン	ンパス		担当教員					
品川キャン	ンパス		伊藤敦, 伊藤聡史, 伊藤幸弘, 君塚政文, 齋藤博史, 嶋﨑守,				厚田勝実,	
1. 研究※の実施 2. 学修総まとめ科目に関する履修計画書の作成 3. 審査会 4. 学修総まとめ科目の成果の要旨の作成 場向作成 3. 審査会 4. 学修総まとめ科目の成果の要旨の作成 場合の作成 場合の作成 は倫理的配慮を必ず行う. 3. 審査会で研究成果を発表し、質疑応答を行う. 4. 研究テーマの学修内容を総括するため、簡潔かつ明快に学修総まとめ科目の成果の要旨としてまとめる。その作成には倫理的配慮を必ず行う.					認して責について その作成 とめ科目			
担当教員- 学分野)	一覧(品)	∥ CP 機械工	※下記,研究課題名一覧(個表 は集約)	長より.なお複数担当教	人員で同	一課題	名のもの	
栄次郎, 大樹, 栗田勝	伊藤敦, 伊藤聡史, 伊藤幸弘, 稲村 栄次郎, 大野学, 君塚政文, 工藤正 樹, 栗田勝実, 齋藤博史, 嶋崎守, 長 谷川収, 松澤和夫, 吉田政弘 谷川収, 松澤和夫, 吉田政弘 谷川収, 松澤和夫, 吉田政弘 谷川収, 松澤和夫, 吉田政弘 谷川収, 松澤和夫, 吉田政弘 および高精度計測に関する研究, 材料 力学に基づく機械要素解析に関する研究, 熱流体輸送に関する研究, 機械力 学理論の応用技術に関する研究, 電磁加工や材料の変形測定および数値解析 に関する研究, 機械力学理論の応用技術に関する研究, 金属材料の組織と諸 特性に関する研究・金属材料の電磁力接合における接合界面状態に関する研究 究, 特殊加工の加工現象評価のための計測技術に関する研究							
学業成績の 法	の評価方		元成果(前刷り、発表資料)をき そ(30 %)により合否を判断す]み(4	0 %)、	論文(30 ⁰	%)及び
関連科目								
教科書・副	副読本	その他: テーマ	ごとに必要に応じて教材を配布	ī				
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
1	を進めることができる。 を有効利用して		究 課題に対して既修得知識 を有効利用して、自ら研究 を進めることができる。				付して研究 こができな	
2	研究課題	もしくは科学的 題を解決するた ゞできる。					題を解決す ぶできない。	
3	を理解し	こおいて質問内 して過不足なく 『答できる。					こおいて研 ごきない。	开究成果
	_	_						

科目名		担当教員	学年	単位	開講時数	種別
専攻科特別研究 II (Advanced Resear	攻科特別研究 II dvanced Research II)下記教員一覧参照28通年 8 時間					必修
授業の概要	ための設計を行	記点から自ら社会に存在する問題を発見し、解決方法 fい、実装・構築をして評価する。研究成果を予備審 :機構の申請書類および特別研究審査会書類を提出す	査会お。			
授業の形態	実験・実習					
授業の進め方		EI に引き続き、特別研究指導教員の下で研究を実施 い自学自習の習慣を身につける。	する。			
到達目標	2. 研究テーマの 3. 問題解決のが 4. 提案手法や終 5. 提案手法を記 6. 研究成果(そ 7. 審査会におい 8. 審査会におい	な視点から社会に存在する問題を考えることができるの社会的意義は何かを考えることができる。(F-1) [ke をめの手法や新たな工夫を提案できる。(F-2) [e] 所たな工夫を実装できる (F-2) [e] 平価することができる (F-2) [e] 研究論文、前刷り、発表資料)を作成できる。(F-3) [f] いて質問を理解し論理的に回答できる。(F-3) [f] な会・学位授与に関わる書類を提出できる。(F-4) [h]	o] [f]) [a]		
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、工学的立場から地球的視点 解決する能力を育成する。	で社会	に存在、	する問題を	発見し、

義		

所属キャンパス

担当教員

電力エネルギーの応用技術に関する研究(石橋 正基・相良 拓也)

電力エネルギーの応用のための検討・試験・評価手法と問題点の解決能力を修得する。例えば、パルス大電流エネルギー応用である電磁接合・成形の実用化に向け、金属材料に応じた接合・成形条件、評価試験、解析を行う。また、高電圧応用として、放電現象により創成されるナノ炭素材料を生成し、評価を行う。 研究成果をもとに学位申請を行う。

パワーエレクトロニクスの応用技術に関する研究(石橋 正基)

電気電子回路やパワーエレクトロニクスの専門知識を生かした電源回路の実用的なシステムの構築手法と課題解決能力を修得する。実験で用いる試験装置は設計から製作まで行い、適切な計測器を使用して試験装置の総合的なシステムの性能を評価する。 研究成果をもとに学位申請を行う。

誘電体, 磁性体を用いた高周波デバイスの開発(椛沢 栄基)

電子物性と高周波回路の専門知識を生かした課題解決能力を修得する。試料作製に必要な物理的・化学的な合成技術と評価技術、また高周波測定技術及び解析方法を学習し、実際に高周波用デバイスの開発を行う。 研究成果をもとに学位申請を行う。

多倍長精度数値計算法を用いた数 値計算に関する研究(黒木 啓之)

コンピュータ、数値計算とそれを応用とした電磁波の専門知識を生かした 課題解決能力を修得する。多倍長精度数値計算や並列処理とその応用である GPGPU などを使った計算手法を学習し、これらの手法を電磁波散乱問 題に適用して数値解析を行い、自然/物理現象と対比させて検証・評価する。 研究成果をもとに学位申請を行う。

電磁波散乱問題の数値解法とマイクロ波ミリ波受動回路に関する研究(柴崎 年彦・浅川 澄人)

電磁波散乱問題の数値解析法、マイクロ波ミリ波受動回路技術及び RF 回路技術の専門知識を活かした課題解決能力を修得する。マクスウェル方程式などの基本方程式に基づく数値解析法により対象とする散乱問題を数値解析して電磁現象を定量的かつ物理的に捉え、アンテナやフィルタ、発振器、検波器などを設計・作製して、実機の性能を評価する。 研究成果をもとに学位申請を行う。

高性能モータ駆動制御に関する関連研究(曹梅芬)

電気機器と制御工学の専門知識を生かした課題解決能力を修得する。電磁気現象を定量的に捉えるパワーエレクトロニクス技術と制御法や構成機器の性能・最適な使用方法を学習し、シミュレーション解析等を通じて総合的なシステム性能を明らかにする。更にシミュレーション結果を実験検証し有効性を確認する。 研究成果をもとに学位申請を行う。

制御工学に基づく移動ロボットに関する関連研究(曹 梅芬)

電気工学と制御工学の専門知識を生かした課題解決能力を修得する。自然/物理現象を定量的に捉えるロボティクス技術、制御法や構成機器の性能、最適な使用方法を学習し、シミュレーション解析等を通じて総合的なシステムの性能を明らかにする。更にシミュレーション結果を実験検証し、有効性を確認する。 研究成果をもとに学位申請を行う。

数理工学に基づく非線形システム に関する研究(山本 哲也)

非線形システムの数理モデリングおよび数値解析手法に関する専門知識を生かした課題解決能力を修得する。自然/物理現象等を正確且つ定量的に捉えるために安定解析手法を学ぶ。また、様々な数値計算手法や最適な使用方法を学習し、必要に応じた手法を用い総合的にシステムの特性を明らかにする。得られたデータは様々な解析手法を用いて処理し、評価を行う。 研究成果をもとに学位申請を行う。

周波数利用効率の改善に向けた RF 技術及びその通信方式に関す る研究(宮田 尚起)

無線通信における周波数利用効率の改善をめざし、RF 技術及びその通信方式に関する専門知識を活かした課題解決能力を修得する。無線端末を構成する RF フロントエンド部として、物理的な特徴を活かしたフィルタに代表される RF 回路の設計、製作を行う。また、通信方式を具体的に考慮した RF性能や、RF 性能を考慮したシステムの周波数利用効率の性能を評価する。研究成果をもとに学位申請を行う。

電力エネルギーの応用技術に関する研究(川崎 憲広)

電気電子工学の専門知識を生かした電力エネルギーの応用のための検討・試験・評価手法と問題点の解決能力を修得する。例えば、太陽光発電の入力である日射量を気象衛星画像を用いてリアルタイムに推定する手法や機械学習を用いて予測する手法を開発し、その推定値の分析・評価を行う。また、電力系統安定運用のためのエネルギー貯蔵も含めたシステム提案し、電力の需要と供給を一致させ再生可能エネルギー導入量を増やせる運転手法を開発して、分析・評価を行う。 研究成果をもとに学位申請を行う。

周波数利用効率の改善に向けた周波数共用に関する検討(稲毛 契)

無線通信における周波数利用効率の改善をめざし、電波伝搬を始めとする時空間的に捉えた周波数資源に探知とその資源を利用した通信方式に関して、専門知識を活かした課題解決能力を修得する。複数の端末あるいは複数の無線システムが周波数資源を共用しあう中で、利用可能な資源探知、与干渉の制御、自身の通信性能改善などを行う手法をシステム運用の観点から検討を行い、評価する。 研究成果をもとに学位申請を行う。

電子デバイスのための物性測定 および測定装置の開発(椛沢 栄 基・岩田 修一) 各種デバイス開発に関わる電子物性(物性物理)の専門知識を生かした課題解決能力を修得する。電気伝導の基礎となる輸送現象、界面、電子状態を学習し、その測定装置を開発する。まtた、得られた知見を元とした電子デバイスの開発も行う。 研究成果をもとに学位申請を行う。

パワーエレクトロニクスの応用技 術に関する研究(阿部 晃大)

電気電子回路やパワーエレクトロニクスの専門知識を生かした電源回路の実用的なシステムの構築手法と課題解決能力を修得する。実験で用いる試験装置は設計から製作まで行い、適切な計測器を使用して試験装置の総合的なシステムの性能を評価する。 研究成果をもとに学位申請を行う。

学業成績の評価方 到達目標に対する評価は、研究論文・発表資料・発表等を用いて複数の教員で評価する。ただし、各 選達目標の評価に「不可」がない場合に単位修得を認める。

関連科目

教科書・副読本

77/17 目	副			
		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	グローバルな視点から、社 会に存在する様々な問題 を調査し、自分の視点で考 察できる。		グローバルな視点から、社 会に存在する様々な問題 を調査できる。	グローバルな視点から、社 会に存在する様々な問題 を調査できない。
2	研究の社会的必要性を理解し、新規性のある研究テーマを決定できる。		研究の社会的必要性を理解し、研究テーマを決定できる。	・研究テーマと社会の関係 を理解できない。・倫理的 観点が欠如した研究テー マである。
3	問題に対する具体性のあ る解決手法を提案できる.		問題に対する解決手法を 提案できる.	問題に対する解決手法を 提案できない.
4	"提案する解決手法をすべ て実装している。		提案する解決手法を自ら が一部実装できてている。	
5	評価結果に基づいて論理 的に考察できる。		評価項目を設定し, 評価項目に従って評価を実施できる。	・評価項目を設定できない。・評価を実施できていない
6	研究成果(研究論文、前刷 り、発表資料)を論理的に 作成できる。		研究成果(研究論文、前刷 り、発表資料)を作成する ことができる.	研究成果を作成できない。
7	審査会において研究成果 を設定された時間内に論 理的に発表できる。		審査会において研究成果 を発表できる。	審査会において研究成果 を発表できない。
8	審査会において質問に対 して論理的に回答できる。		審査会において質問に対 し,自分なりの考えを回答 できる	審査会において質問に対 して回答できない。
9	期限内に審査会・学位授与 に関わる書類(研究計画 書、特別研究論文、審査会 用レジュメ、審査会用発表 資料、成果報告書)を提出 できる。			期限内に学位授与に関わる書類を提出できない。

科目名		担当教員	学年	単位	開講時数	種別	
■ 専攻科特別研究 II		下記教員一覧参照 2 8				必修	
(Advanced Resear	nced Research II) 8 時間						
授業の概要	ための設計を行	見点から自ら社会に存在する問題を発見し、解決方法: fい、実装・構築をして評価する。研究成果を予備審 :機構の申請書類および特別研究審査会書類を提出する	査会おる				
授業の形態	実験・実習						
授業の進め方		EIに引き続き、特別研究指導教員の下で研究を実施でい自学自習の習慣を身につける。	する。				
到達目標							
実務経験と授業内容との関連							
学校教育目標との 関係	\ /	合的実践的技術者として、工学的立場から地球的視点 解決する能力を育成する。	で社会	に存在っ	する問題を	:発見し、	
		講義の内容					
所属キャンパス		担当教員					
1. 研究の実施 2. 総まとめ科目履 3. 予備審査会 4. 審査会 5. 総まとめ科目成		指導教員による指導の下で、提案する解決手法を設計・試作・評価する。 総まとめ科目履修計画書を作成する。指導教員による指導の下で計画書の改 訂を行う。 予備審査会で研究成果を発表し、質疑応答を行う。 審査会で研究成果を発表し、質疑応答を行う。 総まとめ科目成果報告書を作成する。指導教員による指導の下で報告書の改 訂を行う。					
研究テーマ・課題	名(担当教員)	課題の内容					
画像処理システム 究(小林 弘幸)	に関する基礎研	画像処理システムを開発し、評価を行う。画像処理に ことが多いため、効果的なアルゴリズムの実装を心 ソフトウェア設計手法を学習し、実際に要求分析、付	がける。	実装に	こあたり、		
情報管理技術に関 (小早川 倫広・札 満)		情報管理技術に関する課題を解決するためのアルゴ に、実際のデータに対して開発したアルゴリズムを 評価を行う。					
高性能計算技術の 究(黒木 啓之)	応用に関する研	高性能計算技術と人工知能・ニューラルネットワーの認識技術や電磁波散乱問題に応用して、解決手法を行う。	を提案し	、実装	評価を		
情報セキュリティミ 早川 倫広・岩田		情報セキュリティ実習 I 〜IIIで習得したスキルを応 演習環境システムの提案および情報セキュリティに 提案を行う。提案するシステムや解決手法を実際に	関するテ	ータ解	析手法の		
次世代情報基盤に (知念 賢一・佐藤	(香)	新たな情報基盤の可能性の探究や既存システムの問題がの設計・実装そして評価を行う。					
暗号理論とその応用に関する研究 (田中 覚) 社会における問題に対し、暗号技術及び応用技術を活用した、安全な暗号を 活用したサービスの構築を実現する上での問題を抽出し、その問題を解決す るアルゴリズムを検討し、具体的な実装を行って性能評価を行う。							
学業成績の評価方法 【審査条件】到達目標(10)学修総まとめ科目履修計画書・成果の要旨、特別研究 II 論文・発表資法 料・レジュメの全てを提出期限内に提出した者に対して、特別研究 II 審査会で審査を行う。 【評価方法】創造力 F-1(問題を発見する力) 30 %、F-2(問題を解決する力) 40 %、F-3(問題解決手法を公開する力) 30 %で評価をする。ただし、到達目標(1~9)をルーブリックで評価し、全ての評価項目に対し「可」以上である場合に単位修得を認める。評価は、審査会に出席した情報工学コースの全教員が行う。						問題解決 、全ての	
関連科目	専攻科特別研究	I・専攻科ゼミナール・専攻科インターンシップ					
教科書・副読本	その他: 研究毎	に必要な教材を配布					
	•						

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	グローバルな視点から、社 会に存在する様々な問題 を調査し、新たな問題を発 見することができる。	グローバルな視点から、社会に存在する様々な問題 を調査し、自分の視点で考察できる。	グローバルな視点から、社 会に存在する様々な問題 を調査できる。	グローバルな視点から、社 会に存在する様々な問題 を調査できない。			
2	研究の社会的必要性を理解し、自ら新規性が高い研究テーマを決定できる。	研究の社会的必要性を理解し、自ら研究テーマを決定できる。	研究の社会的必要性を理解し、教員の助言により研究テーマを決定できる。	・研究テーマと社会の関係 を理解できない。・倫理的 観点が欠如した研究テー マである。			
3	問題に対する独創的な解 決手法を提案できる。	問題に対する合理的な解 決手法を提案できる。	問題に対する必要最低限 の解決手法を提案できる。	問題に対する解決手法を 提案できない。			
4	提案手法を実現するため の独創的な設計ができる。	提案手法を実現するため の合理的な設計ができる。	提案手法を実現するため の必要最低限の設計がで きる。	提案手法を実現するため の設計ができない。			
5	設計に基づいて実装がで きる。	(なし)	設計に基づいて実装でき るが、一部に不具合があ る。	設計に基づいて実装でき ない。			
6	評価結果に基づいて考察 できる。	設定した評価項目に従っ て評価を実施できる。	評価項目を設定できる。	評価項目を設定できない。			
7	研究成果(研究論文、レジュメ、発表資料)が作成でき、簡潔かつ論理的に記述されており、さらに説得力がある。	研究成果が作成でき、論理 的に記述されている。	研究成果を作成できるが、 論理的に記述されていない。	研究成果を作成できない。			
8	審査会において研究成果 を簡潔かつ論理的に説明 でき、さらに説得力があ る。	審査会において研究成果 を論理的に説明できる。	審査会において研究成果 を発表できるが、説明が論 理的でない。	審査会において研究成果 を発表できない。			
9	審査会において質問に対 して簡潔かつ論理的に回 答でき、さらに説得力が ある。	審査会において質問に対 して論理的に回答できる。	審査会において質問に答 えているが、回答が論理的 でない。	審査会において質問に対 して一つも回答できない。			
10	期限内に学位授与に関わ る書類を提出できる。	(なし)	(なし)	期限内に学位授与に関わ る書類を提出できない。			

科目名		担当教員	学年	単位	開講時数	種別	
専攻科特別研究 II (Advanced Research II)		下記教員一覧参照	2	8	通年 8 時間	必修	
授業の概要	グローバルな視点から自ら社会に存在する問題を発見し、解決方法を提案する。解決方法を実現する ための設計を行い、実装・構築をして評価する。研究成果を審査会で発表する。期限内に学位授与機 構の申請書類および特別研究審査会書類を提出する。						
授業の形態	実験・実習						
授業の進め方	専攻科特別研究 I に引き続き、特別研究指導教員の下で研究を実施する。 予習、復習を行い自学自習の習慣を身につける。						
到達目標	1. 社会的な背景を把握した上で国際的視野を持って課題を見出し、工学研究を通して自ら解決法を導出する能力を修得できる 2. 問題を解決するための研究計画を立て、自ら研究を推進できる能力を習得できる 3. 期限までに資料をまとめ、プレゼンテーションにより成果の発表を行う能力を習得できる						
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	F (創造力) 総合的実践的技術者として、工学的立場から地球的視点で社会に存在する問題を発見し、 発見した問題を解決する能力を育成する。						
		講義の内容			Т		
所属キャンパス		担当教員	n : .	<u> </u>			
荒川キャンパス:学修総まとめ科 目指導教員(機械工学)							
目指導教員 (機械工学)		中野正勝:ロケット推進装置の効率化と耐久性能向上に関する研究					
目指導教員(機械工学)		宇田川真介:衝撃波を伴う高速流れに関する実験的基礎研究					
荒川キャンパス:学修総まとめ科 目指導教員(機械工学)		小出輝明:流体機械の性能向上に関する研究(補:田村恵万、真志取秀人)					
荒川キャンパス:学修総まとめ科 目指導教員(機械工学)		青代敏行:メカトロニクス技術の生体力学情報・医療福祉機器への応用に関 する研究					
荒川キャンパス:学修総まとめ科 目指導教員(機械工学)		古屋友和:人間工学に基づく機械とのインタラクションに関する研究					
荒川キャンパス: 目指導教員(電気		山本昇志:センシング情報に基づくインターフェイス構築の研究(補:吉 田嵩)					
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学)		若林良二:ソフトウェア無線技術を用いた電波通信に関する研究(補:髙崎 和之)					
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学)		鈴木達夫:単原子層物質の電子状態の理論的研究					
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学)		高田 拓:小型の計測・通信機器ネットワークを用いた観測・計測に関する 研究					
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学)		高野邦彦:動画ホログラフィに基づく立体像表示法の研究					
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学)		笠原美左和:段差踏破ロボットに関する研究					
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学)		堀 滋樹:メカトロニクス技術を用いた人間の生活を豊かにする支援ツール の開発					
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学)		福田恵子:生体機能の計測技術に関する研究					
荒川キャンパス:学修総まとめ科 目指導教員(電気・電子工学)		吉村拓巳:福祉機器医療機器の開発に関する研究(補:星善	拳光)			
学業成績の評価方 法	業成績の評価方 到達目標に対する評価は、研究論文・発表資料・発表等を用いて複数の教員で評価する。ただし、名 到達目標の評価に「不可」がない場合に単位修得を認める。						
関連科目	専攻科インターンシップ・専攻科エンジニアリングデザイン・専攻科特別研究 I						
教科書・副読本	その他: 担当教	員が各自で参考となる資料を用意する		· · ·			

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	自ら探索した社会や国際 的な状況から課題を見出 し、これまで学んできた基 礎工学知識を発展させな がら可決策を導出するこ とができる	自ら探索することで課題 を見出し、これまで学んで きた基礎工学知識を確実 に活用しながら可決策を 導出することができる	指導を受けながら課題を 見出し、工学的な知識を活 用して解決策を定めるこ とができる	社会的背景や国際的な視野のない独自の考えで課題設定して、工学的手段で解決策を探ることができない					
2	的確な研究計画を立てる とともに、問題が発生した 時の対処策を備えて、自ら の研究を推進することが できる	自ら研究計画を立てると ともに、担当教員と議論を 積極的に行い、自らの研究 を推進することができる	指導を受けながら研究計画を立て、フォローを受けつつも自ら、研究を推進することができる	実効的な研究計画を立てられず、研究が進まずに目標を達成することができない。					
3	期限前に審査会・学位授与 に関わる書類を提出して、 わかりやすい発表と適切 な質疑応答ができる。	期限内に審査会・学位授与 に関わる書類を提出して、 相手に理解してもらうこ とを重視した発表をする ことができる。	期限内に審査会・学位授与 に関わる書類を提出して、 その成果を発表すること ができる。	期限内に学位授与に関わる書類を提出できず、発表 もわかりにくい。					

		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
科目名		担当教員		学年	単位	開講時数	種別
構造材料学 (Structural Ma		松澤和夫 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要		料として広く用いられている金原 づけて理解する。	属材料について、機械に	的・物理	理・化学	的諸特性	とミクロ
授業の形態	講義						
授業の進め方 講義は、スライドの活用やプリント配布など適宜効果的な方法で進める。シラバスを参考に ノート等を参考に復習する。 予習、復習を行い自学自習の習慣を身につける。						予習し,	
到達目標 1. 材料特性と微視的構造の関係を理解し、適材適所となる材料の選択やプロセスの適用がで 2. 金属の凝固プロセスと平衡状態図について理解し、熱処理への応用について理解する。				きる			
実務経験と授業 容との関連	内なし						
学校教育目標と 関係		合的実践的技術者として、数学 関する知識をもち、工学的諸問題					技術と基
		講義の内容	<u> </u>				
項目		目標					時間
構造材料概論		適材適所の重要性と構造材料は	こ要求される性質を理解	 			2
結晶構造		結晶構造を理解し、諸性質との	の関連を理解する。				2
結晶の表現		ミラー指数とステレオ投影法は	こついて理解する。				4
面間隔と結晶構	造	X線回折におけるブラッグの約 理解する。	条件式を理解し、物質の	の同定に	こついて	の手法を	2
結晶欠陥と拡散		材料物性に関わる転位や拡散に					2
金属の変形と転	位および破壊	金属材料の変形と破壊をミクロ	コ的視点に立って理解で	する。			4
凝固プロセスと平衡状態図 金属の凝固プロセスと平衡状態図について理解し、熱処理への応用について 理解する。						4	
金属材料の強化機構 金属の代表的な強化機構について、転位の移動に着目しミクロ組織的視点において理解する。						的視点に	8
複合材料の強化	機構	複合則について理解する。					2 計 30
		自学自習					
項目		目標					時間
予習、復習		授業の予習復習					40
定期試験の準備		定期試験準備のための学習時間	目				20 計 60
総合学習時間							計 90
学業成績の評価 法	方 試験によって	· ·					H1 00
関連科目	基礎材料学・	機械材料 I・機械材料 II					
教科書・副読本	副読本:「Ma 澤和夫 (日本5	terials Science and Engineering 里工出版会)	g」 William D. Callist	er (Wil	ley) • 「⊉	基礎機械材	料学」松
	·	評価 (ルーブリ	ック)				
 到達目標					(不可)		
 	特性と微視的構造		材料特性と微視的構	` '			
関係 で、〕 選択	1 材料特性と微視的構造の 材料特性と微視的構造の 材料特性と微視的構造の 材料特性と微視的構造の 関係を良く理解すること 関係を理解することで、適 関係をなんとか理解した 関係を理解できずで、適材適所となる材料の 材適所となる材料の選択 ので、助言を受けることに 所となる材料の選択 ので、助言を受けることに 所となる材料の の選択やプロセスの適用がで の選択やプロセスの適用がでする			、適材適 選択やプ			
衡状:	の凝固プロセス と 態図について理解 理への応用が的で る。	し、衡状態図について理解し、	金属の凝固プロセス 衡状態図の概略を理 助言を受けることに 熱処理への応用がで	解し、 はり	衡状態	疑固プロー 図につい !!処理への	て理解で

科目名		担当教員		学年	単位	開講時数	種別
機能材料学 (Functional Mate	rials Science)	杉本聖一 (常勤)				選択	
授業の概要						は機能材 本質的に	
授業の形態	講義						
授業の進め方	させる。	いに行うが、授業後半では関連す い自学自習の習慣を身につける		プレー	ゼンテー	ション形	式で発表
到達目標		材料の機能および用途に関する知 機能発現原理を物性論レベルです)			
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学 する知識をもち、工学的諸問題					技術と基
		講義の内容					
項目		目標					時間
ガイダンス		授業のガイダンスと機能材料学	どの概要について				2
1. 金属系機能材料	料	(1) 形状記憶合金について学(2) 超塑性材料について学習(3) アモルファス金属につい	する。				8
2. セラミックス	系機能材料	(5) ファインセラミックスに (6) 圧電材料について学習す					6
3. 高分子系機能材料 (7) 高分子材料の基礎について学習する。 (8) 生分解性プラスチックについて学習する。					4		
4. その他 (9)燃料電池について学習する。						4	
5. プレゼンテー	ション	自分の興味のある機能材料に関 ン形式で発表を行う。]連する英語論文を要約	りし、こ	プレゼン	テーショ	6
		수 산 수 되되					計 30
		自学自習					n+ 88
項目 安羽 佐羽		目標のおける関連なる。	※世になりの理知座/	ト かたきむ チ	٠.4 = . ح		時間
予習、復習 プレゼンテーショ	ンの準備	各材料に関する予習、復習。持 英語論文の和訳、要約、アブス 成、発表練習、質疑応答対策準	ストラクト原稿の作成、			ション作	20 30
定期試験の準備		定期試験準備のための学習時間					10 計 60
総合学習時間		講義 + 自学自習					計 90
学業成績の評価方	テストの成績と	- 両我 十 日子日百 : プレゼンテーションにより総合	合的に評価する。 たお	組結	とプレキ	シテーシ	
法		して6:4とする。	ды дт⊖н пш <i>д 1</i> 00 гол 40 г	日上へのス			ユ マ マ ノ印
関連科目	材料物性学						
教科書・副読本 参考書: 「材料科学 $1\sim3$ 」 $C.\ R.\ バレットら共著 (培風館),その他: 適宜資料を配布する。$							
評価 (ルーブリック)							
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	! (可)	未到達	レベルの目安	(不可)
よび用	機能材料の機能 途に関する知識 説明できる。		種々の機能材料の機 よび用途に関する知 教科書等を参考にし ら理解できる。	識を	よび用え	機能材料の 金に関する さていない	る知識を
を物性詞					倫レベル7		

		PIE O TIX GIVET 2 2 COV				
科目名		担当教員	学年	単位	開講時数	種別
材料物性学 (Physical Propert als)	ies of Materi-	大貫貴久 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要		材料のマクロ的な強度、変形の基礎的事項を学び、そ 組織、転位)との物理的な関係について学ぶ。	れらに景	影響を及	ばすミク	ロ的な因
授業の形態	満義 講義					
授業の進め方	行う。	出自の講義ノートを使ってすすめる。理解を深めるた 行い自学自習の習慣を身につける。	め、それ	ιらに関	連した演	習問題を
到達目標	2. 多軸応力状態 3. マクロ的な 4. ミラー指数 5. 理論せん断 6. 転位の挙動	おける応力ーひずみ曲線を求め、近似曲線、機械的特態の最大せん断応力、主応力と不変量の算出とフック 降伏、塑性変形挙動について理解できる とすべり系、及び、分解せん断応力について理解でき 強度と転位論によるせん断強度(パイエルスナバロ応 とバーガースベクトルについて理解できる 強化機構の種類、機構について理解できる	の式をF る	用いた計	算	
実務経験と授業内容との関連	なし		HH	a /\ mz =	. ++ 1 .4. 1	[
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 関する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
1. 引張試験と応力		引張試験の方法、応力-ひずみ曲線と機械的特性について復習する				2
2. 応力-ひずみ曲線		応力-ひずみ曲線の近似式による数式表現について理	!解する			2
3. 応力テンソル、		応力テンソル、ひずみテンソルの取扱いを理解する 多軸応力状態のフックの式の取扱いを理解する				2
	4. 固有方程式と応力不変量 多軸応力状態の最大せん断応力、主応力について理解する 固有方程式と応力不変量について理解する				2	
5. 降伏(弾性破損)	降伏条件(最大せん断応力説、せん断ひずみエネル: する	ギー説)	の取扱	いを理解	2
6. 全ひずみ理論		全ひずみ理論について理解する				2
テストと解説		テストとその解説を行う。				2
7. ミラー指数		ミラー指数によるすべり面、すべり方向の表示方法	について	理解す	る	2
8. すべり系		金属材料のすべり系について理解する X線回折の原理、測定方法について理解する				2
9. 単結晶の分解せ	=	単結晶の分解せん断応力について理解する				2
10. 単結晶の理論引	鱼 度	単結晶の理論強度について理解する				2
11. 欠陥と転位		欠陥の種類と転位について理解する パイエルスナバロ応力について理解する				2
12. 転位の挙動と トル	バーガースベク	転位移動、相互作用などについて理解する				2
13. 強化機構		転位による強化方法について理解する				2
14. 多結晶塑性理語	侖	多結晶塑性理論の初歩について理解する				2 計 30
						H1 00
		目標				 時間
予習、復習		計画				30
テストの準備		学業成績評価のためのテストの学習時間				10
レポートの作成		学業成績評価のためのレポートの学習時間				20
1 211/94		2 NEWSCHILLING CASES AS A 1 1 25 1 Budled				計 60
総合学習時間 講義 + 自学自習						

学業成績の評価方 法	テスト1回、レポート1回によって成績評価結果を総合的に判断する。なお、テスト、レポートの比率は1:1とする。	
関連科目	材料学 I・材料学 II・構造材料学・塑性学	
教科書・副読本	参考書: 「固体の非線形力学」石川博将 (養賢堂)・「金属物理学序論」幸田成康 (コロナ社)・「塑性の物理」渋谷 陽二 (森北出版)・「材料強度の考え方」木村 宏 (アグネ技術センター)・「機械材料学」武井英雄、中佐啓治郎、篠崎賢二 (数理工学社)・「多結晶塑性論」高橋 寛 (コロナ社), その他: フリーテキスト	

	評価 (ルーブリック)					
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)		
1	引張試験により得られた 荷重、変位より応力 - ひず み曲線を得ることができ る。また、n乗硬化式に近 似することができ、関連式を 条件と求めたり、関連式を 用いて機械的特性値を算 出できる。	引張試験により得られた 荷重、変位より応力 - ひず み曲線を得ることができ る。また、n乗硬化式より くびれ条件と求めたり、関 連式を用いて機械的特性 値を算出できる。	引張試験により得られた 荷重、変位より応力 - ひず み曲線を得ることができ る。また、n乗硬化式と関 連式を用いて機械的特性 値を算出できる。	引張試験により得られた 荷重、変位より応力 – ひず み曲線を得ることができ ない。または、n乗硬化式 と関連式を用いて機械的 特性値を算出できない。		
2	多軸応力状態から、モール の応力円、固有方程式を用 いて、最大せん断応力、主 応力、不変量を算出でき る。また、多軸応力状態の フックの式を使って簡単 な計算ができる。	多軸応力状態から、固有方程式を用いて、主応力、不変量を算出できる。また、多軸応力状態のフックの式を使って簡単な計算ができる。	多軸応力状態から、固有方程式を用いて、主応力、不変量を算出できる。	多軸応力状態から、固有方 程式を用いて、主応力、不 変量を算出できない。		
ဘ	最大せん断応力説、せん断 ひずみエネルギー説を用 いて、降伏状態を求め、説 明することができる。明 た、全ひずみ理論を説明で き、多軸応力状態のひずみ を算出できる。	最大せん断応力説、せん断 ひずみエネルギー説を用 いて、降伏状態を求めるこ とができる。また、全ひず み理論を説明でき、多軸応 力状態のひずみを算出で きる。	最大せん断応力説、せん断 ひずみエネルギー説を用 いて、降伏状態を求めるこ とができる。また、全ひず み理論から多軸応力状態 のひずみを算出できる。	最大せん断応力説、せん断 ひずみエネルギー説を用 いて、降伏状態を求めるこ とができない。または、全 ひずみ理論から多軸応力 状態のひずみを算出でき ない。		
4	回折実験の結果から、結晶 方位の同定方法を理解し、 単結晶についてすべり系を 開いてすべり系を説明 を用いてする関係を説明 できる。また、与えられた すべり系について分解せ ん断応力を正しく算出で きる。	単結晶についてミラー指数を用いてすべり系を現いてすべり系を説明できる。また、与えられたすべり系について分解せん断応力を正しく算出できる。	単結晶についてミラー指数を用いてすべり系を表すことができる。また、与えられたすべり系について分解せん断応力を正しく算出できる。	単結晶についてミラー指数を用いてすべり系を表すことができない。または、与えられたすべり系について分解せん断応力を正しく算出できるない。		
55	完全結晶の理論せん断強 度の考え方を説明でき、算 出することができる。また、転位を理解し、塑性変 形挙動の関係付けて説明 できる。パイエルス・ナバ ロ力について説明ができ、 算出できる。	完全結晶の理論せん断強 度の考え方を説明でき、算 出することができる。また、転位を理解できる。パ イエルス・ナバロ力につい て算出できる。	完全結晶の理論せん断強 度を算出することができ る。また、転位を理解でき る。パイエルス・ナバロ力 について算出できる。	完全結晶の理論せん断強 度を算出することができ ない。または、転位を理解 できるない。または、パイ エルス・ナバロ力について 算出できない。		
6	理解し、説明できる。バー ガースベクトルの保存、分	基礎的な転位論とバーガースベクトルについて理解し、説明できる。パーガースベクトルの保存、分岐、結合を理解するために必要な知識が得られていること。	基礎的な転位論とバーガースベクトルについて理解し、説明できる。	基礎的な転位論とバーガースベクトルについて理解、または、説明できない。		
7	位間相互作用、固溶強化、	金属の強化機構である転 位間相互作用、固溶強化、 微細強化、析出強化、分散 強化、複合強化の現象、機 構について説明できる。	金属の強化機構である転位間相互作用、固溶強化、 微細強化、析出強化、分散 強化、複合強化の現象について説明できる。	金属の強化機構である転 位間相互作用、固溶強化、 微細強化、析出強化、分散 強化、複合強化の現象につ いて説明できない。		

		1218 0 1 20 3 7 11					
科目名		担当教員		学年	単位	開講時数	種別
弾性学 (Theory of Elasticity) 田宮高信 (常勤)				1 • 2	2	半期 2 時間	選択
授業の概要		して、応力、ひずみ、構成方種 ートを参考にレポートに取り組		2次5	元問題の)解法等に [、]	ついて学
授業の形態	講義						
授業の進め方		て説明し、例題を通して理解を い自学自習の習慣を身につける		習を解	ないて応	用力を身に	こつける。
到達目標		礎概念や基礎式が理解できる。 理や2次元問題を理解し、その					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		的実践的技術者として、数学 する知識をもち、工学的諸問題					技術と基
		 講義の内容	3				
項目		 目標					時間
1. ガイダンス		講義の概要と進め方を説明する	る.材料力学を復習する	5 。			2
2. 応力とひずみ		弾性論における応力とひずみに	こついて理解する。				4
3. 平衡方程式と近	窗合条件式	平衡方程式と適合条件式につい	って理解する。				4
4. フックの法則		応力とひずみの関係について野	理解する。				2
5. まとめと確認		これまで学んだことをまとめ、	整理、確認する。				2
6. ひずみエネルコ	F-	弾性体のひずみエネルギーにつ	ついて理解する。				4
7. 仮想仕事の原理	<u> </u>	仮想仕事の原理について理解す	ける。				2
8. カスティリア	/ の定理	カスティリアノの定理について	ご理解する。				2
9. 平面応力と平面ひずみ 平面応力と平面ひずみについて理解する。					2		
10. 応力関数	1	応力関数による2次元問題の触	Z法について理解する。				2
11. まとめ		これまで学んだことをまとめ、					2
12. 総括		本講義内容の総括を行う。	II. II. 7 0 0				2
		1 11321 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					計 30
		自学自習					
							時間
予習、復習		************************************	習 復習を行う				20
課題	ŀ	授業中に提出する課題を行う。					30
試験の準備	1	試験準備のための学習を行う。					10
は個人・クール用		政権が十四のための1日で11万。					計 60
総合学習時間							計 90
学業成績の評価方		哺我 〒 日子日百 ート 10 回程度の結果から評価	iを行う 試験としまし	よの割	価比索	けいりとす	
法		110 国住皮の和木がり計画	でリン。政教とレか	1.0711	ІШТГ.	14 O.2 C 9	∂ ∘
 関連科目	本科の材料力学	 を修得していることを前提とし	 、ています。				
教科書・副読本		力学入門」竹園茂雄・他 3 名 (館)・「詳解機械工学演習」酒井		機械系	《大学院	への四力間	
		評価(ルーブリ	, , ,				
到海口槽 理相的	か到達しが川の日空(原)		, 	(코)	+ 의견		(조리)
	な到達レベルの目安(優)	標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目安	`		レベルの目安	
	の専出か可能で、	そ ノートや参考書を見れば ち 基礎式が分かり、それを 使って基本的な設問に答 えられる。	ノートや参考書を見 基礎式が説明できる。			や参考書を が分からな	
問題を	ギー原理や2次 理解しており、 って設問に答え		ノートや参考書を見エネルギー原理や2問題を説明できる。	次元	エネル	や参考書で ギー原理 ^へ 理解できな	や2次元

科目名			担当教員		学年	単位	開講時数	種別
弾性学 (Theory	of Elastic	city)	稲村栄次郎 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概	要		して、応力、ひずみ、構成方程 ートを参考にレポートに取り		2次5	元問題の)解法等に [、]	ついて学
授業の形	態	講義						
授業の進め方 授業内容について説明し、例題を通して理解を深める。また、問題演習を解いて応用力を身に 予習、復習を行い自学自習の習慣を身につける。					こつける。			
到達目標	<u> </u>		基礎概念や基礎式が理解できる 原理や2次元問題を理解し、そ		(D-3(d))		
実務経験 容との関	後と授業内 連	なし						
学校教育 関係	育目標との		合的実践的技術者として、数学 する知識をもち、工学的諸問題					技術と基
			講義の内容	ş				
項目								時間
1. ガイ:	ダンス		講義の概要と進め方を説明する	る.材料力学を復習する	 3.			2
2. 応力 3	とひずみ		弾性論における応力とひずみに	こついて理解する。				4
3. 平衡	方程式と適	合条件式	平衡方程式と適合条件式につい	いて理解する。				4
4. フック	クの法則		応力とひずみの関係について野	里解する。				2
5. まとる	めと確認		これまで学んだことをまとめ、	整理、確認する。				2
6. ひずる	みエネルギ	_	弾性体のひずみエネルギーに	ついて理解する。				4
7. 仮想化	仕事の原理		仮想仕事の原理について理解で	する。				2
	ティリアノ		カスティリアノの定理につい	て理解する。				2
9. 平面原	芯力と平面	ひずみ	平面応力と平面ひずみについる	て理解する。				2
10. 応力			応力関数による2次元問題の	解法について理解する。				2
11. まと	め		これまで学んだことをまとめ、	整理する。				2
12. 総括	i		本講義内容の総括を行う。					2
								計 30
			自学自習					
項目			目標					時間
予習、復	 夏習		教科書を用いて講義内容の予					20
課題			授業中に提出する課題を行う。					30
試験の準	準備		試験準備のための学習を行う。					10
								計 60
総合学習]時間		講義 + 自学自習					計 90
学業成績 法	責の評価方	試験1回、レオ	ペート 10 回程度の結果から評価	fを行う。試験とレポー	- トの割	価比率	は 8:2 とす	-る。
関連科目		塑性学						
教科書・	副読本	教科書: 「弾性 藤川重雄 (培風	力学入門」竹園茂雄・他3名 館)	(森北出版),副読本:	「機械系	大学院	への四力問	
		,	 評価 (ルーブリ	ック)				
	TEL+845.4	到達レベルの目安 (優		ぎりぎりの到達レベルの目安	(可)	未到诸	レベルの目安	(不可)
到達目標	理想的は	(IX			`			
到達目標	弾性理調	論の基礎式を用 問題が解ける。	い 弾性理論の基本的な問題 が解ける。	弾性理論の基礎概念 明できる。		弾性埋き 明できた	論の基礎様ない。	既念が説

				1		
科目名		担当教員	学年	単位	開講時数	種別
塑性学 (Theory of Plastic	eity)	廣井徹麿 (非常勤)	1 • 2	2	半期 2 時間	選択
授業の概要 金属部品・製品を対象として、その形を作るための「塑性」の現象と「塑性」を力学的に取り					り扱う基	
授業の形態	講義					
授業の進め方		い、理解を深めるための課題を与える。 い自学自習の習慣を身につける。				
到達目標	2. 真応力と真び3. トレスカと	D結晶構造的説明ができる みずみを説明できる ミーゼスの降伏条件を説明できる 命とひずみ増分理論を説明できる				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容			,	
項目		目標				時間
塑性の定義と性質	I	金属結晶での弾性と塑性の現象を原子配置の差異で調	説明でき	る		2
塑性の定義と性質〕	Π	単軸引張試験データから真応力-真ひずみを求めるこ	とがで	きる		2
塑性の定義と性質I	II	弾性域と塑性域の応力-ひずみ関係のモデル化を説明	できる			2
降伏条件 I		トレスカの降伏条件をモールの応力円で説明できる。				2
降伏条件Ⅱ		ミーゼスの降伏条件を説明できる				2
薄肉球と薄肉円筒の降伏圧力 降伏条件に関する例題を計算できる。			2			
偏差応力と偏差ひて	ずみ	偏差応力と偏差ひずみを理解する。降伏条件を偏差原		きすこと	ができる	2
全ひずみ理論 I		ヘンキーの式を理解し、比例定数の意味を説明できる	3			2
全ひずみ理論Ⅱ		薄肉球、薄肉円筒の塑性不安定時のひずみを求める。	ことがて	ごきる		2
ひずみ増分理論 I		ルイスの式を理解し、比例定数の意味を説明できる				2
ひずみ増分理論Ⅱ		薄肉円筒に軸応力とねじり応力を作用させるときの約		/響を説	明できる	4
スプリングバック		板材の曲げ変形におけるスプリングバックを説明でき	きる			2
板厚異方性 r 値と r 値	面内異方性Δ					2
成形限界線図		成形限界線図(FLD)の形を説明できる				2
		1 3/4 /				計 30
		自学自習				
項目		目標				時間
SUS304 の真応力- のレポート①	-真ひずみ関係	両対数グラフにプロットし、最小二乗法により F 値、 ルによる出力結果を提出				8
予習・復習		モールの応力円の導出と描き方を学習・モールのひて学習)導出と	描き方を	32
応力テンソルについて学習・応力の不変量について学習 塑性変形と加工品制度に関する調 予習としての板材成形における製品精度の調査を行い提出			8			
査研究レポート②						
期末試験のための気	学習	学習内容をまとめ、期末試験準備のための学習				12 計 60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	試験の得点と、	課題評価点から決定する。試験と課題の比率は7:	3とする) ₀		.,
関連科目						
	教科書: 「基礎	塑性加工学(第3版)」川並高雄ほか (森北出版)				
2371 Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н						

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	弾性と塑性の結晶構造的 説明ができる	弾性と塑性の具体例を示 して説明できる	弾性と塑性の変形を説明 できる	弾性と塑性の説明明がで きない				
2	真応力と真ひずみ関係が 塑性変形に重要であるこ とを説明できる。	真応力と真ひずみを具体 的に式で示して計算で説 明できる。		真応力と真ひずみを説明 できない				
3	トレスカとミーゼスの降 伏条件を3軸応力状態で 説明できる。	トレスカとミーゼスの降 伏条件の違いと適用例を 説明できる。	トレスカとミーゼスの降 伏条件を説明できる。	トレスカとミーゼスの降 伏条件を説明できない				
4	全ひずみ理論とひずみ増 分理論を用いて計算がで きる	全ひずみ理論とひずみ増 分理論の適用例を説明で きる	全ひずみ理論とひずみ増 分理論を説明できる	全ひずみ理論とひずみ増 分理論を説明できない				

科目名		担当教員	学年	単位	開講時数	種別
特殊加工学 (Non-Traditional	Machining)	吉田政弘 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	放電加工, 電解	加工,レーザ加工などの電気加工を中心に講義を行	う.			
授業の形態	講義					
授業の進め方	配布プリント, 予習,復習を行	板書による講義形式で行う. また, レポート課題も い自学自習の習慣を身につける.	実施する			
到達目標	2. 放電加工につる。 3. 電解加工につる。 4. レーザー加工	们工と特殊加工の違いについて理解している. ついて理解している. Oいて理解している. Eについて理解している. 株加工として,砥粒噴射加工や流体ジェット加工を理	解してい	いる.		
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用する				技術と基
		講義の内容				
項目	·	目標				時間
特殊加工の概要にな を行う	ついて自主学習	特殊加工と一般の機械加工との違いと特殊加工が持 解する.	つ共通の	特徴に	ついて理	2
放電加工		 放電加工の概要 電源装置とサーボ機構 加工特性に及ぼすファクター 加工液と加工液循環装置 最新の放電加工技術 				10
電解加工		1) 電解加工の概要と特徴2) 電解加工の原理3) 電解加工の加工速度と表面粗さ4) 電解研削加工と ELID, 最新の電解加工				8
レーザー加工		1) レーザー加工の概要と特徴 2) レーザー発振とレーザーの種類 3) レーザー加工の応用例 4) 最新のレーザー加工技術				
その他の特殊加工		・ 砥粒噴射加工,流体ジェット加工など				
						計 30
		自学自習				
項目		目標				時間
放電加工について	調査する	放電加工の問題を明らかにし、その解決方法を提案 工の可能性を考える.	する. そ	の上で	,放電加	20
電解加工について記	調査する	電解加工の問題点を見出し、具体的な解決方法を探問題点とその解決手法についてリサーチする. 電解加工の可能性について調査する.	る.また	こは,こ	れまでの	10
レーザー加工につい	いて調査する	現在のレーザー加工の展開について調べるとともに、レーザー加工の問題点をクローズアップする。また、技術者や研究者たちの辿った道を考察することで、技術開発・研究開発について理解を深める。				
その他の特殊加工の調査 その他の特殊加工について、自分でテーマを一つ上げ、特長、欠点などを調べ、その加工法の可能性を考察する.				などを調	15 計 60	
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	中間試験、期末	武験の試験結果とレポート課題により評価する。				н эо
関連科目						
教科書・副読本	参考書: 「生産	加工の原理」日本機械学会 (日本機械学会), その他:	授業中	に配布	 するプリン	√ ├
		, , , , , , , , , , , , , , , , , , , ,				

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	通常の機械加工と特殊加工の違いを理解している. その上で各種の特殊加工 について説明できる.	工の違いを理解している.	通常の機械加工と特殊加工の違いを理解しているが,各種の特殊加工について説明ができない.	通常の機械加工と特殊加 工の違いが分からない.				
2	放電加工の加工原理や特. 長などを理解してて、 その特長を踏まえて,例 際の放電加工の応用例を 紹介できる. さらに,放電 加工の加工特性に及ぼす 加工条件について説明が できる.	長などを理解している. その特長を踏まえて,実際の放電加工の応用例を	放電加工の加工原理や特 長などを理解している.	放電加工が分からない				
3	電解加工の加工原理や特 長などを理解している。 その特長を踏まえて,例 際の電解加工の応用例を 紹介できる。さらに,電解 加工の加工特性に及ぼす 加工条件について説明が できる。	長などを理解している. その特長を踏まえて,実際の電解加工の応用例を	電解加工の加工原理や特 長などを理解している.	電解加工が分からない				
4	レーザ加工の加工原理や 特長などを理解している. その特長を踏まえて,実際 のレーザ加工の応用例を 紹介できる. さらに,レー ザ加工の加工特性に及ぼ す加工条件について説明 ができる.	特長などを理解している.	レーザ加工の加工原理や 特長などを理解している.	レーザー加工が分からな い				
5	砥粒噴射加工と流体ジエット加工の加工原理と特徴を理解している.そして,実際の加工例を上げることができる. さらに,それらの加工について加工特性に及ぼすパラメータについて説明できる.	砥粒噴射加工と流体ジエット加工の加工原理と特徴を理解している. そして,実際の加工例を上げることができる.	砥粒噴射加工と流体ジエット加工の加工原理と特徴を理解している.	砥粒噴射加工と流体ジエット加工が分らない				

		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□				
科目名		担当教員	学年	単位	開講時数	種別
加工システム学 (Advanced Machi	ning System)	伊藤幸弘 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要		た会からの工業的な要求に応えるために生産が計画さ 注意システムとして実現されている. 本授業では, 生 気を学ぶ.				
授業の形態	講義					
授業の進め方	講義を中心とす	- -る. fい自学自習の習慣を身につける.				
到達目標	2. 生産システ.	ムの役割や意義を説明できる.(D-3(d)) ムの基本構成を説明できる.(D-3(d)) ムを構成する各要素について説明できる.(D-3(d))				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
1. 生産システムの	概要	生産システムの役割や意義,基本構成,生産の基本サシステムの概要について理解する.	形態や生	産性な	どの生産	4
2. 生産設計		生産性を向上させるために、製品設計において考慮すべき点について理解する.				
3. 工程設計		生産設計からの要求を満たすために、生産加工において考慮すべき点について理解する.				4
4. 作業設計		生産性を向上させるために、実際の加工作業において 理解する.	て考慮す	べき点	について	4
5. レポート課題						2
6. 生産管理		生産設備や作業者の運用効率を向上させるために、タイプを点について理解する.	生産計画	jiにおい	て考慮す	4
7. 生産設備と配置	設計	生産性や経済性を満足した生産を行うために,生産 考慮すべき点について理解する.	没備やそ	の配置	において	4
8. 生産とコンピュ	ータ	生産システムにおけるコンピュータ支援技術につい	て理解す	-る.		4
9. レポート課題						2
						計 30
		自学自習				
項目		目標				時間
予習および復習		参考書を用いた講義内容の予習および復習.				30
レポート課題への	学習および準備	事前に内容を通知するレポート課題への学習および	準備			30
						計60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	2回のレポート	課題の結果により評価する.				
関連科目	設計工学特論・	基礎加工学・生産工学・生産システム設計・管理シ	ステムコ	二学 II		
教科書・副読本	参考書: 「生産	江学」岩田 一明、中沢 弘 (コロナ社), その他: 🎣	必要に応	じて資	料を配布す	する.
	1					

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	生産システムの役割と意 義を説明できる.	生産システムの定義を説 明できる.	「生産」という言葉の意味 を説明できる.	「生産」という言葉の意味 を説明できない.				
2	生産システムを構成する 各要素の基本的な内容を 説明できる.	生産システムを構成する 各要素の名称を挙げられ る.	生産システムを構成する「物の流れ」と「情報の流れ」と「情報の流れ」について説明できる.	生産システムの定義を説 明できない.				
3	生産システムを構成する 各要素に含まれる作業の 具体的な内容を説明でき る.	生産システムを構成する 各要素に含まれる作業の 名称を挙げられる.	生産システムを構成する 各要素の基本的な内容を 説明できる.	生産システムを構成する 各要素の名称を挙げられ ない.				

	担当教員	学年	単位	開講時数	———— 種別
ning System)	喜多村拓 (常勤)	1 • 2	2	半期2時間	選択
ものづくりは一 計、工程や作業	纟の計画、負荷計画やスケジューリング管理、設備と	その配		うために、	
講義					
2. 生産システム	ムの基本構成を説明できる.				
なし					
					支術と基
	講義の内容				
	目標				時間
概要	生産システムの役割や意義,基本構成,生産の基本チシステムの概要について理解する.	形態や生	産性な	どの生産	4
	生産性を向上させるために、製品設計において考慮すべき点について理解する.				2
	生産設計からの要求を満たすために、生産加工において考慮すべき点について理解する.				4
	生産性を向上させるために、実際の加工作業において理解する.	て考慮す	べき点	について	4
					2
	生産設備や作業者の運用効率を向上させるために、生べき点について理解する.	生産計画	jにおい	て考慮す	4
設計	生産性や経済性を満足した生産を行うために,生産記考慮すべき点について理解する.	没備やそ	の配置	において	4
ータ	生産システムにおけるコンピュータ支援技術について	て理解す	~る.		4
					2
					計 30
	自学自習				
	目標				時間
	参考書を用いた講義内容の予習および復習.				30
学習および準備	事前に内容を通知するレポート課題への学習および	隼備			30
					計 60
	講義 + 自学自習				計 90
2回のレポート	課題の結果により評価する.				
参考書: 「生産 布します	工学」岩田 一明、中沢 弘 (コロナ社), その他:	授業ごと	に必要	に応じて	資料を配
	も計本 講 講子 1. 生生 2. 生生産 2. 生産 2. 生産 2. 生産 3. は一番 2. 生産 3. は一番 2. 生産 3. は一番 2. 生産 4. は一番 2. 生産 4. は一番 2. 生産 4. は一番 4. は一番 4. は一番 5. は一番	あのづくりは一般的に世間のニーズに合致した製品の生産を合理的:計、工程や作業の計画、負荷計画やスケジューリング管理、設備と本授業では、生産システムの構成、および構成要素の内容や手法を登講義とびレポート課題予習、復習を行い自学自習の習慣を身につける。 生産システムの役割や意義を説明できる。 生産システムの基本構成を説明できる。 生産システムの基本構成を説明できる。 生産システムの基本構成を説明できる。 生産システムの基本構成を説明できる。 生産システムの基本構成を説明できる。 生産システムの機力・自らの専機的な理論に関する知識をもち、工学的諸問題にそれらを応用する循調義の内容 自標 生産システムの役割や意義、基本構成、生産の基本がシステムの概要について理解する。 生産性を向上させるために、製品設計において考慮する。 生産計からの要求を満たすために、生産加工において理解する。 生産性を向上させるために、実際の加工作業において理解する。 生産性や経済性を満足した生産を行うために、生産対・さ点について理解する。 生産機や作業者の運用効率を向上させるために、生産者域すべき点について理解する。 生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムにおけるコンピュータ支援技術についまに対して、生産システムに対して、生産システムに対して、生産システムに対して、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産がより、生産・生産・生産・生産・生産・生産・生産・生産・生産・生産・生産・生産・生産・生	書多村拓(常勤) 1・2 ものづくりは一般的に世間のニーズに合致した製品の生産を合理的かつ経済計、工程や作業の計画、負荷計画やスケジューリング管理、設備とその配本授業では、生産システムの構成、および構成要素の内容や手法を学ぶ、講義 講義及びレポート課題 予習、復習を行い自学自習の習慣を身につける。 1、生産システムの役割や意義を説明できる。 2、生産システムの基本構成を説明できる。 3、生産システムの基本構成する各要素について説明できる。 3、生産システムの基本構成する各要素について説明できる。 4、生産システムの観測をもち、工学的諸問題にそれらを応用する能力を育講義の内容 「自標 大産・カーターのでは、生産の基本形態や生システムの観察について理解する。生産性を向上させるために、製品設計において考慮する。生産性を向上させるために、実際の加工作業において考慮する。生産性を向上させるために、実際の加工作業において考慮す理解する。生産性を向上させるために、実際の加工作業において考慮す理解する。生産性を向上させるために、生産計画べき点について理解する。生産と対して、大生産計画べき点について理解する。生産性や経済性を満足した生産を行うために、生産計画べき点について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。生産システムにおけるコンピュータ支援技術について理解する。	書多村拓(常勤) 1・2 2 1・3のづくりは一般的に世間のニーズに合致した製品の生産を合理的かつ経済的に行業、工程や作業の計画、負荷計画やスケジューリング管理、設備とその配置、運序本授業では、生産システムの構成、および構成要素の内容や手法を学ぶ、講義 講義及びレポート課題 予習、復習を行い自学自習の習慣を身につける。 1. 生産システムの役割や意義を説明できる。 2. 生産システムの移動や意義を説明できる。 3. 生産システムの移動できる。 3. 生産システムを構成する各要素について説明できる。 3. 生産システムの根のできるを表でして、数学・自然科学・自らの専門とする分野の健的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。 は歴史 生産システムの役割や意義、基本構成、生産の基本形態や生産性なシステムの概要について理解する。 生産性を向上させるために、製品設計において考慮すべき点について理解する。 生産設計からの要求を満たすために、生産加工において考慮すべき、工学解する。 生産と向上させるために、実際の加工作業において考慮すべき、工理解する。 生産設備や作業者の運用効率を向上させるために、生産計画においべき点について理解する。 生産世や経済性を満足した生産を行うために、生産設備やその配置考慮すべき点について理解する。 生産システムにおけるコンピュータ支援技術について理解する。 生産システムにおけるコンピュータ支援技術について理解する。 生産システムにおけるコンピュータ支援技術について理解する。 生産システムにおけるコンピュータ支援技術について理解する。 生産システムにおけるコンピュータ支援技術について理解する。 生産システムにおけるコンピュータ支援技術について理解する。 生産システムにおけるコンピュータ支援技術について理解する。 「生産エ学」岩田 一明、中沢 弘 (コロナ社)、その他: 授業ごとに必要参考書: 「生産工学」岩田 一明、中沢 弘 (コロナ社)、その他: 授業ごとに必要参考書: 「生産工学」 岩田 一明、中沢 弘 (コロナ社)、その他: 授業ごとに必要参考書: 「生産工学」 岩田 一明、中沢 弘 (コロナ社)、その他: 授業ごとに必要参考書: 「生産工学」 岩田 一明、中沢 弘 (コロナ社)、その他: 授業ごとい考報	書多村和(常勤)

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	生産システムの役割と意 義を説明できる.	生産システムの定義を説 明できる.	「生産」という言葉の意味 を説明できる.	「生産」という言葉の意味 を説明できない.				
2	生産システムを構成する 各要素の基本的な内容を 説明できる.	生産システムを構成する 各要素の名称を挙げられ る.	生産システムを構成する「物の流れ」と「情報の流れ」と「情報の流れ」について説明できる.	生産システムの定義を説 明できない.				
3	生産システムを構成する 各要素に含まれる作業の 具体的な内容を説明でき る.	生産システムを構成する 各要素に含まれる作業の 名称を挙げられる.	生産システムを構成する 各要素の基本的な内容を 説明できる.	生産システムを構成する 各要素の名称を挙げられ ない.				

科目名		担当教員	学年	単位	開講時数	種別
加工学特論 (Advanced I Technology)	Manufacturing	成澤哲也 (非常勤) 1・2 2 半期 2 時間				選択
授業の概要	工作法における ムと特徴を説明	研削加工の役割は,製品の高精度最終仕上げにある 引した後,研削砥石の選択,各種の研削法について解	. その <i>†</i> 说する.	· ため, 句	肝削加工の	メカニズ
授業の形態	講義					
授業の進め方	独自のテキスト 予習,復習を行	を使って講義を中心にすすめるため,問題演習も行い自学自習の習慣を身につける.	ð.			
到達目標	2. 研削砥石の名 3. 研削仕上げ 4. 研削機構が記	D特徴が説明できる. A称が説明できる. 面粗さの特徴が説明できる. 说明できる. L法について説明できる.				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
1. ガイダンス(研	肝削加工の概要)	研削加工と砥粒加工について, 概要を学習する.				2
2. 研削砥石		研削砥石の3要素と5因子と砥石の呼称について学:	習する			4
3. 研削機構		研削作用のメカニズムを学習する.	п / 9.			
4. 研削仕上げ面粗さ 研削加工によって得られる仕上げ面の特徴を学習し、精度向上の				方法を考	2	
· · · · ›////шшш /› / / / / / / / / / / / / / /		žā.	, 1132	., 4	,,,,,,	
5. 研削抵抗		研削抵抗と動力,比研削抵抗の特徴を学習する.				2
6. まとめと中間の		以上までのまとめと,中間確認を行う.				2
7. 研削加工の欠		研削焼け,研削割れ,加工変質層のメカニズムと防 学習する.				4
8. 砥石のドレッ: イング		砥石の寿命と、ドレッシングやツルーイングの方 する.	法と効	果につ	いて学習	2
9. 石の摩耗と自然		砥石の摩耗のメカニズムと自生作用について学習す	る.			2
10. 砥石の選択		砥石の選択法と各種研削作業について学習する.				4
11. 新しい研削	技術	クリープフィード研削,超高速研削,超精密鏡面研 について学習する.	削など,	新しい	研削技術	2
						計 30
		自学自習				
項目		目標				時間
予習,復習		授業の予習,復習を行う.				30
課題		課題の学習				30
40 A W == =+ ==		5# M L. W. L. 50				計60
総合学習時間	스베라마스 소프트	講義+自学自習	少主 ≑ボ / ☆・ ク	十田シル	UNC 4 2	計 90
学業成績の評価方 法 		ほと,授業への取組状況(課題等の提出)によって成 1状況の比率は6:4とする.	額評価額	古果を‡	判断する。	正期試験
関連科目						
教科書・副読本	田 忠彰 (著) (美) 学」庄司 克林	学基礎(2) 研削加工と砥粒加工」河村 末久(著), 気 共立出版)・「研削工学(精密工学シリーズ)」精密工学 進(養賢堂)・「研削加工の計測技術―最新の計測技術 、大橋 一仁(著)(養賢堂)	会 (編集	集) (オ ⁻	-ム社)・「	研削加工

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	切削と研削の特徴が詳細 に説明できる.	切削と研削の特徴が説明 できる.	切削と研削の基礎が説明できる.	切削と研削の基礎を修得 していない.					
2	研削砥石の特徴が詳細に 説明できる.	研削砥石の特徴が説明で きる.	研削砥石の名称が説明で きる.	研削砥石の基礎を修得していない.					
3	研削仕上げ面粗さの特徴 が詳細に説明できる.	研削仕上げ面粗さの特徴 が説明できる.	研削仕上げ面粗さの基礎 が説明できる.	研削仕上げ面粗さの基礎 を修得していない.					
4	研削機構の特徴が詳細に 説明できる.	研削機構の特徴が説明できる.	研削機構の基礎が説明で きる.	研削機構の基礎を修得していない.					
5	各種砥粒加工法の特徴が 詳細に説明できる.	各種砥粒加工法の特徴が 説明できる.	各種砥粒加工法の基礎が 説明できる.	各種砥粒加工法の基礎を 修得していない.					

科目名								
H . H			担当教員		学年	単位	開講時数	種別
設計工学 (Advance	学特論 ced Machi	特論 dd Machine Design) 相楽勝裕 (常勤/実務) 1・2 2 半期 2 時間					選択	
授業の概	腰	たがって、エン	可場の要望や技術先行の製品案、	D工業製品を設計をする	るときん	こ多くσ	工学的知識	識や能力
授業の形	態	講義						
授業の進	≜め方		議をする。理解度確認のために い自学自習の習慣を身につける		さよび小	・テスト	を実施する	5 °
到達目標	Ē	1. 設計とはなり	こかを説明できる。					
実務経験 容との関	後と授業内 関連	あり						
学校教育 関係	育目標との	(合的実践的技術者として、数学 引する知識をもち、工学的諸問題					技術と基
			講義の内容	3				
項目			目標					時間
ガイダン	/ス		シラバスの説明をする。					2
設計の基	基礎		製造業での仕事と、ものづくり) におけるエンジニアの	の役割を	会説明す	る。	4
強度計算						4		
精度と加	『工方法		精度と加工方法の選定について	て説明する。				4
周辺技術	ij		ものづくりにおいて使われて する。	いる CAD/CAM、有	限要素	法につ	いて説明	4
品質			品質について学ぶ。					12 計 30
								н эо
項目			目標					時間
復習			_ 	 テネ				30
課題			理解度を確認する課題や、調査		ナス			30
µ/к/2				EI JU OTKU EI CII / A	2 0			計 60
総合学習	3時間							計 90
	責の評価方	提出物の提出な	式況を 6 割、テストを 4 割として	て、総合的に評価する。				н
関連科目]	弾性学・加工学		 E学				
教科書・		参考書: 「絵と 料加工学」-材	き「機械設計」基礎のきそ」平 科と加工を知らなきゃ設計はで 5商品カタログ、図面、3D モデ	田宏一 (日刊工業新聞 きない-」西野 創一郎	(白刊コ	工業新聞		
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	クログログラス (良) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	: (可)	未到道	をレベルの目安	(不可)
1	十分理解	解して、設計とは	な 理解して、設計とはなにか	設計とはなにかを説 きる。	明で	設計と	はなにかる	と説明で

		기계 이 구선 국자기					
科目名		担当教員		学年	単位	開講時数	種別
設計工学特論 (Advanced Machi	ne Design)	君塚政文 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要	船舶や海洋構造	物・気象海洋観測機器を題材に	こ、要件定義・設計・原	昇発の基	基礎につ	いて解説す	ける。
授業の形態	講義						
授業の進め方	講義を中心として 予習,復習を行	て適宜実習・校外学習及び課題 い自学自習の習慣を身につける	夏により設計について野 る。	里解を浮	影める。		
到達目標	2. 自然現象に対	応した機器の目的・用途・メン 応した機器の設計と開発工程 、試験すべき内容が説明でき	を理解できる。)			
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		的実践的技術者として、数学 する知識をもち、工学的諸問題					技術と基
		講義の内容	5				
項目		目標					時間
1. ガイダンス		授業の概要と進め方を説明する					2
2. 船舶の設計		ヨットを題材に動作原理を学習					2
	1	実際に効率よく風を受けて動作				- 0	2
3. 気象現象の理		気象観測機器の設計のために、					4
Was Mark Strain	:	気象項目(気温・降水量・風速 学習し、実際に設置している理	見場を見学し、改善点を	を見出す	۲。		4
	4. 海洋観測について 海洋観測機器の設計のために、どのような海洋現象があるのか、海洋特有の 問題について学習する。					洋特有の	6
	5. 海洋開発について 海洋構造物や船舶の構造・設計・開発工程について学習する。					± 0 € 0 € 0 € 0	6
6. 開発機器の訊	6. 開発機器の試験 開発する際にその機器の性能を評価しなければならない。性能評価試験の現場を実際の試験現場を通じて、学習する。					4	
		4 W 4 777					計 30
		自学自習					n+ 00
項目		目標	34年373 ナイニン				時間
予習、復習 課題		関連技術調査や具体例等の予習 課題の学習、レポートの作成お		お調本 対	な行る		20 40
		味趣の子音、レホートの作成 を	っよいてれらに所る扠巾	り神耳で	E117°		計 60
 総合学習時間		 講義 + 自学自習					計 90
学業成績の評価方		哨我 〒 ロテロ目 成度から評価する。					п эо
法		vacate at the transfer at the					
関連科目	加工システム学	・機械要素学					
教科書・副読本	参考書: 「船体選挙出版会), その	運動 耐航性能編」柏木正・岩)他: 適宜、資料を配布する。	片下英嗣 (成山堂書店)	•「一般 	気象学」 	小倉義光	東京大
		評価 (ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
器以外 応した 各部機 を を お お お お お お お お お お お お お お も お も	1 講義や実習で紹介した機 自然現象に対応した機器 自然現象に対応した機器 自然現象に対応 自然現象に対応 の目的・用途・各部機構に の目的・用途を把握して の目的・用途を把握して いる。 ない。 名部機構について、説明することができる。						
発工程 見出し、	既存製品の構造・機構や開 発工程について、改善点を 見出し、より発展させることができる。 既存製品について、機器の 構造・機構・開発工程を理 解できる とができる。 既存製品について、用途に 合わせた機器の構造の特 徴を把握している。 ない						
すため 試験項					容について		

科目名		担当教員	学年	単位	開講時数	種別	
機械要素学 (Machine Element	Design)	青代敏行 (常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要		選定、設計するために必要な項目と、目的とする機能を実現する機械要素を用いた構築 解説する。また自動車やロボット等機械システムの具体例によって機械要素の知識を習					
授業の形態	講義						
授業の進め方		料を使って進め、例題を用いて解説する。また演習をい自学自習の習慣を身につける。	ウテスト	により	習熟度を確	[認する。	
	2. 要求される	こおける特徴を理解できる 機能を満たす機械に必要な機械要素を理解できる 機械要素の計算手法、選定要点を理解できる					
実務経験と授業内 容との関連	なし						
		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する能				技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス		授業のガイダンスと機械要素応用例の解説を行う。				2	
機械要素について	めいて 機械要素に関する分類について理解し、各要素の特徴を学ぶ。					4	
摩擦接触		接触面における摩擦、摩耗、潤滑の関係及び弾性境界潤滑等の効果について学ぶ。					
伝動装置		歯車やベルト、チェーンといった伝動装置の使い方や伝達動力について理解 する。					
クラッチ		機械装置の軸を必要に応じて断続する要素を学び、 する。				4	
フライホイール		フライホイールのはたらきや、GD ^ 2、等価慣性』 を理解する。				4	
等価回路		機械の構造を電気回路に置き換えて解析する等価回				4	
機械要素の利用例		機械要素の利用例、応用手法等について実際の機器	等を対象	きに学ぶ	0	2	
まとめ		まとめの実施				2	
						計 30	
		自学自習					
項目		目標				時間	
授業の予習と復習		講義内容について、授業の予習と復習を行う。				20	
機械要素実機を対象くり学習	象としたものづ	授業で学んだ機械要素を実際に用意し、これらを用い 応するものづくりを行う。製作した後はこれらの動けれるのか、性能や特徴を実際に試験を通して確認	作が実際			20	
講義のまとめ		講義で学んだ内容を復習し、補足事項等を資料や文庫 める.	献等を活	語用して	理解を深	20	
						計 60	
総合学習時間	(@.1k*1 · . i → → ·	講義 + 自学自習	±=: /== / 1 :=	D 22 AA	AL VINITED	計 90	
学業成績の評価方 法		「る問題や課題の解答、実施するテストによって成績 果題の比率は 6:4 とする。	評価結果	Rを総合	でで判断	する。な	
関連科目	機械設計製図,	機構学					
教科書・副読本	その他: 特に定	めない。必要に応じて印刷物を配付する。					

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	機械要素の分類とそれぞれの主たる特徴を理解すると共に、適切な利用方法 を提示できる	機械要素の分類とそれぞれの主たる特徴を理解している	機械に求められる特徴と、 それらを構成する機械要 素のうち基本的なものの 特徴を理解している	基本的な機械要素の特徴 を理解していない					
2	特定の目的を実施するために必要とされる機械要素を選定し、基本的な構成を示すことができる	特定の目的を実施するために必要とされる機械要素を選定することができる	基礎的な目的を実施する ために必要とされる機械 要素を選定することがで きる	基礎的な目的を実施する 機械要素を選定できない					
3	各種機械要素の形状設計 に必要な計算の実施や、要 素選定のための基礎的な 等価回路等を示すことが できる	各種機械要素に関係する 基礎的な計算の実施や、等 価回路の利用手法を理解 している	機械要素選定のための基 本的な形状計算について 実施することができる	機械要素に関する基本的な形状計算について実施することができない					

科目名		担当教員	学年	単位	開講時数	種別
機械要素学 (Machine Elemen	t Design)	長谷川収 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要		E、設計するために必要な項目と、目的とする機能を やする。また自動車やロボット等機械システムの具体				
授業の形態	講義					
授業の進め方		資料を使って進め、例題を用いて解説する。また演習 行い自学自習の習慣を身につける。	やテスト	により	習熟度を確	認する。
到達目標		こおける特徴を理解し、適切な要素選定ができる。 機能を満たす機械に必要な強度を持つ機械要素を選択	どできる。)		
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 関する知識をもち、工学的諸問題にそれらを応用する				技術と基
		講義の内容				
項目		目標				時間
ガイダンス		授業のガイダンスと機械要素応用例の解説を行う。				4
機械要素について		機械要素に関する分類について理解し、各要素の特	対後を学る	ν.° γ,		4
伝動装置		歯車やベルト、チェーンといった伝動装置の使い方 する。	や伝達動	力につ	いて理解	8
クラッチ		機械装置の軸を必要に応じて断続する要素を学びする。	、伝達動	力につ	いて理解	6
フライホイール フライホイールのはたらきや、慣性モーメント、等価慣性量の概念を理解する。				念を理解	8	
						計 30
		自学自習				
項目		目標				時間
機械要素の種類と何	位置づけの学習	代表的な機械要素の中から、興味深いものについて いて調査する.	,その特	持徴,使	用例につ	4
歯車の材料としての の計算		伝達動力,回転数,インボリュート歯車の各部の形 みあい率等を求め,歯車材料の許容応力を計算する			,	3
ベルト伝送装置に 強度		慮して、必要なベルトの幅やプライ数を計算する.				3
ドラムブレーキのイ		リーディングトレーリングシュー形をとり上げ、必定して油圧シリンダーの作動力を計算する.				3
摩擦クラッチの伝え		円板クラッチの寸法、クラッチ板の摩擦係数、許容 最大押し付け力や伝達可能トルクや動力を計算する				3
フライホイールの		プレス打抜きを例に、取り付けるべきフライホイー算する.		生モーメ	ントを計	3
種々の立体の慣性		円柱・円盤, 直方体, 球などの慣性モーメントを計				4
慣性モーメントと	GD ^ 2	フランジなど機械部品の慣性モーメントや GD ^ 2			- //	3
等価慣性量		テーブル送り装置を例に、全体の慣性量を計算し、停止させることができる条件について考える.	テーブル	レを所定	の位置に	4
予習復習,試験対象	策	授業の予習, および復習と, テストに備えた学習				30
⟨⟨⟩⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩		=# **				計 60
総合学習時間	極森中22相一	講義 + 自学自習 	≢=17 /112 ♦+ □	田 ナゾハ ^	>竹/1) → N/11 N/1*・	計 90
学業成績の評価方	1/営業甲に提示す	する問題や課題の解答、実施するテストによって成績	1評価結5	未を総合	『眇に判断)	する。な
法	お、テストと記	課題、の比率は 4:6 とする。				
	お、テストと記 トライボロジ-	課題、の比率は 4:6 とする。				

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	歯車やベルト車において, 動力や動力伝達に関わる 力を理解し,動力の伝達に 必要な機械要素の強度計 算ができる.	歯車やベルト車において, 動力や動力伝達に関わる 力を理解している.	歯車や巻掛け伝動装置といった動力伝達要素の種類や特徴を理解している.	歯車や巻掛け伝動装置といった動力伝達要素の種類や特徴を理解できていない.						
2	回転する機械部品の慣性 モーメントや, 直線運動す る機械部品の等価慣性量 を求め, 機械の運動を停止 させる際のブレーキトル クや停止に要する時間が 計算できる.	ブレーキやクラッチといった要素の種類や特徴を理解し,所望のブレーキトルクを得るために必要な作動力とブレーキの形式の決定,伝達可能な動力が計算できる.	ブレーキやクラッチといった要素の種類や特徴を 理解している.	ブレーキやクラッチといった要素の種類や特徴を 理解できていない.						

		サ州サード 中央 寺以代 クラバス					
科目名		担当教員	学年	単位	開講時数	種別	
トライボロジー特詞 (Tribology)	論	瀬山夏彦 (常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要	授業の概要 摩擦・摩耗・潤滑を取り扱う学問分野である「トライボロジー」について学ぶ.2 物体の表面接触に関する理論,潤滑と摩擦のメカニズム,潤滑油について触れる.また,摩擦によって引される表面損傷や,摩耗のメカニズムと対策について学ぶ.トライボロジー問題に関する実例する.						
授業の形態	講義						
授業の進め方		つる.また,調査を要するレポートを課す. fい自学自習の習慣を身につける.					
到達目標	1. 摩擦・摩耗 2. 実際の機械 きる.	・潤滑のメカニズムを理解している. 装置におけるトラブル事例について,トライボロシ	ジーの観	点から	考察するこ	ことがで	
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基	
		講義の内容					
項目		目標				時間	
トライボロジー概	論	「トライボロジー」の定義を説明することができる.				2	
固体の表面と接触		固体表面の性状を理解する. ヘルツ接触について説明できる.					
摩擦		摩擦のメカニズムを理解している.					
潤滑の分類とメカ	ニズム	ストライベック線図,摩擦の三形態について説明できる.EHL 潤滑理論に ついて説明することができる.					
摩耗の分類とメカ、	ニズム	摩耗現象とは何かを理解し、摩耗現象を正しく分類	しできる			10	
潤滑油とグリース		潤滑油とグリースについて、性状、機能、分類を理解し、適材適所に使用することができる.					
トライボロジーの 介	応用/研究の紹	実際に機械装置において、トライボロジーを利用し ギー効率向上のためにどのような工夫がされている。 とができる.				6	
						計 60	
		自学自習					
項目		目標				時間	
トライボロジー研究	 究動向の調査	トライボロジー分野の現在の動向を調査し、調査結	果を報告	できる		30	
		,				計 30	
総合学習時間		講義 + 自学自習				計 90	
学業成績の評価方 法	定期試験(7()%), レポート(30%)として評価する.			•		
関連科目							
教科書・副読本		イボロジー入門」岡本純三,中山景次,佐藤昌夫 (幸 〒々木・志摩・野口・平山・地引・足立・三宅 (講談社		参考書:	「はじめ	てのトラ	
	l		,				

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	トライボロジーの定義を 理解しており、二固体表面 接触問題にまつわる各現 象の仕組みを説明でき、接 触面の状態から、発生した 現象を分類・考察すること ができる.	トライボロジーの定義を理解しており、2つの固体表面の接触問題において、摩擦・摩耗・潤滑にまつわる現象の仕組みを述べることができる.	トライボロジーの定義を理解しており、摩擦・摩耗・潤滑のそれぞれの定義を述べることができる.	トライボロジーの定義を 理解していない. また, 摩 擦・摩耗・潤滑について, そのメカニズムを述べる ことができない.				
2	できる. また, それらにつ	る事例を分類することが	の事例を挙げることでき, それらの問題発生のメカ ニズムを説明することが	機械装置におけるトライ ボロジー問題の事例を全 く挙げることができず、 たトラブル事例を示され てもトライボロジーの見 地から考察することが全 くできない.				

		I	1		1	
科目名		担当教員	学年	単位	開講時数	種別
トライボロジー特記 (Tribology)	侖	伊藤聡史 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要		勿体の表面と接触,摩擦と潤滑のメカニズム、摩擦に 幾械や日常の場面におけるトライボロジー問題を話題				り扱う。
授業の形態	講義					
授業の進め方	選業の進め方 講義は副読本の内容を中心としてすすめ、必要に応じて補足資料を使用する。また、理解を深めの小テストやレポート課題を課す。 予習、復習を行い自学自習の習慣を身につける。					
到達目標	2. 実機製品に	ジーを構成する、摩擦、摩耗、潤滑の基本的な作用原 対してトライボロジー的問題点を挙げることができる 評価試験などの場面において、トライボロジー的側面	0			
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 関する知識をもち、工学的諸問題にそれらを応用する[技術と基
		講義の内容				
項目		目標				時間
ガイダンスおよび の概要	トライボロジー	講義内容および授業計画の確認とトライボロジーをする。	学ぶ意	義につ	いて把握	2
トライボロジーにつ	ついて	トライボロジーの構成内容と成り立ち、関連分野に	ついて理	解する	0	2
表面と接触 I		固体表面の有する性状や接触状態が摩擦・摩耗に与する。	テえる影	響につ	いて理解	2
表面と接触 II		固体表面の性質とそれらがトライボ現象に与える影響	響につい	ヽて理解	する。	2
固体の摩擦 I		摩擦の法則と主要因について学習する。				
固体の摩擦 II		摩擦に伴う各種現象についての知識を得る。				
摩耗I		摩耗の分類と評価方法について理解する。				
摩耗 II		凝着摩耗、アブレシブ摩耗のメカニズムと理論を学習する。				
摩耗 III		その他の摩耗と各種摩耗試験法についての知識を得	る。			2
潤滑 I		潤滑状態の分類と概要について学習する。				2
潤滑 II		境界潤滑、混合潤滑の理論と評価法について理解す	る。			2
流体潤滑		流体潤滑の理論とメカニズムについて学習する。				2
弾性流体潤滑		弾性流体潤滑の概要と理論について学習する。				2
表面改質 I		表面改質技術の意義と効果について理解する。				2
表面改質 II		代表的な表面改質技術の特徴と適用例についての知識を得る。				
						計 30
		自学自習			·	
		目標				時間
予習、復習		式の導出、周辺技術調査等、予習復習。授業時に式のいての確認を行う。	の導出過	過程や関	連技術に	25
課題		課題の学習、レポートの作成およびそれらに係る技	析調査			25
定期試験の準備		定期試験準備のための学習時間				10
						計60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法		・ トまたは小テスト」「中間レポート」を実施して、「期 ポート」を50%として評価する。	末レポー	ートまた	とは小テス	ト」を5
関連科目	精密測定学					
教科書・副読本	ジー」橋本 目 新聞社)・「トラ めてのトライス	・イボロジー」山本 雄二・兼田 植宏 (理工学社), 副 豆 (森北出版)・「図解 トライボロジー 摩擦の科学と ・イボロジー再論 — 次世代のトライボロジストたちへ ボロジー」佐々木信也/志摩政幸/野口昭治/平山朋 ・エンティフィック)	: 潤滑技 、一」木	術」村2 村 好2	木 正芳 (次 (養賢堂	日刊工業)・「はじ

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	摩擦・摩耗・潤滑の作用原 理を理解している。	摩擦・摩耗・潤滑の基本的 なメカニズムを理解して いる。	摩擦・摩耗・潤滑に作用する基本的な影響因子を挙 げることができる。	摩擦・摩耗・潤滑に作用する基本的な影響因子を挙 げることができない。				
2	実機に生じるトライボロ ジー的問題を適切な方法 で解決することができる。	実機に生じるであろうト ライボロジー的問題点を 予想することができる。	トライボロジー的トラブ ルの具体例を挙げること ができる。	トライボロジー的トラブ ルの具体例を挙げること ができない。				
3	摩擦・摩耗・潤滑の相互作 用を勘案して、必要な評価 試験や設計改善を行うこ とができる。	トライボロジー特性の評価結果から特性改善の方向性を検討することができる。	価するための基本的手段	トライボロジー特性を評価するための基本的手段 を挙げることができない。				

科目名				担当教員		学年	単位	開講時数	種別
流体工学特記 (Advanced	論 Fluidic	s)	田村	村恵万 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要				や水の流れが不可欠である。 運動の基礎として流体の基礎					
授業の形態		講義							
授業の進めフ				. 理解を深めるための問題演行 自学自習の習慣を身につける。		プレも	ジンテー	ションを行	 īう。
到達目標		1. 流体工学の	基礎	的知識を用いて応用的な解析	ができる.				
実務経験と抗 容との関連	授業内	なし							
学校教育目标 関係				実践的技術者として、数学・ る知識をもち、工学的諸問題は					技術と基
				講義の内容					
項目			目	標					時間
1. ガイダン	ンス								2
2. 流れの	基礎①		流	体の基礎用語と流体静力学に	ついて学習する。				2
3. 流れの	基礎②		同	Ŀ					2
4. 流れの	基礎③		同	Ŀ					2
5. 流体の	基礎方程	是式①	連	続の式、オイラーの運動方程	式、ナビエ・ストーク	フス方科	呈式を学	習する。	2
6. 流れの	基礎方程	星式②	同	上					2
7. 流れの	基礎方程	是式③	同	上					2
8. 層流の物	性質		層流現象の基礎および乱流現象の基礎、境界層の概念を学習する。					2	
9. 乱流の1	性質①		同上					2	
10. 乱流(の性質②		同.	上					2
11. 乱流(の性質の	3)	同.	Ŀ					2
12. 流体記			流	体計測法や流体可視化法につい	いて学習する。				2
13. 流体記	計測法②	2)	同.	Ŀ					2
14. 流体記	計測法③	3)	同.	Ŀ					2
15. まとる	め		2	れまでの授業のまとめを行う。	5				2
									計 30
				自学自習					
項目			目						時間
予習、復習			+	 の途中変形の確認等、予習復					30
課題			1	題の学習。					25
定期試験の	準備			ロー・ロッ 期試験準備のための学習時間。					5
7C791H- (45)(3	1 1/114		/ /	ATTACA MILITARY OF THE STATE OF	,				計60
総合学習時間	 問		講						計 90
学業成績の記 法		試験の得点 70		課題の提出とその内容・プレ	·ゼンテーションの内	容 30 (%の割合	で評価する	
関連科目		粘性流体の力質	学・	 トライボロジー特論					
教科書・副語	読本	その他: 参考書	書:「	機械系大学院への四力問題精 械学会 (日本機械学会)	選」藤川重雄 (培風館	涫)・「J	SME 7	ナキストシ	リーズ
				<u></u> 評価 (ルーブリッ	·ク)				
到達目標	理想的な	到達レベルの目安 (優	į)	標準的な到達レベルの目安(良)	<u>・ /</u> ぎりぎりの到達レベルの目安	(司)	未到達	レベルの目安	(不可)
		,	_	` '					• •
定 し	它理,運	式, ベルヌーイ 動量の保存等に]で応用的な解 	こつ	定理,運動量の保存等について教員の多少のアドバイスのもと応用的な解析	N-S 方程式,ベルヌ の定理, 運動量の保存 ついて教員のアドバ のもと応用的な解析 きる.	等に イス がで	定理, 追 いて教員	呈式, ベル 動量の保存 員のアドノ も応用的な	存等につ ベイスを

科目名		担当教員	学年	単位	開講時数	種別
流体工学特論 (Advanced Fluidi	cs)	工藤正樹 (常勤/実務)	1 • 2	2	半期 2 時間	選択
授業の概要		空気や水の流れが不可欠である.各工学コースで学ぶ 流体運動の基礎として流体の基礎式や実際の流動現績				
授業の形態	講義					
授業の進め方	講義を中心とう	する.また,理解を深めるための問題演習やレポートの 行い自学自習の習慣を身につける.	の作成を	行う.		
到達目標	2. 運動量の法	の定理に関する応用的な解析ができる。(D-3(d)) 則に関する応用的な解析ができる。(D-3(d)) トークス方程式に関する応用的な解析ができる。(D-3	B(d))			
実務経験と授業内 容との関連	あり					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 関する知識をもち、工学的諸問題にそれらを応用する[支術と基
		講義の内容				
項目		目標				時間
1. ガイダンス						2
2. 流れの基礎①		流体の基礎用語と流体静力学について学習する。				2
3. 流れの基礎②		同上				2
4. 流れの基礎③		同上				
5. 流体の基礎方	程式①	連続の式、オイラーの運動方程式、ナビエ・ストー	クス方程	星式を学	習する。	2
6. 流れの基礎方	程式②	同上				2
7. 流れの基礎方	程式③	同上				
8.層流の性質		層流現象の基礎および乱流現象の基礎、境界層の概念を学習する。				
9. 乱流の性質①		同上				2
10. 乱流の性質	2	同上				2
11. 乱流の性質	3	同上				2
12. 流体計測法	1	流体計測法や流体可視化法について学習する。				2
13. 流体計測法	2	同上				2
14. 流体計測法	3	同上				2
15. まとめ		これまでの授業のまとめを行う。				2
						計 30
		自学自習				
項目		目標				時間
予習、復習		式の途中変形の確認等、予習復習。				30
課題		課題の学習。				25
定期試験の準備		定期試験準備のための学習時間。				5
						計60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法		%,課題提出 30 %の割合で評価する.ただし,上記 が生じないよう配慮するために,変動する場合がある				
関連科目	粘性流体の力等	 \$				
関連科目 粘性流体の力学 教科書・副読本 その他:機械系大学院への四力問題精選(藤川重雄ら著,培風館),JSME テキストシリーズ 学(日本機械学会著,日本機械学会),配布資料				オルナ		

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	ベルヌーイの定理について独力で応用的な解析(一般的な問題集の中級程度)ができる.		ベルヌーイの定理について教員のアドバイスのもと応用的な解析(一般的な問題集の中級程度)ができる。	ベルヌーイの定理について応用的な解析(一般的な問題集の中級程度)ができない。				
2	運動量の法則について独力で応用的な解析(一般的な問題集の中級程度)ができる.		運動量の法則について教 員のアドバイスのもと応 用的な解析ができる.					
3	ナビエ・ストークス方程式 について独力で応用的な 解析(一般的な問題集の中 級程度)ができる.		ナビエ・ストークス方程式 について教員のアドバイ スのもと応用的な解析が できる.	ナビエ・ストークス方程式 について応用的な解析(一 般的な問題集の中級程度) ができない.				

		令机 6 年度 専攻科 シフハス 					
科目名		担当教員	学年	単位	開講時数	種別	
粘性流体の力学 (Dynamics on Vis	cous Flow)	工藤正樹 (常勤/実務)	1 • 2	2	半期 2 時間	選択	
授業の概要	工学的な適用例	と関連付けながら,粘性流れの基礎理論を学習する.					
授業の形態	講義						
授業の進め方	業の進め方 理論的な講義から流れの解析手法を理解するとともに、理論から導出した式を用いた流れの調 践し、さらに実際的な流れの適用について理解できるようにする。 予習、復習を行い自学自習の習慣を身につける。				計算を実		
到達目標	2. 数值流体力学	界層や流れのはく離について理解し説明できる。 $(D ext{-}3(d))$ 値流体力学の基礎について理解し説明できる。 $(D ext{-}3(d))$ の特性について理解し説明できる。 $(D ext{-}3(d))$					
実務経験と授業内 容との関連	あり)					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する(技術と基	
		講義の内容					
項目		目標				時間	
1. ガイダンス		授業のガイダンス				2	
2. 非圧縮非粘性液	売れ	翼理論など流体力学の総括と復習				2	
3. 粘性流体の性質	質	流体粘性による内部応力について学習する。					
4. 粘性流体の基础		Navier-Stokes の運動方程式を導出する。					
5. 粘性流体の理語	論解	Navier-Stokes の運動方程式の厳密解を導出する。					
6. 数值流体解析		数値流体解析の基礎として差分法、乱流モデルについて理解する。					
7. 工学装置への原	芯用	実用機器を例にとり、理論との関係を理解する。					
8. 流れの例(1)		翼理論などの実際的な工学上の役割を理解する。計算で、翼周りの流れを把握し、翼理論の理解を深める。					
9. 流れの例(2)		翼周りの圧力分布とはく離現象および失速現象を把	屋する。			4	
10. まとめ		まとめ				2	
						計 30	
		自学自習					
項目		目標				時間	
予習、復習		式の途中変形の確認等、予習復習。				30	
課題		課題の学習。				25	
定期試験の準備		定期試験準備のための学習時間。				5	
						計 60	
総合学習時間		講義 + 自学自習				計 90	
学業成績の評価方 法	比率は受講者の	ための結果から判断する.レポートと試験の比率は7: D所属コースなどによって不利が生じないよう配慮す 対験を実施することがある.					
関連科目	流体工学特論						
教科書・副読本		体の力学(生井・井上著,理工学社),流体計算と差 ≸著,森北出版)	分法(多	桑原・汽	可村著,朝	倉書店),	

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	境界層、流れのはく離に加 えて物体周りの流れにつ いても説明できる。	境界層と流れのはく離に ついて説明できる。	境界層について説明できる。	境界層について説明でき ない。				
2	差 分 法 と 乱 流 モ デ ル (RANS) に加えて渦粘性 モデルの考え方を説明で きる。	差 分 法 と 乱 流 モ デ ル (RANS) の考え方につい て説明できる。	差分法の考え方について 説明できる。	差分法の考え方を説明で きない。				
3	単独翼と翼列の特性について説明でき、翼列の簡単な設計ができる。	単独翼, 翼列の特性につい て説明できる。	単独翼の特性について説 明できる。	単独翼の特性について説 明できない。				

科目名		担当教員	学年 単位	立 開講時数	種別		
熱力学特論 (Advanced Therm	no Dynamics)	宇田川真介 (常勤/実務)	1 • 2 2	半期 2 時間	選択		
授業の概要 私たちに機械文明の恩恵をもたらす熱機関は、熱力学の知識の上に成立している。この熱機関通り熱エネルギを機械的仕事に変換する装置であるが、気体を作動媒体としてエネルギ輸送をに特徴がある。本講義では、工学系技術者に必要とされる熱力学の基礎から熱機関の基本原理学習し、熱現象にともなう現実的問題を解決するための基礎力と応用力を養う。							
授業の形態	講義	£					
授業の進め方	展開する.理解	て授業を進める.講義の理解度を深めるため,講義 度はレポート・期末試験により評価する. い自学自習の習慣を身につける.	項目に対応し	た実験・実	習を適宜		
到達目標	2. 熱力学第二流	法則を用いた単純な計算ができ,結果の妥当性を評価 法則を用いた単純な計算ができ,結果の妥当性を評価 レの計算ができ,結果の妥当性を評価できる.	できる. できる.				
実務経験と授業内 容との関連	あり						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用するf			技術と基		
		講義の内容					
項目		目標			時間		
ガイダンス					2		
熱力学第一法則		仕事と熱、内部エネルギの概念を学ぶ					
理想気体の状態変化	Ľ	理想気体の状態変化を計算できる					
絶対仕事と工業仕事	事	熱力学的仕事の概念を理解する					
熱力学第二法則		可逆サイクル・不可逆サイクルについて理解する			4		
カルノーサイクル		カルノーサイクル・逆カルノーサイクルについて理解	解する		4		
ガスサイクル		オットー・ディーゼル・サバテ・ブレイトンの各種 する	サイクルに	ついて理解	4		
冷凍と空調		冷凍機とヒートポンプの作動原理を学ぶ 冷凍サイクルについて理解する					
まとめ		理想気体の状態変化から,系の温度,圧力の変化, 事を計算する 各種サイクルの性能を計算する	系と周囲の熱	力学的な仕	2		
					計 30		
		自学自習					
		目標			時間		
予習・復習		評価の対象であるレポート作成を行う. また式の途の予習・復習を行う. 授業時に各自の内容や式の変形	中変形の確認 形の確認を行	等,各項目 う.	30		
定期試験の準備 定期試験のための学習, レポート作成のための学習				30			
∜◇₩₹₹₹₹₩		# · · · · · · · · · · · · · · · · · · ·			計60		
総合学習時間	開土記録の気	講義 + 自学自習 1 - 取が極楽中に実施せて海羽の紀然刷テめいポートの	n断にし ゲ	公公的 河面	計 90		
学業成績の評価方 法 	また、学習意欲	と, 及び授業中に実施する演習の解答例示やレポートの (と学習態度により加点・減点を行う場合がある.					
関連科目	内燃機関工学 · 力学	熱力学 II・熱力学 I・熱力学 I ・熱力学 II・伝熱工学	・航空原動植	幾工学・推進	工学・熱 		
教科書・副読本 その他: 講義内容に対応した関連資料を適宜配布する。							

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	熱力学第一法則を用いた 計算ができ,大学院入試の 過去問題を教員の誘導に 従い解くことができる.	熱力学第一法則の式を用いた計算ができる.	熱力学第一法則の式を用いた定量的な説明ができる.	熱力学第一法則の式を用いた定量的な説明ができない.				
2	熱力学第二法則を用いた 計算ができ,大学院入試の 過去問題を教員の誘導に 従い解くことができる.	熱力学第二法則の式を用いた計算ができる.	熱力学第二法則の式を用いた定量的な説明ができる.	熱力学第二法則の式を用いた定量的な説明ができない.				
3	各種サイクルの計算ができ,大学院入試の過去問題を教員の誘導に従い解くことがきる.	各種状態変化に関する関係式を組み合わせ,サイクルの理論性能を導出できる.	各種状態変化に関する関係式を,基本式から出発して導ける.	教員の誘導に従っても,各種状態変化に関する関係式を,基本式から出発して導けない.				

科目名		担当教員		学年	単位	開講時数	種別
熱力学特論 (Advanced Therm	no Dynamics)	上島光浩 (非常勤)		1 • 2	2	半期2時間	選択
授業の概要	通り熱エネルキ に特徴がある。	て明の恩恵を浴せしめる熱機関ル でを機械的仕事に変換する装置で 本講義では、工学系技術者に なにともなう現実的問題を解決す	であるが、気体を作動媒 必要とされる熱力学の基	体と	してエネ ら熱機関	ルギ輸送	を行う点
授業の形態	講義						
授業の進め方	講義ノートを配 予習、復習を行	2布、毎回課題を課す。 い自学自習の習慣を身につける	3 。				
到達目標	1. 熱力学の法見解ける。	則や熱機関の原理について理解	し、さらに熱機関サイク	ルの	高効率化	となどの応	用問題が
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学 引する知識をもち、工学的諸問題					技術と基
		講義の内容	\$				
項目		目標					時間
ガイダンス		授業の進め方、勉強の仕方					2
熱力学の基本概念		温度,圧力,比熱					2
熱力学第一法則		仕事と熱,内部エネルギ,理想	想気体の状態変化				4
絶対仕事と工業仕		エンタルピー,密閉系と流動乳	系の仕事				2
熱力学第二法則		エントロピー、不可逆変化					4
p-v 線図と T-s 線	X	p-v 線図と T-s 線図					2
エクセルギの概念		有効仕事と無効仕事の概念					2
実在気体		実在気体の状態変化,相変化					2
熱機関サイクル		 蒸気原動所および内燃機関サ/	イクル				4
自由エネルギ		相平衡の熱力学					2
期末試験		期末試験					2
期末試験の返却お	よび解説	 答案返却,成績伝達,異議申〕	し立て				2
							計 30
		自学自習					
							時間
予習、復習		式変形の確認など各項目の予					30
課題の解答,定期	試験の準備	授業時に式変形の確認を行う. 講義ノート中の例題,練習問題	,	,大	学院入試	問題が解	30
,		ける.					
							計 60
総合学習時間	+	講義 + 自学自習					計 90
学業成績の評価方 法	毎回の課題:4 うことがある。	0 %,中間試験:30 %,期末記	忒験:30 %の合計点で評 ───	F価す	る。状況 	記により再	試験を行
関連科目							
教科書・副読本	教科書: 「機械	系大学院への四力問題精選」菔	寮川重雄 (培風館)				
		評価 (ルーブリ	ック)				
到達目標 理想的な	到達レベルの目安 (優) 標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
化につい	サイクルの高効いて考察し、応用	問 理解し、基礎的な問題が解	原理について理解し、		想気体の		
題が解り	ソる。	ける。	的な問題が解ける。		できない	' o	

科目名		担当教員		学年	単位	開講時数	種別
伝熱工学特論 (Advanced Heat	Transfer)	齋藤博史 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要	各種熱交換器や	電子機器の冷却など多くの工学	ど的な熱移動現象や伝熱	促進手	き法につ	いて学ぶ。	
授業の形態	講義						
授業の進め方	どを用いて演習	移動について理論的かつ現象詞 を行う。 い自学自習の習慣を身につける		また、耳	里解を深	めるため	に例題な
到達目標		髪と熱移動速度を理解できる。(関する諸問題を解決するための		養うこ	とができ	る。(D-③	(d))
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	\ /	â的実践的技術者として、数学 する知識をもち、工学的諸問題					技術と基
		講義の内容	-				
項目		目標					時間
ガイダンス		授業のガイダンス、伝熱工学の	D概要				2
熱伝導		定常および非定常熱伝導の計算	第				4
対流熱伝達		自然対流熱伝達と強制対流熱化	伝達の基本事項の理解				4
熱通過		熱通過に関する基本事項の理解	翼と計算				4
物質伝達		物質伝達の法則の理解					4
熱放射		熱放射の法則の理解					4
相変化を伴う伝熱		沸騰伝熱のメカニズムの理解					4
伝熱促進と伝熱機	器	伝熱促進と熱交換器に関する基	基本事項の理解				4
							計 30
		自学自習					
項目		目標					時間
予習・復習		伝熱工学に関する理論および記	†算について予習・復習	引する			40
レポート課題		課題について文献調査等を行い	、レポートを作成する				10
定期試験の準備		講義内容を整理するとともにて	文献を調べ、伝熱工学全	会般にオ	つたって	学習する	10
							計 60
総合学習時間		講義 + 自学自習					計 90
学業成績の評価方 法	試験 (80%) と	課題レポート (20 %) により評	価する.状況により再	試験を	行うこと	こがある.	
関連科目	熱力学特論・流	体工学特論・粘性流体の力学					
教科書・副読本	機械学会)・「機	工学」日本機械学会 (日本機械 械工学便覧γ3 熱機器」日本標 (日本機械学会)					
		評価 (ルーブリ	ック)				
到達目標 理想的	な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
度を理	動形態と熱移動 解したうえで, 象について考察	熱 度を理解し, 身近な伝熱現	熱の移動形態と熱移度を理解し、その概要明することができる.			動形態と類 解していな	
複数要 に関す	学の知識を用いて 因が影響する伝 る連成問題を解 とができる.	熱 伝熱に関する単純な問題	伝熱に関する諸問題 決するために,参考 教科担当の指示に従い 決策を見つけること きる.	書や		関する諸問 ための基礎 いない.	

1) 다섯		行和 6 年度 専攻科 ンフハス	学年	出任	88=#s+#t	#====
科目名		担当教員		単位	開講時数	種別
内燃機関工学 (Internal Combus	tion Engine)	小林茂己 (常勤/実務)	1 • 2	2	半期 2 時間	選択
授業の概要		機関の基本構造および高出力・低排出ガスがいかに同ご触れる。また、他のエネルギー機器との関連性や他の				
授業の形態	講義					
授業の進め方	説を加えながら	料書を事前に精読した上で、講師役を持ち回りで行う か進める。適宜、課題を課す場合がある。 近い自学自習の習慣を身につける。	輪講形式	式を中心	心に、担当	教員が解
到達目標	2. 内燃機関に	内燃機関の構造原理や基本特性がどのようなものか理 関する基礎的な計算ができる 軍転に伴う事象に関し定性的な説明ができる	解してい	いる		
実務経験と授業内 容との関連	あり					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する(技術と基
		講義の内容				
項目		目標				時間
内燃機関とは		内燃機関とは何か、社会からの期待はどのようなもうか。	のか、	そして	現状はど	4
ガソリン機関の原理	里、特性	 内燃機関の誕生と発展 燃費の向上 出力の向上 排気の清浄化 計算演習 				20
ディーゼル機関の原	原理、特性	1. ガソリン機関との違い 2. ディーゼル機関の原理と性能 3. ディーゼル機関の排気・燃費特性と改善策				4
課題と解説		課題により理解度を問い、解説により理解度を高め	る			2
						計 30
		自学自習				
項目		目標				時間
講義で扱われる内? 主学習	容・テーマの自	1. 講義内容の理解度を高める 2. 興味をもったテーマを掘り下げる 3. 自習した結果を他の受講者と共有する				60
						計 60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	課題 (80 %) と 点・減点を行う	: 取り組み状況 (20 %) により評価を行う。また、学: 5 場合がある。	習意欲や	学習態	度の程度	により加
関連科目						
教科書・副読本	の軌跡と未来~	加車用ガソリンエンジン」村中重夫 (養賢堂),参考書 へのメッセージ 」神本武征監修・著 (自動車技術会) B戦」鈴木 孝 (三樹書房),その他: 適宜プリントをi	「エンシ			

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	内燃機関に特有の構造原理を定性的に説明でき,一部については定量的説明や技術的背景を説明に加えることができる。	内燃機関に特有の構造原理を定性的に説明でき,一部については定量的な説明を加えることができる。	内燃機関に特有の構造原 理を定性的に説明できる。	内燃機関に特有の構造原 理を定性的に説明できない。			
2	な計算について,正しい過	内燃機関に関する基礎的な計算について,正しい過程で計算できるが,人に分かり易い記述はされない,結果に若干の誤りがある場合がある。	内燃機関に関する基礎的 な計算について,ほぼ正し い過程で計算できるが,計 算結果には若干の誤りが ある。	内燃機関に関する基礎的 な計算ができない。			
3	内燃機関の運転に伴う事 象に対応し得る基礎的事 項を理解し,いつでも使 え,簡単な説明もできる。	内燃機関の運転に伴う事 象に対応し得る基礎的事 項を理解し,いつでも使 える。	内燃機関の運転に伴う事 象に対応し得る基礎的事 項をほぼ理解している。	内燃機関の運転に伴う事 象に対応し得る基礎的事 項を理解していない。			

扒日夕		行和 6 年度 専攻科 ンフハス 切出教品	学年	出什	88€#n+₩L	無 即	
科目名		担当教員		単位	開講時数	種別	
応用機械力学 (Applied Dynami ery)	cs of Machin-	鈴木拓雄 (常勤) 	1 • 2	2	半期 2 時間	選択	
授業の概要		iを受けることが多い.振動による機械の応答を求め この講義では,1自由度系および2自由度系の振動				ても重要	
授業の形態	講義						
授業の進め方	および復習を行	資料を使って進め,講義の復習を兼ねて演習問題を解す すう. 近い自学自習の習慣を身につける.	(. 最後	に学習	したことの)まとめ,	
到達目標	1. 振動入力を登	受ける機械を1自由度系および2自由度系でモデル化	したと	きの理論	命を理解で	 きる。	
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 関する知識をもち、工学的諸問題にそれらを応用する				技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス		授業のガイダンス.				2	
減衰のない1自由	度系	減衰のない1自由度系の固有振動数および自由振動の求め方を理解する.					
減衰のある1自由	度系	減衰のある1自由度系の減衰比および自由振動の求	め方を理	[解する		4	
衝擊応答		衝撃入力を受ける1自由度系の振動の求め方を理解	する.			2	
1 自由度系の強制	振動	強制振動を受ける1自由度系の定常振動応答の求め	方を理解	解する.		2	
1 自由度系の強制	振動	強制振動を受ける1自由度系の定常振動応答の求め	方を理解	幹する.		2	
多自由度系の振動		主に2自由度系を中心に,運動方程式,固有振動数: 求め方を理解する.	および固	有振動	モードの	4	
多自由度系の強制	版動	主に2自由度系を中心に、強制振動を受ける場合の 理解する.	定常振動	応答の	求め方を	4	
ラグランジュの運	動方程式	ラグランジュの運動方程式の導出方法や意味, お する。	くびその	応用方	法を理解	4	
まとめ		学習したことのまとめ、および復習をする.				4	
						計 32	
		自学自習					
項目		目標				時間	
予習,復習		運動方程式の立て方、解き方の確認等の予習復習. て方、解き方の確認を行う.	受業時に	運動方	程式の立	30	
課題		課題の学習				30	
						計 60	
総合学習時間		講義 + 自学自習				計 92	
学業成績の評価方 法	試験の成績と挑題・課題を出す	是出課題によって判断し,授業への取組姿勢を加味す けので,これらの提出物を全て提出していなければな	る. たが らない.	ぎし,必	※要に応じ	て演習問	
関連利日							
関連科目 振動工学特論							

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	度系の運動方程式を立て ることができ,解を求め ることができる。それ以 上の多自由度系について	力の関係を理解しており、 1自由度系および2自由 度系の運動方程式を立る ことができ、解を求める ことができる。さらに、ラ グランジュ方程式を式 して系の運動方程式を てることができる。	慣性力・復元力・粘性減衰 力の関係を理解しており, 概ね1自由度系および2 自由度系の運動方程式を 立てることができ,解を求 めることができる。	慣性力・復元力・粘性減衰力の関係を理解しておらず、系の運動方程式を立てることができない。			

		节相 0 牛皮 等线件					
科目名		担当教員		学年	単位	開講時数	種別
応用機械力学 (Applied Dyna ery)	mics of Machin-	青木繁 (非常勤)		1 • 2	2	半期2時間	選択
授業の概要	機械が静的なる	7を受けた場合の力の釣合いお。	よび動的な力を受けた場	場合の追	動に関	する講義を	とする。
授業の形態	講義						
授業の進め方	講義は独自のき予習、復習を行	デキストを使って進める。必要に 行い自学自習の習慣を身につける	こ応じて演習問題を課しる。	、その	解説を	する。	
到達目標	1. 機械が静的 することができ	な力を受けた場合の力の釣合い: きる(D-3(d))	および動的な力を受けた	た場合の	の運動に	2関する理	論を理解
実務経験と授業 容との関連	内 なし						
学校教育目標と 関係		合的実践的技術者として、数学 関する知識をもち、工学的諸問題					技術と基
		講義の内容	\$				
項目		目標					時間
ベクトルを用い	た計算	ベクトルの内積・外積および~ 解する。	ベクトルを使ったモーメ	マントの	計算に	ついて理	2
力の釣合い		多くの力が作用している物体の	の力の釣合いについて理	里解する	5 。		2
質点の動力学		ニュートンの力学の法則の応用	用を理解する。				2
剛体の動力学		慣性モーメントの計算法および	び回転運動の運動方程式	代の解さ	が方を理	!解する。	4
エネルギ、運動	量と力積	運動量と力積の関係およびエス	ネルギとの関連について	理解す	ける。		2
1 自由度系の自	由振動	1自由度系の運動方程式および	びその解について理解す	ける。			4
ラグランジュの	運動方程式	ラグランジュの運動方程式の意	意味およびその応用法を	理解。	ける。		4
1 自由度系の強	制振動	1自由度系の強制振動の求め7	方を理解する。				4
多自由度系の振	動	主に2自由度系を中心に運動7 求め方を理解する。	方程式の導出、固有振動	力数、固	目有振動	モードの	4
連続体の振動		連続体の振動の概要を理解する	3 。				2
							計 30
		自学自習					
項目		目標					時間
予習、復習		力の釣合いに関する予習、復習時にこれらの確認をする。	習、運動方程式の導出な	よどのう	子習、復	習、授業	30
課題		講義に関連する課題の学習を言	する。				30
							計 60
総合学習時間		講義 + 自学自習					計 90
学業成績の評価 法	方試験の成績で調	平価する。ただし、提出物を期 	艮内に全て提出している	らことだ	ぶ条件で	ある。	
関連科目							
教科書・副読本	参考書: 「機械	【系大学院への四力問題精選」 菔	泰川重雄 (培風館)				
	•	評価 (ルーブリ	ック)				
到達目標 理想	的な到達レベルの目安 (優		ぎりぎりの到達レベルの目安	(可)	未到道	レベルの目安	(不可)
場合 動的 運動	が静的な力を受け の力の釣合いおよな力を受けた場合 な力を受けた場合 こ関する理論を理 5.用問題を解くこと 3。	:び 場合の力の釣合いおよび ↑の 動的な力を受けた場合の !解 運動に関する理論を理解		よび 合の理 いた	場合の 動的な 運動に	静的な力を 力の かか 対すする なる なる と と と と と と と と る と り る と る と る と る と	ハおよび た場合の 楚的な理

科目名		担当教員	学年	単位	開講時数	種別	
振動工学特論 (Advanced Vibrating)	tion Engineer-	山本広樹 (常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要	橋梁などの建築 免震に代表され	ら発する地域であり,機械・建築・土木構造物の耐震 を/土木構造物やコンピュータ機器を含む機械構造物 いる振動制御技術が広く普及し身近なものとなってき ご支える振動工学の基礎的考え方について学ぶ.	の耐震	性向上を	と目的とし	た制振・	
授業の形態	講義						
授業の進め方		戒系のモデルを例として,説明と計算演習を行いながら授業を進行する. 習,復習を行い自学自習の習慣を身につける.					
到達目標	2. 振動絶縁の	レの応答解析ができる. 基本的説明ができる. 析の例を説明できる.					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する				技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス 振動制御の実例紹介	Ŷ	授業の進め方を理解し,予習内容を確認する. 振動制御技術の必要性を理解し,典型的な応用例を	知る.			2	
単振動とフーリエ約	吸数	調和解析の考え方を理解する.					
励振力モデル		ピストン・クランク機構をモデルとして,発生する慣性力を計算し,励振力について考える.					
二重振子モデル		一般化座標を用いたラグランジュ法による運動方程式の導出手順と、行列を用いた解析方法を理解する.					
振動系の応答特性と	と応用	地震計と加速度センサを例として振動計測器の原理				2	
多自由度系		二重振子を発展させ、多自由度系と振動モードにつ	いて理解	解する.		2	
コンプレッサモデ! (力の伝達率)		力の伝達率から振動絶縁の考え方を理解する.				4	
コンプレッサモデ! (振動の抑制)	ル~その2~	動吸振器の付加による振動抑制の考え方を理解する				4	
計算演習		演習問題を解いて、振動の絶縁・制振・防振への理	解を深め	5 る.		4	
期末試験	th	授業時間内に期末試験を実施する。	シ / 白 寸寸 :	L 9		2	
答案返却と模範解符	谷の解説	模範解答の解説を聞き,学習が十分でなかった事項 	を復省す	る.		2 ≠4.20	
		는 산 선 33				計 30	
西口		自学自習				0±88	
項目 数学に関連する予	ĮĮ Ž	目標 フーリエ級数について理解し,フーリエ変換を行う 常微分方程式をラプラス変換により扱うことができ	 ことがて る.	ごきる.		<u>時間</u> 25	
物理と機械力学に	関する予習	行列に関する基礎的計算ができる. 剛体系の運動方程式が立てられる. 単振動に関する基礎的用語を復習し,理解度を確認				10	
授業内容の反復							
総合学習時間		 講義				計 60 計 90	
総古子首時间 学業成績の評価方 法	期末試験の評価	講義 + 自子自首 5点(50%)と演習課題の評価(50%)を合わせて 	最終成績	i (100 %	が) とする.	п 90	
関連科目							
教科書・副読本	教科書: 「改定	[振動工学 基礎編」安田仁彦 (コロナ社)					

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	多自由度系の振動解析に 関する演習問題が解ける.	2 自由度系の振動解析に関 する演習問題が解ける.	簡単な 2 自由度振動系に ついて固有振動数を計算 できる.	簡単な 2 自由度振動系の 解析が全くできない.			
2	力の伝達率と減衰を交えながら,振動絶縁の例を挙げつつ説明できる.	振動絶縁の例を挙げ, その 原理を説明できる.	振動絶縁の例を挙げるこ とができる.	振動絶縁の例を挙げるこ とができない.			
3	振動制御技術の例を複数 挙げ、その仕組みを説明で きる.	振動制御技術の例を挙げ, その仕組みを説明できる.	制振装置の例を挙げ, その 構成を説明できる.	制振装置の例を挙げることができない.			

		DIR O T & GIATT					
科目名		担当教員		学年	単位	開講時数	種別
振動工学特論 (Advanced Vibr ing)	ation Engineer-	嶋﨑守 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要 日本は世界有数の地震国である。近年、機械/建築/土木構造物を対象とした免震・制振に作る振動制御技術が広く普及し身近なものとなってきている。本講義では、このような振動制作ついて学ぶ。							
授業の形態	講義						
授業の進め方	造・性能を写真	と・制御工学の理論を講義し、現 『や実験結果等を用いて視覚的に 『い自学自習の習慣を身につける	示しながら講義する。	振動制	卸技術に	ついて、	装置の構
到達目標	2. 免震構造に	ついて理解できる ついて理解できる ついて理解できる					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学 引する知識をもち、工学的諸問題					技術と基
		講義の内容					
項目		目標					時間
1. ガイダンス							1
2. 振動制御の基	礎	・振動制御の必要性、分類など	で基礎を学ぶ				1
3. 振動制御論 I		・多質点系の振動について学ふ					2
4. 振動制御論 II		・固有値解析、モード解析およ					8
5. 振動制御論 II	I	・状態フィードバック制御およ	び出力フィードバック	ク制御に	こついて	学ぶ	6
6. 免震構造		・免震構造ついて学ぶ					6
7. 制振構造		・制振構造ついて学ぶ					6
							計 30
		自学自習					T
項目		目標					時間
予習、復習		講義内および講義内容に関連し	た振動工学や制御工学	学の知言	哉の予習	と復習	40
課題		課題の学習					20
							計 60
総合学習時間	L Strat Plant	講義+自学自習					計 90
学業成績の評価が 法	課題レポートな	ら評価する。					
関連科目	振動工学Ⅰ・振	 動工学 Ⅱ・機械システム制御 Ⅰ		-			
教科書・副読本					大崎順	 i彦菨「新	-
教科書・副読本 その他: 配布資料 (副読本)山口 宏樹著「構造振動・制御」共立出版、大崎順彦著「新のスペクトル解析入門」鹿島出版会				地反到			
TANTIE HIMIT		军析入門」鹿島出版会					
TATEL BIDDIT		解析入門」鹿島出版会 評価 (ルーブリ	ック)				
		評価 (ルーブリ	ック) ぎりぎりの到達レベルの目安	子(可)	未到達	レベルの目安	(不可)
到達目標 理想的 1 各種振 徴を理	のスペクトル角	評価 (ルーブリ) 標準的な到達レベルの目安(良) 特 各種振動制御について、そ		て、そ	各種振動	レベルの目安 加制御につ ご説明でき	いて、そ
到達目標理想的1各種振 徴を理 ムを構	のスペクトル角 な到達レベルの目安(優 動制御について、 解でき、制御シス 築できる 精造の時刻歴応答	評価 (ルーブリ)標準的な到達レベルの目安(良)特 各種振動制御について、その違いを説明でき、特徴を理解できる	ぎりぎりの到達レベルの目安 各種振動制御について	て、そ	各種振動の違いを	制御につ	いて、そない

科目名		担当教員	学年	単位	開講時数	種別
精密測定学 (Metrology in Pr neering)	recision Engi-	冨田宏貴 (常勤)	1 • 2	2	半期2時間	選択
授業の概要		性を認識するとともに、機械部品を加工生産するこ について理解を深める	とにおい	いて重要	な関わり	のある測
授業の形態	講義					
授業の進め方	解を深めるため	枚科書(現場で役立つモノづくりのための精密測定)を使用して講義を中心として行うだめるために実際の測定機を使用した演習を含める 复習を行い自学自習の習慣を身につける.				うが、理
到達目標	2. 統計処理と 3. 幾何光学と 算ができる。	E義およびトレーサビリティを理解できる。 下確かさについて理解し、不確かさを見積もることが 勿理光学および光学部品の特性についてについて理解 非接触の表面粗さ測定機の原理・測定方法および表記	し、基準	本的な紀		
実務経験と授業内容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する 1				技術と基
		講義の内容				
項目		目標				時間
1.精密測定の基本		精密測定の目的を理解する。				2
2. 長さ測定の基礎	_	メートルの定義および測定の基本原理を学ぶ。				2
3. 測定データの処	埋	統計処理と不確かさについて理解を深める。				4
4. 光学の基礎		幾何光学と物理光学および光学部品の特性については	こついて	「理解を	深める。	4
5. 各種測定器に 測定	はる長さ測定さ	測定器の使い方と精度について理解を深める。				4
6. 真直度および道	運動誤差測定	各種測定機による真直度および運動誤差測定方法に	ついて理	I解を深	める。	2
7. 角度測定		角度測定法について理解を深める。				2
8. 精密座標測定		二次元および三次元座標測定法について理解を深め	る。			4
9. 表面性状の測定	<u> </u>	接触および非接触の表面粗さ測定機の原理・測定力メータについて理解を深める	が法およ	び表面	性状パラ	6
						計 30
		自学自習				
項目		目標				時間
予習、復習		教科書および配布プリントの予習と復習。				50
課題		課題の学習				5
定期試験の準備		定期試験準備のための学習時間				5
						計 60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	成績評価は定其	試験の得点と取組状況から評価する。比率は9:1	とする。		•	
関連科目						
教科書・副読本	教科書: 「現場 応じて資料を酉		3刊工業	美新聞社	:), その他	: 必要に

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	精密測定の基本原理を理解し、目的に応じて適切な 測定方法を選択すること ができる。	精密測定に必要な測定の 基本原理について工学的 に説明することができる。	精密測定の目的を理解できる。メートルの定義および測定の基本原理を理解できる。	精密測定の目的を理解できる。メートルの定義および測定の基本原理を理解できない。
2	不確かさの見積もりから 適切な測定方法を提案す ることができる。	精密測定における不確か さの要因を測定の目的に 応じて説明することがで きる。	統計処理と不確かさについて理解し、不確かさを見 積もることができる。	統計処理と不確かさについて理解し、不確かさを見 積もることができない。
3	物理光学および光学部品 の特性から測定精度を高 精度化する手法を提案す ることができる。	幾何光学と物理光学および光学部品の特性、基本的な結像および干渉の計算方法について説明することができる。	幾何光学と物理光学および光学部品の特性について理解し、基本的な結像および干渉の計算ができる。	幾何光学と物理光学および光学部品の特性について理解し、基本的な結像および干渉の計算ができない。
4	測定器の誤差要因を検討 し、測定精度を高精度化 するための留意点を説明 することができる。 真および運動誤差の測底 方法における誤差の低減 方法を説明することがで きる。	測定器の適切な使い方と 精度について説明するこ とができる。真直度およ び運動誤差の測定方法に ついて説明することがで きる。	測定器の使い方と精度について理解できる。各種 長さ測定機による真直度 および運動誤差測定方法 について理解できる。	測定器の使い方と精度について理解できる。各種長さ測定機による真直度および運動誤差測定方法について理解できない。

<i>t</i> -		17440年度 守久付 フラバス				·
科目名		担当教員	学年	単位	開講時数	種別
精密測定学 (Metrology in Pineering)	recision Engi-	深津拡也 (非常勤/実務)	1 • 2	2	半期 2 時間	選択
授業の概要		型性を認識するとともに、機械部品を加工生産するこ ほについて理解を深める	とにおい	いて重要	な関わりの	のある測
授業の形態	講義					
授業の進め方	解を深めるため	(現場で役立つモノづくりのための精密測定)を使用 かに実際の測定機を使用した演習を含める い自学自習の習慣を身につける.	して講郭	養を中心	として行	うが、理
到達目標	2. 統計処理と 3. 幾何光学と 算ができる。	接触および非接触の表面粗さ測定機の原理・測定方法および表面性状パラメータについて				
実務経験と授業内 容との関連	あり					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
1. 精密測定の基本	概念	精密測定の目的を理解する。				2
2. 長さ測定の基礎	*	メートルの定義および測定の基本原理を学ぶ。				2
3. 測定データの処	L理	統計処理と不確かさについて理解を深める。				4
4. 光学の基礎		幾何光学と物理光学および光学部品の特性については	こついて	「理解を	深める。	4
5. 各種測定器に 測定	よる長さ測定さ	測定器の使い方と精度について理解を深める。				4
6. 真直度および	運動誤差測定	各種測定機による真直度および運動誤差測定方法に	ついて理	解を深	める。	2
7. 角度測定		角度測定法について理解を深める。				
8.精密座標測定		二次元および三次元座標測定法について理解を深め	る。			4
9. 表面性状の測定	-	接触および非接触の表面粗さ測定機の原理・測定だメータについて理解を深める	が法およ	び表面	性状パラ	6
						計 30
		自学自習				
項目		目標				時間
予習、復習		教科書および配布プリントの予習と復習。		_		50
課題		課題の学習				5
定期試験の準備		定期試験準備のための学習時間				5
					計60	
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	評価成績は定其	開試験の得点と課題からから評価する。				
関連科目	トライボロジー	-特論				
教科書・副読本	その他: 特定の	教科書は使用しない				
	1					

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	メートルの定義とその変 遷が理解できる。トレー サビルティが理解できる。	メートルの定義とその変 遷が理解できる。	メートルの定義が説明できる。	メートルの定義が説明できない。						
2	統計処理と不確かさについて理解し、各種の不確かさを見積もることができる。	統計処理と不確かさについて理解し、基礎的な不確かさを見積もることができる。	統計処理と不確かさにつ いて説明できる。	統計処理と不確かさにつ いて説明できない。						
3	2 枚以上のレンズの結像の 計算ができる。マイケル ソンの干渉の式を導き、強 度の計算ができる。	2 枚のレンズの結像の計算 ができる。マイケルソン の干渉計の式が導ける。	1 枚のレンズの結像の計 算ができる。マイケルソ ンの干渉計を説明できる。	結像の計算ができない。 マイケルソンの干渉計を 説明できない。						
4	接触および非接触の表面 粗さ測定機の原理・測定方 法が理解できる。特徴的 な表面性状パラメータを 説明し数式で表せる。	接触表面粗さ測定機の原理・測定方法が理解できる。特徴的な表面性状パラメータについて説明できる。	特徴的な表面性状パラメータについて説明できる。	特徴的な表面性状パラメータについて説明できない。						

		市和 0 年長 等以科					
科目名		担当教員		学年	単位	開講時数	種別 選択
ロボティクス (Robotics)		堀滋樹 (常勤)	屈滋樹 (常勤) 1・2 2 半期 2 時間				
授業の概要	ロボット工学は 項について学習	は様々な工学技術を含んでいる。 する。	これらの視点に基づ	き、学生	上はロボ	ジャト工学	の基礎事
授業の形態	講義						
授業の進め方	空欄について下	、必要に応じて配布資料等を月 調べをし(予習)、講義を受け い自学自習の習慣を身につける	た週の内容に合わせた	めるため課題や	かに、配 類似問是	見布するプ 夏を解く(リントの 復習)。
到達目標		ットの構造を理解し、運動学、ラ 歴史から現在、今後の応用につい			こついて	修得でき	る。
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学]する知識をもち、工学的諸問題					技術と基
		講義の内容					
項目		目標					時間
1. ロボットの歴	史	1. ロボットの歴史と現在研究	光・実用されているロス	ボットを	知る。		2
2. ロボットの機	構	2. 多種多様なロボットの機構	構について学ぶ。				2
3. マニピュレー	タ	3. マニピュレータの機構・追	運動学・力学・経路計	ച 、制御	『を理解	する。	12
4. 移動ロボット		4. 移動ロボットの形態と機構	構・運動学・力学・制御	卸を理解	解する。		12
5. ロボットの応	用	5. 様々な環境・分野への応用	目を知る。				2
							計 30
		自学自習					
項目		目標					時間
予習、復習		式の途中変形の確認等、予習行う。	復習。授業時に各自、	式の途	中変形	の確認を	50
課題		課題の学習					10
							計 60
総合学習時間		講義 + 自学自習					計 90
学業成績の評価方 法	授業態度と取組	l状況、課題レポートにより統合	合的に評価する。				
関連科目							
教科書・副読本	参考書: 「新版	ロボット工学ハンドブック」日	本ロボット学会 (コロ	ナ社)			
		評価 (ルーブリ	ック)				Ī
到達目標 理想的な						(不可)	
十分に5 学、位置	1 各種のロボットの構造を 十分に理解し、運動学、力 学、位置・姿勢・軌道制御 について修得できている。 とこのいておおよそ修得で きている。 各種のロボットの構造を 一部を理解し、運動学、力 学、位置・姿勢・軌道制御 について修得できている。 とこのいても一部修得できまり でない。 このいても一部修得できました。 これである。 とこのいても一部修得できまり			きておら [、] と、位置・	ず、運動 姿勢・軌		
今後の	トの歴史から現れ 応用について十 している。		ロボットの歴史から 今後の応用について 理解している。	一部		トの歴史か 応用につい いない。	

科目名		担当教員	学年	単位	開講時数	種別	
ロボティクス (Robotics)		大野学 (常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要		・ は様々な工学技術を含んでいる。これらの視点に基づ いについて学習する。	き、ロカ	ドットコ	学の基礎	事項およ	
授業の形態	講義						
授業の進め方	空欄について丁	、必要に応じて配布資料等を用いる。より理解を深 「調べをし(予習)、講義を受けた週の内容に合わせた fい自学自習の習慣を身につける。	めるため課題や	かに、 類似問題	己布するプ 題を解く(リントの 復習)。	
到達目標	2. 各種のロボ	学を様々な工学基礎からなるシステムとして考えるこットの構造を理解し、基本的な設計を行うことができ 歴史から現在、今後の応用について学ぶ。		きる。			
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 関する知識をもち、工学的諸問題にそれらを応用するf				技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス		授業の概要・評価方法等についてガイダンスする。				1	
ロボットの歴史		ロボットの歴史と現在研究・実用されているロボットを知る。 基礎となる技術を挙げ、ロボット工学は様々な工学技術にまたがることを 知る。				3	
ロボットシステム		ロボットを構成するコンピュータ、センサ、アクチュエータ等の基本システムについて学ぶ。					
ロボットの設計要	件	ロボットシステムを設計するための要件やその手法	- の手法について学ぶ。				
ロボットの機構		多種多様なロボットの機構、アクチュエータの種類・ ついて学ぶ。	やその危	答など	の特徴に	6	
ロボット用センサ		各種ロボットに用いられるセンサの概要及び、物理学ぶ。	見量の測	定原理	について	6	
ロボットの応用		様々な環境・分野への応用を知る。				2	
プレゼンテーショ	ン	各自テーマを設定し、ロボット技術に関する発表を行	行う。			2	
まとめ		総括を行う。				2	
						計 30	
		自学自習			1		
項目		目標				時間	
復習		授業時に出題された課題の学習				30	
プレゼンテーショ	ンの準備	技術調査とプレゼンテーション作成、発表練習、質	疑応答対	対策の準	備	20	
定期試験の準備		定期試験の準備のための学習時間				10	
						計 60	
総合学習時間		講義+自学自習				計 90	
学業成績の評価方 法 	実施した定期記	ば験の得点あるいは課題のレポートから評価する。					
関連科目							
教科書・副読本	副読本: 「RO	BOTICS」日本機械学会 (丸善出版株式会社)					

	評価 (ルーブリック)										
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)							
1	ロボット工学を様々な工 学基礎からなるシステム として考えることができ, そのシステム設計がわか る。	ロボット工学を様々な工 学基礎からなるシステム と捉えるとともに各要素 の理解ができる。	ロボット工学を様々な工 学基礎からなるシステム として考えることができ る。	ロボット工学を様々な工 学基礎からなるシステム として考えることができ ない。							
2	各種のロボットの構造を 理解し、新たな設計を行う ことができる。	各種のロボットの構造を 理解し、基本的な設計を行 うことができる。	各種のロボットの構造を 理解することができるが、 基本的な設計の理解が乏 しい。	各種のロボットの構造を 理解することが困難であ り、基本的な設計がわから ない。							
3	社会に役立つ今後の応用 について考察できる。	ロボットの歴史から現在、 今後の応用について理解 できる。	ロボットの歴史を理解し、 今後の応用についての理 解が乏しい。	ロボットの歴史から現在、 今後の応用について理解 ができない。							

科目名		担当教員	学年	単位	開講時数	種別
現代制御工学 (Modern Control	Engineering)	笠原美左和 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	形代数を数学的	は線形状態方程式で表された制御対象(線形システ 対な基礎としている.本講義では,線形微分方程式で記る表現,安定性,可制御・可観測性,状態オブザー ぶ.	己述され	る動的	システムに	ついて、
授業の形態	講義					
授業の進め方	法,設計法なと	、て,制御系設計支援ソフトウェア MATLAB を活用 べの理解を深める. fiい自学自習の習慣を身につける.	した演習	習を通し	て基礎概念	念,解析
到達目標	2. システムの	を用い、動的システムの記述することができる 安定性、可制御性、可観測性、それぞれの判定ができ ーバ,状態フィードバックの設計ができる	る。			
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[支術と基
		講義の内容				
項目		目標				時間
ガイダンス		授業のガイダンス、古典制御・現代制御の特徴を理	解する			2
状態空間表現		物理法則から状態方程式の導出方法を理解する				
状態方程式の解		状態方程式の解とシステムの応答の求める方法を理解する				
線形変換と対角標準	集型	線形変換により対角標準型の求める方法を理解する				
可制御性・可観測性	生	可制御性・可観測性及び可制御・可観測標準型を理解する				
安定性		漸近安定,Routh-Hurwitz 安定判別法,Lyapunov	安定性	を理解す	「る	4
状態フィードバック	ク	状態フィードバック・極指定を理解する				4
状態オブザーバ		状態オブザーバによるフィードバック制御を理解す	る			4
演習		Matlab・Simulink を用いて、制御の基本的設計方法	去につい	て理解	する。	4
						計 30
		自学自習				
項目		目標				時間
状態空間表現		倒立振子の状態空間表現の演習を通じて, 状態空間	表現の理	関解を深	める	8
状態方程式の解		状態空間法による直流モータのシミュレーションを 解を深める	通じて,	状態空	間法の理	8
可制御性・可観測性	生	直流モータの状態空間解析によって,可制御性・可する	丁観測性	の実用	性を理解	12
状態フィードバック	ク	状態フィードバック設計・解析の演習を通じて、理	解を深め	うる		12
レポート作成		課題内容をレポートにまとめることを通じて、応用	法への理	解を深	める	20
						計 60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	課題演習2回,	レポート1回から評価する.なお,課題:レポート	は 6:4	とする		
関連科目	制御工学特論					
教科書・副読本		骨で学ぶ現代制御理論」森 泰親 (森北出版)・「MATI (森北出版),その他: 使用しない (必要に応じてプリ				

	評価 (ルーブリック)										
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)							
1	システム全体を理解し、状態方程式を用いた動的システムの記述ができる。 さらに発展させた理解ができる。	システム全体を理解し、状態方程式を用いた動的システムの記述ができる。	状態方程式を用い、動的システムの記述ができる。	状態方程式を用い、動的システムの記述ができない。							
2	性、可観測性について説明	御性、可観測性について説明し、それぞれの判定がで	システムの安定性、可制御性、可観測性、それぞれの 判定ができる。	システムの安定性、可制御性、可観測性、それぞれの 判定ができない。							
3	状態オブザーバ, 状態フィードバックの最適設計のための問題設定を説明し、その解法を示すことができる。さらに発展させた理解ができる。	状態オブザーバ,状態フィードバックの最適設計のための問題設定を説明し、その解法を示すことができる。	状態オブザーバ,状態フィードバックの設計ができる。	状態オブザーバ、状態フィードバックの設計ができない。							

科目名		担当教員	学年	単位	開講時数	種別	
現代制御工学		曹梅芬 (常勤)	1 • 2	2	半期	選択	
(Modern Control	Engineering)	2 時間					
授業の概要 本講義では,線形微分方程式で記述される動的システムについて,状態方程式による表現,可制御・可観測性,状態オブザーバ,状態フィードバックによる制御について学ぶ.							
授業の形態	講義						
授業の進め方	どへの理解を滲	って,課題や文献調査,プレゼンテーションなどを通 そめる. 行い自学自習の習慣を身につける.	して基础	楚概念,	解析法,	設計法な	
到達目標	2. システムの	を用いて動的システムの記述法が理解できる. 安定性,可制御・可観測性の判別法が理解できる. ーバ,状態フィードバックの設計法が理解できる.					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	\ /	合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス		授業のガイダンス、古典制御・現代制御の特徴を理解	解する			2	
アナログ・デジタ	ル制御	それぞれの構成と表現方法を理解する				2	
状態空間表現		物理法則から状態方程式の導出方法を理解する				2	
状態方程式の解		状態方程式の解とシステムの応答の求める方法を理解	解する			2	
線形変換と対角標準	線形変換と対角標準型 線形変換により対角標準型の求める方法を理解する					2	
可制御性・可観測	生	可制御性・可観測性及び可制御・可観測標準型を理解する					
最小実現		最小実現とその求め方を理解する					
安定性		漸近安定,Routh-Hurwitz 安定判別法,Lyapunov	安定性	を理解す	る	4	
状態フィードバック	ク	状態フィードバック・極指定を理解する				4	
状態オブザーバ		状態オブザーバによるフィードバック制御を理解する	3			4	
プレゼンテーショ	\sim	ある実例について調査・プレゼンテーションを行い, 解析法,実験法を理解する	実シス	ステムの	構成法や	4	
						計 30	
		自学自習					
項目		目標				時間	
アナログ・デジタ	ル制御	デジタルフィルタの設計演習を通じて, デジタル制	卸の基本	な理解	する	4	
状態空間表現		倒立振子の状態空間表現の演習を通じて、状態空間	表現の理	解を深	める	4	
状態方程式の解		状態空間法による直流モータのシミュレーションを 解を深める	通じて,	状態空	間法の理	4	
可制御性・可観測	生	直流モータの状態空間解析によって,可制御性・ロ する	丁観測性	の実用	性を理解	6	
最小実現 可制御・可観測標準形と最小実現の課題演習を通じて、理解を深める				6			
状態フィードバック 状態フィードバック設計・解析の演習を通じて、理解を深める				6			
文献調査 現代制御理論を用いた実例を学会誌で調査し、その応用法を理解する				10			
プレゼン準備		調査内容のプレゼン資料作成や発表練習を通じて、3 の理解を深める.プレゼン能力を向上する	見代制御	即理論の	応用法へ	10	
レポート作成		調査内容をレポートにまとめることを通じて,応用注 学技術論文の作成能力を向上する.	去への理	解を深	める. 科	10	
						計 60	
総合学習時間		講義 + 自学自習				計 90	

学業成績 法	学業成績の評価方 課題演習6回,プレゼンテーション1回,レポート1回から評価する.なお,課題:プレゼンテーション: 法 ン:レポートは6:2:2 とする.							
関連科目		制御工学 I・制御コステム工学 II	Ľ学 II・応用数学 I・応用数	学 II・応用数学 III・応用数	学 IV・システム工学 I・シ			
教科書・	副読本			也, 下本 陽一 (講談社), 副語 で学ぶ現代制御理論」森 泰新				
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	式を用い	戒複合系状態方程 いて動的システム 法が理解できる。	状態方程式を用いて電気 系または機械系の動的シ ステムの記述法が理解で きる。	状態方程式を用いて簡単な動的システムの記述法 が理解できる。	状態方程式を用いて簡単 な動的システムの記述法 が理解できない。			
2	2 高次の状態方程式の解と システムの応答の求める 方法が理解できる。		2次以上の状態方程式の解 とシステムの応答の求め る方法が理解できる。	2次以下の状態方程式の解 とシステムの応答の求め る方法が理解できる。	2次以下の状態方程式の解 とシステムの応答の求め る方法が理解できない。			
3	3 システムの安定性, 可制 御・可観測性の判別法が理 解できる. 状態オブザー バ、状態フィードバックの 設計法が理解できる。		システムの安定性, 可制御・可観測性の判別法が理解できる. 状態オブザーバが理解できる。	システムの安定性,可制御・可観測性の判別法が理解できる。	システムの安定性,可制御・可観測性の判別法が理解できない。			

		7件0千皮 寺久代 クラバス	1			·
科目名		担当教員	学年	単位	開講時数	種別
数理工学 (Mathematical En	ngineering)	山本哲也 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	本講義では、非制御法について	- ‡線形システムの数理モデリングおよび非線形現象の ご学習する。	特徴を理	里解し、	安定性判別	別および
授業の形態	講義					
授業の進め方		して、理解を深めるために演習・課題を取り入れる。 行い自学自習の習慣を身につける。				
到達目標	2. 非線形シス	の振る舞いを数値解析手法を利用して確認することか テムに見られる特徴的な現象を説明することができる テムの振る舞いを理論から予測することができる	できる			
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 関する知識をもち、工学的諸問題にそれらを応用する				支術と基
		講義の内容				
項目		目標				時間
ガイダンス		授業のガイダンスと非線形システムの特徴について	0			2
非線形システム		非線形システムとはどのようなものか、事例をもるする	とにその	基本概	念を理解	2
非線形数理モデル		非線形システムを例に、非線形システム数理モデル する	の構成方	方法につ	いて理解	2
位相空間と解軌道		位相空間と解軌道について学習し、位相面での軌道 法を理解する	やエネル	レギーを	求める方	2
無次元化		数理モデルを無次元化する手法および必要性を理解	する			2
平衡点 数理モデルの平衡点の求め方および変数変換・一次近似について理解する				解する	2	
平衡点の安定性		ポテンシャルから平衡点の安定性を判別する手法を	理解する	3		2
リアプノフの安定	性判別	ヤコビアンおよびその固有値から安定性判別する手	法を理解	解する		2
平衡点周りの振舞	い	ヤコビアンから平衡点周りの振る舞いを理解する				2
分岐現象		分岐パラメータに依存して大域的挙動が変化する現	象を事例	削を基に	理解する	2
標準形		分岐現象のの標準形および分岐構造を理解する				2
ホップ分岐		ホップ分岐の標準形を基に位相振幅方程式を導出す 理解する	る手法は	さよび分	岐構造を	2
平均化法 定期試験		ホップ分岐する数理モデルを例に平均化手法につい	て理解す	ける		$\frac{2}{2}$
まとめ		 非線形数理モデルの特徴や安定性解析を利用した応 行う	用事例な	など基に	まとめを	2
						計 30
		- 自学自習				
		目標				時間
予習、復習		数理モデルの式変形および解析手法について確認等	予習・復	复習を行	う。	30
課題の学習					20	
定期試験準備		定期試験準備のための学習				10
						計 60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	定期試験と課題	夏の成績評価結果から総合的に決定する。定期試験課	題の比率	落は8::	2とする。	
関連科目	現代制御工学					
教科書・副読本 教科書: 「現代非線形科学シリーズ 非線形回路」遠藤 哲郎 (コロナ社)						

	評価 (ルーブリック)										
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)							
1	平衡点の解析結果と数値 計算との関係を分析する ことができる	各種数理モデルについて 数値計算することができ る	簡単な数理モデルについ て数値計算することがで きる	数値解析手法の使い方が わからない							
2	非線形システムの特徴的 な挙動を理論的に説明す ることができる	非線形システム現象の特 徴について説明すること ができる	非線形システムと線形シ ステムの違いを説明でき る	非線形システムの特徴的 な現象を知らない							
3	様々な数理モデルについ て平衡点を求め安定性を 評価することができる	簡単な数理モデルについ て平衡点を求め安定性を 評価することができる	平衡点とその安定性や分 岐図について知っている	平衡点とその安定性や分 岐図について知らない							

		令机 6 年度 専攻科 シラハス 				
科目名		担当教員	学年	単位	開講時数	種別
応用電磁気学 (Applied Electron	nagnetism)	高野邦彦 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要 電磁気学は電気電子工学を学ぶ上で極めて重要な基礎科目である。本科目では、本科の各工学コープで学んだ電磁気学の基礎知識を再度学習し、問題演習を通じた応用力の育成を行う.						
授業の形態	講義					
授業の進め方	度を調整する場).自宅学習課題も活用し、演習問題に取り組む.な 合がある. fい自学自習の習慣を身につける.	お,学生	上の理解	建度に応じ	て授業進
到達目標		構成する各法則について理解できる。 各法則のもつ物理的意味と数式を結び付けることがで	きる.			
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基
		講義の内容				
項目		目標				時間
ガイダンス		講義の進め方,評価方法を説明する.				
静電界(1)		点電荷の定義やクーロンの法則から,点電荷が作る電界について復習する. さらに,電界と電気力線の関係,電気力線数の定義,電束,電束密度,電束 密度と電界の関係について総復習する.				
静電界(2)	静電界(2) ガウスの法則について確認し、対称性のある電荷分布によって生じる電界の計算法を学習する。また、電位の定義と計算法、コンデンサ(静電容量)を学習する。			る電界の 容量)を	5	
静電界(3)		ベクトル解析の基礎事項を学びながら,電界ベクト 析を用いた「ガウスの定理」を学習する.	ルの計算	五法, ベ	クトル解	7
電流と磁界の関係		アンペアの周回積分の法則,変位電流密度,電磁誘 計算法について学習する.	導の法則]の考え	方とその	7
マクスウェルの方程	呈式と電磁波	マクスウェルの方程式の意味、真空中での電磁波の	伝搬にて	いて学	習する.	8
まとめ		授業のまとめを行う.				1
						計 30
		自学自習				
項目		目標				時間
予習と復習		電磁気学の各法則について,学生が自ら内容を理所 復習.	解するた	めに行	う予習と	30
問題演習		授業内容を理解するために学生が演習問題の解答を	作成する	· .		20
試験勉強		試験に向けて学生自らが行う勉強. 				10 計 60
総合学習時間		# · · · · · · · · · · · · · · · · · · ·				
総合学習時間 学業成績の評価方	試験結里ルフトル	講義 + 自学自習 評価する.ただし,成績評価は、全ての課題が各回	で定める	こわた甘	服力に受	計 90 囲さわた
法	学生に対しての		CAEWA	ノタレルス対	urxr IVC 又。	生じれいに
関連科目 電気回路特論・通信システム・電磁気学 I・電磁気学 II・電磁気学 III・電磁気学演習・電気回路 I 気回路 II・電気回路 III・電子回路 I・計測工学・半導体工学 I・光・電磁波工学・電波伝搬工学・ テナ工学・通信工学 I・通信工学 II・伝送工学・電気磁気学 I・電気磁気学 II・電気磁気学 III 及び、関連する専門基礎科目					学・アン	
教科書・副読本 参考書: 「電気磁気学」石井 良博 (コロナ社)・「電磁気学」多田泰芳、柴田尚志 (コロナ社), ん他: 資料を配布する. (本科在籍時に各工学コースで使用したテキストを継続して使用する)						t), その

	評価 (ルーブリック)										
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)							
1	教員からの補助が無くて も、電磁気学を構成する各 法則の意味を説明でき、そ れらを応用できる。	教員からの補助が無くて も、電磁気学を構成する各 法則の意味を説明できる。	教員からの補助があれば、 電磁気学を構成する各法 則の意味を説明できる。	電磁気学を構成する各法 則の意味を説明できない。							
2	教員からの補助が無くて も、電磁気学の各法則のも つ物理的意味と数式の関 係を説明でき、応用問題を 解くことができる。	教員からの補助が無くても、電磁気学の各法則のもつ物理的意味と数式の関係を説明でき、基本問題を解くことができる。	教員からの補助があれば、 電磁気学の各法則のもつ 物理的意味と数式の関係 を説明できる。	電磁気学の各法則のもつ 物理的意味と数式を関係 を説明できない。							

		市和 0 年度 等以科 ンフハス				
科目名		担当教員	学年	単位	開講時数	種別
応用電磁気学 (Applied Electrom	agnetism)	深野あづさ (常勤)	1 • 2	2	半期 2 時間	選択
	工学の分野にお の理解を深める	いて重要な位置を占める電磁気学について、電気現 。	象と磁気	現象と	: の関連性	こついて
授業の形態	講義					
授業の進め方 講義を中心とし、理解を深めるための問題演習を行う。各回2時限のうち、前半は本科で学ん 気学の復習と確認、後半は発展的な問題について解説し、問題演習を行う形式で授業を進める 予習、復習を行い自学自習の習慣を身につける。						
	1. 電磁気に関する法則を用いることにより、電界、磁界の計算ができる。 2. 電界、磁界の変化により生じる電磁界、電磁波などの諸現象を理解できる。					
実務経験と授業内 容との関連						
		合的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
ガイダンス		授業のガイダンスとクーロンの法則について。				2
ベクトル場の表わし	方	電磁気におけるベクトル場の表わし方を理解する。				2
電界と電位						
電荷による電位		電荷がつくる電位を計算できる。				2
電界の発散と電荷		電荷と電界の発散との関係について理解する。				2
ガウスの定理		ガウスの定理について理解する。				4
電荷による電界		電荷がつくる電界を計算できる。				2
電荷による電位		電荷がつくる電位を計算できる。				2
電流と磁界		電流と磁界の関係について理解する				2
ビオ・サバールの法	 長則	ビオ・サバールの法則により磁界の計算ができる。				2
アンペアの周回積分	分の法則	アンペアの周回積分の法則により磁界の計算ができ	る。			2
電磁誘導の法則		ファラデーの電磁誘導の法則を理解する。				2
変位電流による磁界	7	変位電流による磁界の発生について理解する。				2
マックスウェルの方	万程式	マックスウェルの方程式を用いて種々の式を導出で	きる。			2
						計 30
					·	
		目標				時間
予習、復習		式の導出に伴う途中式の確認等、予習復習。授業時に を行なう。	こ各自の)式の変	形の確認	30
課題		課題の学習。				20
定期試験の準備		定期試験準備のための学習時間。				10
						計60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方		○得点から、成績評価結果を総合的に判断する。試験 は験を行うことがある。	と課題	等の比	率は8:2	
関連科目	物理学特論 II・	電磁気学 I・電磁気学 II・電磁気学 III				
教科書・副読本	教科書:「雷磁	気学ノート (改訂版)」藤田 広一 (コロナ社)				
		, , (,				

評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	電磁気に関する法則を用いて、電界、磁界について の応用問題を解くことが できる。	いて、電界、磁界につい	いて、電界、磁界について				
2	電界、磁界の変化により生 じる電磁界、電磁波などの 諸現象について、応用問題 を解くことができる。			諸現象について、理解でき			

Image: contract of the cont	するため 技術と基 時間 2 2 4 4
2時間 現象の各種類 実なものにこ	解析法を するため 時間 2 2 4 4
実なものにで	するため 技術と基 時間 2 2 4 4
の基本的な打る。	技術と基 時間 2 2 4 4
の基本的な打る。	技術と基 時間 2 2 4 4
る。 	時間 2 2 2 2 4 4
る。 	時間 2 2 2 2 4 4
る。 	時間 2 2 2 2 4 4
いて理解を	2 2 2 4 4
いて理解を	2 2 2 4 4
いて理解を	2 2 4 4
	2 4 4
	4
	4
	0
1	2
析法を理解	4
解する。	4
0	4
	2
	計 30
	時間
復習。授業	30
	20
	10
	計 60
	計 90
	(T=:\
	` /
	象解析に
回路および交 ける定常現象	
	剛達レベルの目安回路および引きけることがで回路および

		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□					
科目名		担当教員	学年	単位	開講時数	種別	
電気回路特論 (Advanced Electr	ic Circuit)	川﨑憲広 (常勤/実務)	1 • 2	2	半期 2 時間	選択	
授業の概要	愛業の概要 電気電子系工学コースの共通科目である電気回路について,直流,交流における定常現象,過の各種解析法を学ぶ。						
授業の形態	講義						
授業の進め方	自宅で復習を行	ます項目について講義を行い,演習により理解を深め おわせる。 い自学自習の習慣を身につける。)させる	。適宜,	演習課是	夏を課し,	
到達目標	標 1. 直流, 交流の定常現象と過渡現象の解析法が理解できる 2. 電気回路の各種解析法 (解析定理等) が理解できる						
実務経験と授業内 容との関連	あり						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するi				技術と基	
		講義の内容					
項目		目標				時間	
1. ガイダンス		授業概要ガイダンスと回路基本素子について理解す	る			2	
2. 直流回路の計算	$\mathfrak{L}\left(1\right)$	キルヒホッフの法則,重ねの理などを理解する				2	
3. 直流回路の計算 (2) テブナンの定理などを理解する						2	
4. 交流回路の定常	3現象 (1)	ベクトル軌跡,位相調整および共振を理解する				4	
5. 交流回路の定常	5. 交流回路の定常現象 (2) 相互インダクタンスなどを理解する					4	
6. フーリエ級数展	開	フーリエ係数の求め方および高調波分を理解する				2	
7. 非正弦波交流回	路の計算	各種ひずみ波のフーリエ級数展開、および、ひずみ	波の回路	解法を	理解する	4	
8. 簡単な回路の過	過渡現象	回路方程式の導出、初期値決定と時定数を理解する				2	
9. ラプラス変換に 解析	こよる過渡現象	ラプラス変換を用いて過渡現象を解析する方法を理	解する			4	
10. 直並列回路の	過渡現象	網目電流法などの回路解法を用いた過渡現象解析法	を理解す	つる		4	
						計 30	
		自学自習					
項目		目標				時間	
予習・復習		講義内容の予習,復習				30	
課題		課題の学習				25	
定期試験の準備		定期試験のための学習				5	
						計 60	
総合学習時間		講義 + 自学自習				計 90	
学業成績の評価方 法	提出課題を 40	%、定期試験の成績を 60 %として評価する。					
関連科目	電気回路 I·電	気回路 II・電気回路 III・回路解析 I・回路解析 II					
教科書・副読本		【気回路Ⅰ」柴田 尚志 (コロナ社)・「電気回路Ⅱ [電気回路Ⅱ」遠藤勲, 鈴木靖 (コロナ社)・「回路の応答 〒 (コロナ社)					

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	直並列回路において網目 電流法とラプラス変換を 用いて過渡現象解析がで きる。	テブナンの定理, 重ねの理, 網目電流法, 枝電流法 など基本的な回路解法を利用して, 素子が3つ以上(枝が3本以上)の直並列回路が解ける。	直流,交流の定常現象と過渡現象の解析法の基礎的な内容が説明できる。	直流,交流の定常現象と過渡現象の解析法の基礎的な内容が説明できない。
2	複数の電源とインピーダ ンスがある回路において 4種類以上の回路解法で解 くことができる。	複数の電源とインピーダンスがある回路において 2種類以上の回路解法で解くことができる。	電気回路の各種解析法 (解析定理等) の基礎的な回路を解くことができる。	電気回路の各種解析法 (解析定理等) の基礎的な回路を解くことができない。

e circuit) アナログ電子回要となる回路技講義 講義を中心とし予習、復習を行 1. 電子回路の毎を理解し、それあり D (基礎力) 総合	担当教員 大川典男 (非常勤/実務) 路の設計に必要な基本回路レベルの知識、電子回路術について、基本事項から学習する。 、理解を深めるための課題演習や小テストによる復い自学自習の習慣を身につける。 定定化に欠くことのできない負帰還増幅回路と集積回らの回路動作を解析できる。 合的実践的技術者として、数学・自然科学・自らの専する知識をもち、工学的諸問題にそれらを応用する講義の内容	習も行う	有の回路	ないのいて 対象 かいまま かいまま かいまま かいまま かいまま かいま ひまま かいま しゅう ひまま かいま しゅう	基本動作
e circuit) アナログ電子回要となる回路技講義 講義を中心とし予習、復習を行 1. 電子回路の毎を理解し、それあり D (基礎力) 総合	路の設計に必要な基本回路レベルの知識、電子回路術について、基本事項から学習する。 、理解を深めるための課題演習や小テストによる復い自学自習の習慣を身につける。 定定化に欠くことのできない負帰還増幅回路と集積回らの回路動作を解析できる。 合的実践的技術者として、数学・自然科学・自らの専する知識をもち、工学的諸問題にそれらを応用する 講義の内容	図も行う 路に特別	上や集積の回路のの場合の回路のの場合の回路のの回路のの回路のの回路のの回路のの回路のの回路のの回路のの回路のの回路	2 時間 資化を図る 3 3 4 5 について 3 5 基本的な	ために必基本動作
要となる回路技 講義 講義を中心とし 予習、復習を行 1. 電子回路の安 を理解し、それ あり D (基礎力) 総合	術について、基本事項から学習する。 、理解を深めるための課題演習や小テストによる復い自学自習の習慣を身につける。 安定化に欠くことのできない負帰還増幅回路と集積回らの回路動作を解析できる。 合的実践的技術者として、数学・自然科学・自らの専する知識をもち、工学的諸問題にそれらを応用する。 講義の内容	習も行う	有の回路	ないのいて 対象 かいまま かいまま かいまま かいまま かいまま かいま ひまま かいま しゅう ひまま かいま しゅう	基本動作
講義を中心とし 予習、復習を行 1. 電子回路の安 を理解し、それ あり D (基礎力) 総合	い自学自習の習慣を身につける。 安定化に欠くことのできない負帰還増幅回路と集積回 らの回路動作を解析できる。 計的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用する 講義の内容	路に特征	有の回路)基本的な	
予習、復習を行 1. 電子回路の安を理解し、それ あり D (基礎力) 総合	い自学自習の習慣を身につける。 安定化に欠くことのできない負帰還増幅回路と集積回 らの回路動作を解析できる。 計的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用する 講義の内容	路に特征	有の回路)基本的な	
を理解し、それ あり D (基礎力) 総合	らの回路動作を解析できる。 合的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用する 講義の内容	門とする	る分野の)基本的な	
D (基礎力) 総合	する知識をもち、工学的諸問題にそれらを応用する 講義の内容				技術と基
	する知識をもち、工学的諸問題にそれらを応用する 講義の内容				技術と基
				0	
	目標				時間
	・授業のガイダンスと電気回路の基礎を復習する。				2
動作と等価回路					6
回路	る動作を理解する。				6
	多段接続による周波数特性について理解する。				4
	化、安定性、位相補償などの効果について理解する	0			6
6. 集積化アナログ電子回路 ・アナログ電子回路の集積化に特 作特性について理解する。			大振幅	動作の動	6 ≥4.20
	白学白翌				計 30
					時間
	・学習事項の確認、まとめノート作成等の予習復習	。授業問	寺に各自	のまとめ	30
	・課題演習の学習、レポート作成。				
					計 60
	講義 + 自学自習				計 90
		点をβと	∶ L. (α	+ β)/(α +100)
電子デバイス工	学・ディジタル回路特論				
		三 (オー)	ム社),	参考書: 「	増幅回路
	評価 (ルーブリック)				
:到達レベルの目安 (優)	標準的な到達レベルの目安(良) ぎりぎりの到達レベルの目:	安 (可)	未到達	レベルの目安	(不可)
掃還増幅回路、集 有な回路に関す 実際のアナログ	積 積化回路に特有な回路に タ及び FET を用いる ついて基本的な知識を有 波回路、及びミラー系電 し、それらの回路動作を説 多段接続による周波	た高周 効果や 対数特 な知識	タ及び〕 波回路、 多段接終 性につい	FET を用 ^り 及びミラ [・] 続による原 いて基本事	いた高周 ー効果や 周波数特
	回路 高周波等価値路 の周波数特性 電子回路 発よ子回路 発よ子子書: 還 路増回の を別が、「増唱」 を別が、「増唱」 を関いて を関いて を関いて を関いて を関いて を関いて を関いて を関いて を関いて の幅路アに とのによって をのにますがて	・授業のガイダンスと電気回路の基礎を復習する。 ・バイポーラトランジスタ及び FET の動作と等価回路 がイポーラトランジスタ及び FET の基本増幅回る動作を理解する。 ・バイポーラトランジスタ及び FET の高周波等価目を投接続による周波数特性について理解する。 ・各種帰還増幅回路について、負帰還の原理や入した、安定性、位相補償などの効果について理解する。 ・アナログ電子回路の集積化に特有な回路形式と高作特性について理解する。 ・アナログ電子回路の集積化に特有な回路形式と高作特性について理解する。 ・課題演習の学習、レポート作成等の予習復習、ノート作成状況の確認を行う。・課題演習の学習、レポート作成。 講義 + 自学自習 発表点を含めたレポートの得点 「発表点を α、100 点満点のレポートにより規格化」を50%、日々の小テストを50%として評価する。電子デバイス工学・ディジタル回路特論教科書:「集積回路化時代のアナログ電子回路(第2版)」藤井信生と負帰還増幅」伊東規之(東京電機大学出版局) デ価 (ルーブリック) 理違レベルの目を(像) 標準的な到達レベルの目を(度) ぎりぎりの到達レベルの目を の設計に役立てる 明できる。 特別できる。 と ではついて基本的だ 関連ないて基本的な知識を有し、それらの回路動作を説 タ及び FET を用いた を は できる。 ま では アイポーラトラン カフェーグ電 できる。 ま では アイポーラトラン カフェーグ を は できる。 ま では アイポーラトラン カフェーグ電 の できる。 ま では アイポーラトラン カフェーグ を は できる。 ま では アイポーラトラン カフェーグ を は できる。 ま では アイボーラトラン カフェーグ を は できる。 ま では アイボーラ を ま でいて基本的な の ま では アイボーラ トラン カフェーグ を は できる。 ま では アイボーラトラン カフェーグ を は できる。 ま では アイボーラ トラン カフェーグ を は できる。 ま では アイボース を できる を できる ま では アイボース を できる できる を	・授業のガイダンスと電気回路の基礎を復習する。 ・バイポーラトランジスタ及び FET の動作と等価回路について、自帰還の原理や入出力イン化、安定性、位相補償などの効果について理解する。 ・各種帰還増幅回路について、負帰還の原理や入出力イン化、安定性、位相補償などの効果について理解する。・アナログ電子回路の集積化に特有な回路形式と高利得化、作特性について理解する。・アナログ電子回路の集積化に特有な回路形式と高利得化、作特性について理解する。・アナログ電子回路の集積化に特有な回路形式と高利得化、作特性について理解する。・課題演習の学習、レポート作成。	・授業のガイダンスと電気回路の基礎を復習する。 ・バイポーラトランジスタ及び FET の動作と等価回路について理 ・バイポーラトランジスタ及び FET の基本増幅回路の小信号レベ る動作を理解する。 ・バイポーラトランジスタ及び FET の高周波等価回路、及びミラ 多段接続による周波数特性について理解する。 ・各種帰還増幅回路について、負帰還の原理や入出力インピーダ 化、安定性、位相補償などの効果について理解する。 ・アナログ電子回路の集積化に特有な回路形式と高利得化、大振幅 作特性について理解する。 ・ アナログ電子回路の集積化に特有な回路形式と高利得化、大振幅 作特性について理解する。 ・ 連週演習の学習、レポート作成等の予習復習。授業時に各自 ノート作成状況の確認を行う。 ・課題演習の学習、レポート作成。 講義 + 自学自習 発表点を含めたレポートの得点 {発表点を α、100 点満点のレポート点を βとし、(α により規格化}を50%、日々の小テストを50%として評価する。 電子デバイス工学・ディジタル回路特論 教科書:「集積回路化時代のアナログ電子回路(第2版)」藤井信生(オーム社)、 を負帰還増幅」伊東規之(東京電機大学出版局) 評価 (ルーブリック) 動達レベルの目安(優) 標準的な到達レベルの目安(良) ぎりぎりの到達レベルの目安(可) 未到。 を種負帰還増幅回路、集 積化回路に特有な回路に タ及び FET を用いた高周 タ及び おこの FET を用いた FET を見いる FET を用いた FET を見いる FET を用いた FET を用いた FET を用いた FET を見いる FET を用いた FET を見いる FET を用いた FET を用いた FET を用いた FET を見いる FET を用いた FET を用いた FET を用いた FET を用いた FET を見いる FET を用いた FET を用いて FET を用いた FET を用いた FET を用いた FET を用いた FET を用いて FET を用いた FET を用いて FET を見いる FET を用いた FET を用いて FET を用いて FET を用いて FET を用いて FET を用いた FET を用いて FET を見いて FET を用いて F	・授業のガイダンスと電気回路の基礎を復習する。 ・パイポーラトランジスタ及び FET の動作と等価回路について理解する。 ・パイポーラトランジスタ及び FET の基本増幅回路の小信号レベルにおける動作を理解する。 ・パイポーラトランジスタ及び FET の高周波等価回路、及びミラー効果や多段接続による周波数特性について理解する。 ・各種帰還増幅回路について、負帰還の原理や入出力インピーダンスの変化、安定性、位相補償などの効果について理解する。 ・アナログ電子回路の集積化に特有な回路形式と高利得化、大振幅動作の動作特性について理解する。 ・アナログ電子回路の集積化に特有な回路形式と高利得化、大振幅動作の動作特性について理解する。 ・アナログ電子回路の集積化に特有な回路形式と高利得化、大振幅動作の動作特性について理解する。 ・アナログ電子回路の集積化に特有な回路形式と高利得化、大振幅動作の動作特性について理解する。 ・課題演習の学習、レポート作成等の予習復習。授業時に各自のまとめノート作成状況の確認を行う。 ・課題演習の学習、レポート作成。 講義 + 自学自習 発表点を含めたレポートの得点 {発表点をα、100点満点のレポート点をβとし、(α + β)/(により規格化}を50%、日々の小テストを50%として評価する。 電子デバイス工学・ディジタル回路特論 教科書:「集積回路化時代のアナログ電子回路(第2版)」藤井信生(オーム社),参考書:「ま負帰還増幅」のアナログ電子回路(第2版)」藤井信生(オーム社),参考書:「まり負帰還増幅回路、集積化回路に特有な回路、集積化回路に特有な回路に関する。タ及びFETを用いた高周有な回路に関する。タ及びFETを用いた高周有な回路に関する。と、バイポーラトランジスタ及びFETを開いた。場前と呼音を開いた。と、イボーラトランジスタ及びFETを開いた。は、日本のな知識を有な回路に関する。と、イボーラトランジスタ及びFETを開いた。は、日本のな知識とないで基本的な知識とないで基本的な知識といいて基本的な知識といいて基本的な知識性について基本的な知識性について基本的な知識性について基本を目が表現ません。

			1			
科目名		担当教員	学年	単位	開講時数	種別
高電圧工学特論 (Advanced High neering)		石橋正基 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	求められている	-の高パワー化は主に高電圧化によって推進されてき ら。本講義では,高電圧・大電流技術の基礎を学ぶと パルスパワー技術,次世代エネルギーシステムなどの	ともに,	応用打	技術として	た対応が 高電圧・
授業の形態	講義					
授業の進め方	関連課題のレオ	と用いて講義を行い,関連の資料を用いた講義と輪講 ペートを課する. 近い自学自習の習慣を身につける。	形式で打	受業を進	動る。節	目ごとに
到達目標	2. 高電圧機器 3. 高電圧・大幅	固体の放電と絶縁破壊理論が理解できる(D-3)[d] と発生装置について理解できる(D-3)[d] 電流の測定法が理解できる(D-3)[d] 電流応用技術が理解できる(D-3)[d]				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基
		講義の内容				
項目		目標				時間
1. ガイダンス		授業の内容および進め方のガイダンス				2
2. 気体放電の開	始	タウンゼント理論,パッシェンの法則,ストリーマ	理論			2
3. 気中放電の形態	態・特性	アーク放電, コロナ放電, 超ギャップ放電, 雷放電				2
4. 気体絶縁		電極形状、温度・圧力・湿度等の影響、ガス絶縁、	バリヤダ	カ果と沿	·面放電	2
5. 固体の放電と	絶縁	固体の絶縁破壊理論,固体の絶縁特性,固体の劣化				2
6. 液体の放電と	絶縁	液体の破壊理論,液体の絶縁破壊特性				2
7. 真空中の放電	開始と絶縁	真空ギャップの破壊理論、絶縁特性、真空沿面放電	の絶縁特			2
8. 電力系統にま 発生	おける過電圧の	雷過電圧,開閉過電圧,短時間交流過電圧,その他				2
9. 雷過電圧対策		絶縁強調,雷遮蔽,逆フラッシオーバ現象,耐雷対	策			2
10. 高電圧発生装	置	交流・直流・インパルス電圧の発生、高電圧試験方	法と規格	各		2
11. 高電圧・大電	流の測定	高電圧の測定,大電流の測定,部分放電の計測,放	電現象の	D測定		2
12. 高電圧・大電	流応用技術 I	核融合、エネルギー貯蔵などの応用技術				2
13. 高電圧・大電	流応用技術 II	アーク加熱,プラズマ加熱,誘導加熱,高輝度ラン	プなどの)応用技	術	2
14. 高電圧・大電	流応用技術 III	食品加工・環境対策技術などの応用技術				2
15. 高電圧・大電	流応用技術 IV	高速飛翔体,電磁推進などの応用技術				2
						計 30
		自学自習				
		目標				 時間
予習・復習		講義内容の予習,復習				30
課題		課題の学習				25
定期試験の準備		定期試験のための学習				5
						計60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	プレゼンテーシ	/ョン 50 %、課題 50 %で評価する。				
関連科目	応用電磁気学・ 4: 応用物理特	電気回路特論・パワーエレクトロニクス応用 論				
教科書・副読本		M 大学テキスト 高電圧工学」山本修、濱田昌司 (オ	ーム社)		
			1-24	/		

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	気体・液体・固体の放電と 絶縁破壊理論のすべてを 理解し,説明できる	気体・液体・固体の放電と 絶縁破壊理論のうち2つ を理解し,説明できる	気体・液体・固体の放電と 絶縁破壊理論のうち 1 つ を理解し,説明できる	放電と絶縁破壊理論を知 らない				
2	パルス高電圧発生装置で あるマルクス発生器が理 解できる	直流高電圧発生装置であるコッククロフトウォルトン回路を理解できる	試験用変圧器とその昇圧 原理を理解できる	高電圧発生装置がわから ない				
3	ロゴウスキーコイルによ る大電流測定法を理解で きる	標準球ギャップを用いた 高電圧測定法を理解でき る	分圧器と分流器を理解で きる	高電圧・大電流の測定法が わからない				
4	高電圧・大電流の応用技術 を複数理解し,説明できる	高電圧・大電流の応用技術 の1つを理解し,説明で きる	高電圧・大電流の応用技 術の 1 つあげることがで きる	高電圧・大電流の応用技術 を知らない				

			7410千皮 等线符	2 2/1/A					
科目名			担当教員		学年	単位	開講時数	種別	
		ニクス応用 Electronics)	阿部晃大 (常勤)		1 • 2	2	半期 2 時間	選択	
授業の概	要		Ľが進むパワー半導体素子と、る 団路について学び、様々な分野の		より 高情	生能かつ	大容量化	された半	
授業の形	態	講義							
授業の進	め方		て、後半は輪講形式で行う。また 行い自学自習の習慣を身につける		演習・	課題を	行う。		
到達目標	<u> </u>	2. 半導体電力	本素子の特性と使用法を理解で 変換回路の回路動作、電力制御? クトロニクス応用技術が理解で	去を理解できる					
	実務経験と授業内 なし 学との関連								
学校教育 関係	育目標との		合的実践的技術者として、数学 関する知識をもち、工学的諸問題					技術と基	
			講義の内容						
項目			目標					時間	
1. 新しい	パワー半	導体素子	MOSFET、IGBT、IPM, その 理解する	の他最新のパワー半導体	本素子	D促成、	使用法を	6	
2. 半導体	体電力変換	回路	直流チョッパ、DC-DC コン/ PWM 制御法を理解する	バータ、インバータ、	コンバ	ータ等	の回路と	8	
3. 半導体電力変換回路の周辺技術 と回路設計			マイクロコンピュータ制御、 イ値解析手法、回路解析シミュレ				技術と数	4	
4. 可変速駆動への応用			直流電動機・誘導電動機・同其 業機器などへの応用を学ぶ					4	
5. 家電・民生機器への応用 電磁誘導加熱応用機器、蛍光灯、エス を学ぶ							4		
6. 電力系	系統への応	用	直流送電、無効電力補償装置、ステム、電力貯蔵システムなと		再生同	丁能エネ	ルギーシ	4	
			自学自習					計 30	
 項目								 時間	
予習・復	 i W		講義内容の予習、復習					20	
課題	C EI		課題の学習					10	
	/テーショ:	>	調査課題のプレゼンテーション	/準備、発表練習				30	
				7				計 60	
総合学習	時間		 講義 + 自学自習					計 90	
	の評価方	発表 50 %, 課	題 50 %で評価する。					H, ee	
関連科目	1								
教科書・	 副読本	教科書: 「カラ	ーー徹底図解 パワーエレクトロン	 ニクス」赤津 観 (CO b	出版社)				
	•	<u> </u>	評価 (ルーブリ		. /				
到達目標	理想的な	到達レベルの目安 (優	(良) 標準的な到達レベルの目安(良)	´ ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)	
到達目標 理想的な到達レベルの目安(優) 1 それぞれのパワー半導素子の使用法が理解で			4 それぞれのパワー半導体	パワー半導体素子をている	知っ		半導体素		
		電力変換回路の		D回 半導体電力変換回路の種 半導体電力 類を知っている からない]変換回路がわ	
2		生が理解できる	路動作が理解できる	類を知つしいる		プラない スパワーエレクトロニクス 応用技術がわからない			

I						1	1	
科目名			担当教員		学年	単位	開講時数	種別
電子デバ (Electron		5)	岩田修一 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要	要	電子情報工学分と応用について	予野の機器に使用する各種デバッ 「学ぶ。	イス、特に光デバイス	と機能は	生電池に	こついて、	その基礎
授業の形態	態	講義						
授業の進む	め方		て、理解を深めるための課題液 fい自学自習の習慣を身につける					
到達目標			構成する物質や材料の特性につ イスや電池の原理と応用につい					
実務経験で容との関係		なし						
学校教育! 関係	目標との		合的実践的技術者として、数学 引する知識をもち、工学的諸問題					技術と基
			講義の内容	5				
項目			目標					時間
1. 光物性	工学		(1) 光物性工学の概要と応用に (2) 光物性の古典論について理 (3) 物質系の量子力学の基礎に	解する				8
2. 物質と	光の相互	作用	(1) 物質と光の相互作用の基礎 (2) 光吸収と発光の原理につい					4
3. 電子材料と光デバイス			(1) 半導体中での光電効果につ(2) 太陽電池の動作原理と材料(3) 発光ダイオードの原理と材(4) 各種ディスプレイの基本原	∤の特性について理解す †料の特性について理解	解する	! する		8
4. 電池の基礎 (1) 1			(1) 電池開発の歴史について概	(1) 電池開発の歴史について概観する (2) 電池の充放電の原理について理解する				
5. 機能性	電池		(1) リチウムイオン電池の原理 (2) 各種の次世代電池の開発の			-る		4
6. まとめ)		まとめを行う。					2 計 30
								н оо
 項目			目標					時間
1. 予習と			当該授業の前後に予習と復習を	 を行い、理解を深める。				30
2. 課題の			授業で課した課題の学習や調査					30
								計 60
総合学習	——— 時間		講義 + 自学自習					計 90
学業成績(法	の評価方	授業中に課した	演習およびレポート課題をもと	とに総合的に評価する。	,			
関連科目		電子物性特論·	固体電子工学・レーザー物性特	寺論				
教科書・	副読本	教科書: 「工学	系のための量子力学 [第2版]」	上羽 弘 (森北出版)				
		-	評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優	クログログラス (東準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	そ(可)	未到道	をレベルの目安	(不可)
1	や材料の	スを構成する物)特性が理解でき スの特性と関連 。	き、や材料の特性が理解でき	デバイスを構成する や材料を説明できる。			スを構成 [、] が理解でき	
2	が理解で	イスや電池の原 き、原理に基づ が説明できる			月法に		イスや電? できない。	他の原理

		_						
科目名			担当教員		学年	単位	開講時数	種別
電子デバイスコ (Electronic De		Щ	田美帆 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要	電子情報工学会と応用について		の機器に使用する各種デバイ ぶ。	ス、特に光デバイス	と機能性	生電池に	ついて、	その基礎
授業の形態	講義							
授業の進め方			、理解を深めるための課題演 自学自習の習慣を身につける。					
到達目標			する物質や材料の特性につい や電池の原理と応用について					
実務経験と授業 容との関連	内なし							
学校教育目標と 関係			実践的技術者として、数学・ る知識をもち、工学的諸問題					技術と基
			講義の内容					
項目		目	標					時間
1、光物性工学	:	(2	1)光物性工学の概要と応用 2)光物性の古典論 3)物質系の量子力学	について				8
2、物質と光の	相互作用		1)物質と光の相互作用の基 2)光吸収と発光	礎				4
3、材料と光テ	バイス	(2	1)半導体と光電効果 2)太陽電池 3)発光ダイオード 4)ディスプレイ					8
4、電池の基礎	\$		1)電池の歴史 2)電池の原理					4
5、機能性電池	I		1)リチウムイオン電池 2)次世代電池					4
7、まとめ		ま	とめを行う。					2 計 30
			自学自習					
 項目		目						時間
 1、予習と復習	ı	+	<u>…</u> 1)当該授業の前後に予習と		 架める。			30
2、課題の演習	ı	(1)授業で課した課題の学習	や調査を行う。				30
								計 60
総合学習時間		講	義 + 自学自習					計 90
学業成績の評価 法	i方 試験を元に評估	画す	ప .					
関連科目								
教科書・副読本	その他: 適宜,	資料	料を配布する 評価 (ル ーブリッ	ック)				
701/本口上=		ī\		<u>'</u>	1(=)	4		(7=)
	的な到達レベルの目安(優		標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目安	` ′		レベルの目安	
や材 デバ	イスを構成する物料の特性が理解で 料の特性が理解で イスの特性と関連 れる。	き、	や材料の特性が理解でき	デバイスを構成する や材料を説明できる。			スを構成で発揮解でき	
が理	バイスや電池の原 解でき、原理に基づ 用例が説明できる		が理解でき、利用法につい	光デバイスや電池の は理解できるが、利用 ついては説明できない	法に		イスや電泡 ごきない。	也の原理

科目名		担当教員	学年	単位	開講時数	種別	
電子物性特論 (Advanced Solid of Electronic Dev		相良拓也 (常勤)	1 • 2	2	半期2時間	選択	
授業の概要	高度情報化社会 イスを設計出来 を結晶構造、自	**を支える集積回路技術の特長は,固体内の電子の振うである。本講義に於いて,学生は結晶中での自由電子モデルを基にしたバンド構造から理解する。	舞いをご 電気伝導	コントロ	ールして	電子デバ 電子状態	
授業の形態	講義						
授業の進め方		:基に適宜配布資料を使って講義を進める。更に演習問い自学自習の習慣を身につける。	引題によ	る課題	を設定して	ている。	
到達目標	1. シュレディンガー方程式によって井戸型ポテンシャル中の粒子の波動関数に関して導出できる。 2. 結晶構造に関する知識を獲得し、代表的な結晶構造の第1ブリルアンゾーンを理解する。 3. 金属の電気伝導に関して古典的・量子論的に考え、自由電子モデルを理解する。 4. 周期的ポテンシャルの影響を受けた電子の場合について考え、エネルギーバンド構造についする。						
実務経験と授業内 容との関連	なし	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する能				技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス		授業のガイダンスと物性について				2	
量子力学の基礎		量子力学に関する基礎内容に関して学習する。				6	
結晶構造		固体の結合から結晶構造に関して学習し、X線回折に 法に関して学ぶ。	こよる糸	指晶構造	の同定方	4	
一次元の格子振動		ブリルアンゾーンについて理解する					
金属の電気伝導 (さ	ī典論)	金属中の電子の輸送を古典論的に考え、平均自由行程や散乱時間などの概念 を学び、オームの法則が成り立つことを理解する					
金属の自由電子モ	デル	金属の自由電子モデルを用いて状態密度関数とフェルミエネルギーについて 学習する					
金属の電気伝導 (量	量子論的)	量子論的にみた金属内の電気伝導を理解する				2	
半導体のバンド構造	告	結晶中の周期的ポテンシャルを考慮してエネルギー	バンド桿	構造を学	習する	4	
半導体の電気伝導	(輸送)	半導体中の電気伝導 (輸送) についてこれまでの理論	を考慮	して理解	解する	2	
定期試験		テストを実施				2	
						計 30	
		自学自習					
項目		目標				時間	
予習、復習		式の変形の確認、問題の解答				20	
課題		課題の学修				20	
定期試験のための	学修	テストのための学修				20	
						計 60	
総合学習時間		講義 + 自学自習				計 90	
学業成績の評価方 法	テスト 70%、	課題 30 %とする。					
関連科目							
教科書・副読本	教科書: 「電子	物性入門」中村嘉孝 (コロナ社)					

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	(良) に加え、無限井戸型 ポテンシャル中の電子の 波動関数の一般解を導出 できる。	(可)に加え、一次元空間のみを考慮したシュレディンガー方程式を示すことができる。	関する基礎的な問に解答	(可)に到達しない					
2		(可)に加え、2次元正方格子のマーデルング定数の計算もしくは、結晶構造の面指数と面間隔の関係を理解している。		(可)に到達しない					
3		(可)に加え、自由電子モデルにおいて、状態密度の計算ができる。		(可)に到達しない					
4		(可)に加え、エネルギー バンド構造から群速度と 波数の関係を述べること ができる。	エネルギーバンドの還元 帯域と拡張帯域の方式に 関して把握している。	(可)に到達しない					

			1.1					
科目名			担当教員		学年	単位	開講時数	種別
集積回路 (Integra ing)	子学 ted Circ	uit Engineer-	浅川澄人 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要 集積回路(IC)は、電子機器、産業システムのあらゆる所に使われ、今日の高度 I T 社会を最も重要なハードウエア素子である。本授業では主にMOS構造のFETを用いた I Cの製造種種のCMOS論理ゲート回路、メモリ回路に関して学習する。また、集積回路として、増幅MOS OPアンプ、A/D・D/Aコンバータや集積回路技術の応用であるCCDなどについれ、最新の研究動向と併せて学習する。						見造技術、 幅回路や		
授業の形	態	講義						
授業の進	め方		より行う。また理解を深めるだい自学自習の習慣を身につける。		文り 入え	いる。		
到達目標	<u> </u>	2. LSIの構成	構造を説明できる ὰ・製造技術・信頼性に関して ☑構成を説明できる	説明できる				
実務経験 容との関	を授業内 連	なし						
学校教育 関係	育目標との	\ /	合的実践的技術者として、数学 する知識をもち、工学的諸問題					技術と基
			講義の内容	<u> </u>				
項目			目標					時間
ガイダン	/ス		授業のガイダンスとIC技術の	の概要を紹介する				2
I Cの構	持造と特徴		集積回路の構造やエレクトロ [、] する	マイグレーションなどの	D特有理	見象に関	して学習	6
CMOS	CMOS基本回路 CMOSインバータなどの CMOS ディジタル回路について学習する				る	4		
LSIO)製造技術		一連のLSIの製造技術につい	ハて学習する				6
)構成と設		LSIの設計法について学習、					4
種々の集	〔積回路、 〔	集積デバイス	半導体メモリや画像素子CCI や近年の集積デバイスに関す				の応用例	8
								計 30
			自学自習					
項目			目標					時間
予習・学	習		基本回路の構成、原理等、予	習・復習。				30
課題・レ	/ポート		課題・レポートの作成					30
								計 60
総合学習			講義 + 自学自習					計 90
学業成績 法 	り の評価方	授業中に課した	演習およびレポート課題をも	とに総合的に評価する 				
関連科目		電子デバイス工	学・電子物性特論・電気回路	寺論・ディジタル回路特	寺論			
教科書・	副読本	教科書: 「電子 [・] 博(著) (コロ	情報通信レクチャーシリーズ(ナ社)	C-13 集積回路設計」	電子情	報通信学	学会 (編)	浅田邦
			評価 (ルーブリ	ック)				
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
1	IC の構 明出来る		説 IC の基本構造を説明出来 る	バイポーラトランジ MOS FET の基本構 説明出来る	造を		- ラトラン ET の基準 ない	
2		基本構成、原理、 関して説明出来る	信 LSI の基本構成、原理を説 明出来る	LSI の基本構成を説 来る		LSI の ¹ きない	ま本構成?	を説明で
3		メモリの基本構成 説明出来る	文、メモリの基本構成、原理を 説明出来る	メモリの原理を説明る		メモリ(ない	の原理を記	说明でき

科目名		担当教員		学年	単位	開講時数	種別
ディジタル回路特 (Advanced Dig Circuit)	寺論 gital Electronic	大川典男 (非常勤/実務)		1 • 2	2	半期 2時間	選択
授業の概要	授業の概要 ディジタル回路の論理設計、アーキテクチャ設計を行う際に必要な回路レベルの知識と設計技いて、基本事項を学習する。						技術につ
授業の形態	講義						
授業の進め方	授業の進め方 講義を中心とし、理解を深めるための課題演習や小テストによる復習も行う。 予習、復習を行い自学自習の習慣を身につける。						
到達目標	1. LSI の基本 路の動作を解析	ディジタルデバイスである、CN できる。	MOS、BJT の動作原理	埋と特性	生を理解	し、ディ	ジタル回
実務経験と授業で容との関連	りあり						
学校教育目標との 関係	D D (基礎力) 総合 礎的な理論に関	合的実践的技術者として、数学 する知識をもち、工学的諸問題	・自然科学・自らの専 ほにそれらを応用する負	門とす。 能力を育	る分野の	基本的な	技術と基
		講義の内容	}				
項目		目標					時間
1. ガイダンス		・授業のガイダンスと論理設言	基礎を復習する。				2
2.CMOS の動作	原理と特性	・CMOSの基本回路と動作を	理解する。				6
3.BJT による論	理ゲートの構成	・BJT を構成する各種ロジッ	クの特性を理解する。				6
4. 特殊な特性を	寺つ素子	・オープンコレクタ/ドレイン	/、シュミットトリガ <i>(</i>	の特性を	と理解す	る。	4
5. 記憶素子(フ	表子(フリップフロップ) · フリップフロップ回路の基本動作と応用回路の動作を理解する。					4	
6. 記憶素子(メ・	モリ)	・RAM 及び ROM の基本動作	Fを理解する。				4
7.PDL と FPGA	Δ	・PDL と FPGA の基本構造に	こついて理解する				4
							計 30
		自学自習					
項目		目標					時間
1. 予習、復習		・学習事項の確認、まとめノー ノート作成状況の確認を行う。	- ト作成等の予習復習。	授業時	寺に各自	のまとめ	30
2. 課題		・課題演習の学習、レポート作成。					20
3. 定期試験の準	験の準備 ・定期試験準備のための学習。					10	
							計 60
総合学習時間		講義 + 自学自習					計 90
学業成績の評価 法 	により規格化}	定期試験の得点{発表点をα、 を 50 %、課題演習を 25 %、 (課題)を実施することがあ	日々の小テストを 25				
関連科目	電子デバイスエ	学・アナログ電子回路					
教科書・副読本		ジタル設計者のための電子回路 、」天野英晴・武藤佳恭 (オーム	,	ナ社), :	参考書:	「だれに	もわかる
		評価 (ルーブリ	ック)				
到達目標 理想的	的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
る各利 オープ イン、 フリッ ROM のディ	S、BJT で構成さ 重組み合わせ回路 プンコレクタ/ド シュミットトリラ プフロップ、RAM に関する知識を実 (ジタル回路設計 ることができる。	3、 る各種組み合わせ回路、レ オープンコレクタ/ドレガ、イン、シュミットトリガ、【、フリップフロップ回路、際 RAM、ROM に関する動	CMOS、BJT で構成る各種組み合わせ『フリップフロップ『RAM、ROM につい本的な知識を有して	回路、回路、	る各種 フリッ RAM、	BJT で 組み合わ プフロッ ROM に [*] ^{が理解でき}	せ回路、 プ回路、 ついて基

科目名		担当教員		学年	単位	開講時数	種別
固体電子工学 (Electronic Prope	erty of Solids)	椛沢栄基 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要	授業の概要 各種電子デバイスを構成する材料の特徴は、その物質を構成する結晶構造や電子配置によってれる。本講義では、物質の結晶構造と電子に着目し、その性質を理解する。また、デバイス作要な実験手法についても学ぶ。						
授業の形態	講義						
授業の進め方		ーキストを使って進める。理解を fい自学自習の習慣を身につける		課題を	を取り入	れる。	
到達目標		を結晶構造・電子構造から理解 ・高温実験の知識を身につける					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	\	合的実践的技術者として、数学 引する知識をもち、工学的諸問題					技術と基
		講義の内容	7				
項目		目標					時間
ガイダンス		授業のガイダンス。					2
対称性と結晶系		結晶を扱う上で重要な対称操作 習する。また、結晶構造解析の					6
磁性体・誘電体 代表的な物質を例に挙げ、電子状態や結晶構造を併せて、対象とする物質の 物性を学習する。						6	
低温・高温を作る		温度特性や試料焼成時に必要と	となる低温・高温の作り) 方を	学習する	0	2
真空を作る		特に物理的気相成長法で薄膜を する。	と作製する際に必要とな	る真空	どの作り	方を学習	2
電子軌道		原子を構成する電子の軌道につ	ついて学習する。				10
まとめ		まとめを実施する。					2
							計 30
		自学自習					
項目		目標					時間
予習復習		式の途中変形の確認等、予習行	包含。				30
課題		課題の学習。					30
/// A >>/							計60
総合学習時間		講義 + 自学自習					計 90
学業成績の評価方 法 	課題評価により)決定する。 					
関連科目							
教科書・副読本	参考書: 「固体	:電子物性」若原昭浩 (オーム社	<i>'</i>				
ļ		評価 (ルーブリ 	ック)				
到達目標理想的複	な到達レベルの目安 (優	クログログラ (東準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
晶構造	造解析に使った を理解し、解析結 ことができる。		実際の物質ではイオ 合性、共有結合性が混 ていることを知ってい	在し		5, 電子構: いわからな	
に、油	高温の作り方の 拡散ポンプを使 の作り方も説明		真空や低温、高温環境 要性が理解できる。			[空や低温 るか理解で	

		17111 7 7 2 3 2411 7 7 1 1 1					
科目名		担当教員	学年	単位	開講時数	種別	
半導体工学特論 (Advanced Semion gineering)	conductor En-	鈴木達夫 (常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要	坐道休デバイフ	 くの基礎となる物理現象を理解する。半導体デバイス(n発屈の	 歴申を			
授業の概要 授業の形態							
		コネレル マ佐みァー 海ウ 細胞 かたまっ					
授業の進め方	授業は講義を生	¬心として進める。適宜、課題を与える。 ¬い自学自習の習慣を身につける。					
到達目標	到達目標 1. 半導体デバイスの原理を、数学やグラフを用いて論理的に理解できる。 2. 半導体デバイスの発展の歴史を理解し、次世代デバイスへの幅広い展望を持つことができる。						
実務経験と授業内 容との関連	なし						
学校教育目標との 関係	D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技 礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。						
	•	講義の内容					
項目		目標				時間	
1. ガイダンス		授業のガイダンスと半導体デバイスの発展の歴史に	ついて			2	
2. 固体の結晶構	造と電子状態	固体の結晶構造及び量子力学の基本的な概念を学ぶ				4	
3. 固体のバンド	理論	金属中の自由電子モデル、ブロッホの定理、クロー、属・半導体・絶縁体の区別、及びいくつかの半導体学ぶ				4	
4. 固体中の電子	の統計分布	電子波の波束の運動、有効質量近似、金属における電子統計、真性半導体に おける電子統計、正孔の概念、ドナーとアクセプタ、及び不純物半導体にお ける電子統計について学ぶ					
5. 固体中の電子	の伝導現象	静電磁場界中の電子伝導の古典論、サイクロトロン共鳴、電子の集団運動、 ボルツマン方程式、電流磁気効果、及びランダウ準位について学ぶ				4	
6. 半導体中の高	電界効果	熱い電子、ガン効果、電子なだれ現象、トンネル効果、超格子、バリスティッ ク電気伝導について学ぶ					
7. 半導体界面の	物理	少数キャリアの拡散と再結合、p-n 接合、ヘテロ接合、半導体表面準位、金属・半導体界面、金属・絶縁体・半導体 (MIS) 界面、表面量子化、及び量子 ホール効果について学ぶ					
8. 半導体の光吸	収	電子と光の相互作用(現象論)、及び光吸収のメカニズムの分類について学ぶ					
9. 半導体発光の	物理	輻射再結合と非輻射再結合、いろいろな発光過程、 然放出の間の関係、及び半導体レーザの物理につい		又、誘導	放出、自	2	
10. これからの	半導体デバイス	ナノテクノロジー、原子層物質、光触媒について学、				4	
						計 30	
		自学自習					
項目		目標				時間	
予習復習		授業内容理解のための予習復習				30	
課題		課題の学習				20	
定期試験の準備		定期試験準備のための学習時間				10	
				計60			
総合学習時間		講義 + 自学自習				計 90	
学業成績の評価方 法		・ 倹の得点とする。課題を提出しなかったり、授業中の は、30 点を上限として減点する。	質問に名	答えない	ゝなど授業類	態度が良	
	1						
関連科目	電子デバイスコ	Ľ学・電子物性特論・固体電子工学					

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1		数式やグラフを使って説	半導体デバイスの原理を、 概念図を使って理解でき る。	半導体デバイスの原理が わからない。					
2		半導体デバイスの発展の 歴史を説明することがで きる。	半導体デバイスの発展の 歴史を理解することがで きる。	半導体デバイスの発展の 歴史を理解することがで きない。					

		마세 이 구선 작짓다 기기					
科目名		担当教員		学年	単位	開講時数	種別
電子工学特論 (Advanced Ele neering)	ectronics Engi-	前田祐佳 (非常勤)		1 • 2	2	半期 2 時間	選択
授業の概要		二学分野から題材を選び、講義を通し 二要求される電子工学技術について学		生を理角	解すると	共に、場	のとらえ
授業の形態	講義						
授業の進め方 講義は独自のテキストを使ってすすめる。理解を深めるために課題を設定すると共に、試験を 理解度を計る。理論的解析においては、数学とその関連分野の、電磁気学・電気回路的捉え方 としての捉え方においては、電子工学関連分野の復習や予習を要する。 予習、復習を行い自学自習の習慣を身につける。						を通じて 方や波動	
到達目標	1. 解析対象物	の特性を理解して、どんな捉え方をし	して、解析や計測技	支術に終	吉び付け	るか検討、	できる。
実務経験と授業内容との関連	なし						
学校教育目標との 関係	\ /	合的実践的技術者として、数学・自然 関する知識をもち、工学的諸問題にそ					技術と基
		講義の内容					
項目		目標					時間
1. ガイダンス		授業のガイダンス					2
2. 生体の特異性の	の紹介	不均質性、異方性、周波数特性、非	 ⊧線形性について解	解説する	0 0		2
3. 生体の能動的質	電気特性	電気化学の基礎、活動電位の発生は	こついて解説する。				4
4. 心臓ペースメー	ーカの原理	定電流電源の設計(OP アンプ等に	こより電子回路設計	·)			2
5. 交流障害の存在と医用機器の安 交流障害とその対策、電撃について解説する。 全対策						4	
6. 生体の受動的	電気特性	①導体的性質と誘電体的性質(両性 ②周波数分散 ③電極の化学と不分極性電極) について解説する。	生質を共に有する娘	禁質)			6
7. 定常電流場の解	解析	ラプラスの方程式の解法(電磁気学	学と電気回路の関連	<u>i</u>)			4
8. 生体の高周波物	寺性 I	渦電流の発生、表皮効果について解	解説する。				2
9. 生体の高周波物	寺性Ⅱ	集中素子で考える電気と波動として	て考える電気				4
							計 30
		自学自習					
項目		目標					時間
予習及び復習		電気化学(ネルンストの式)、定電 布定数線路、電磁気学の基礎、偏微				基礎、分	40
課題		課題学習					10
試験準備		試験準備のための学習時間					10
							計 60
総合学習時間		講義 + 自学自習					計 90
学業成績の評価7 法		極。1 通程度の課題レポートを課す予 して総合評価とする。	9定である。試験評	価とレ	ポート	評価(試問	引を含む)
関連科目							
教科書・副読本	その他: 講師か	用意した資料等を中心に進める					
		評価 (ルーブリック)				
到達目標 理想的]な到達レベルの目安 (優) 標準的な到達レベルの目安(良) ぎり)ぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
に合え 理を訪 容を自 ができ	#準的な到達レベルの目安 (優) 標準的な到達レベルの目安 (良) ぎりぎりの到達レベルの目安 (可) 未到達レベルの目安 (不 特性を理解し、対象 せた計測方法の原 明でき、基本的な内 分で実践すること る。さらに応用方 を自分で検討する できる。 標準的な到達レベルの目安 (可) 未到達レベルの目安 (不 生体の特性を理解し、対象 に合わせた計測方法の原 理を説明でき、基本的な内 容を自分で実践すること ができる。 できる。					方法や計	

	担当教員	学年	単位	開講時数	種別
Engineering)	前田祐佳 (非常勤)	1 • 2	2	半期 2 時間	選択
		光、生体	本電位な	どを検出す	するセン
講義					
		もしくは	はレポー	トを提出す	⁻ る。
 センサの原理を理解する 計測に必要なセンサの選択、回路の設計を行える 医療機器における応用方法を理解する 					
なし					
					支術と基
	講義の内容				
	目標				時間
	授業のガイダンスと測定対象についての概論を学習	する			2
	センサに必要な周辺回路の原理と応用について学習	する			4
	生体の電気現象に不可欠な生体電極の原理について	学習する	S		2
磁気センサの原理と応用を学習する					2
運動・行動のセンサ 身体の運動や行動を計測す			3		2
	温度センサの原理を学習する				2
	圧力センサの種類と原理について学習する				2
サ	光を用いたセンサの原理について学習する				
	心電計、心音計への応用について学習する				2
	脳波計、筋電計への応用について学習する				2
	脈波計、Sp02 への応用について学習する				2
	血圧計への応用について学習する				2
	血流計・体温計への応用について学習する				2
	これまで学習した内容をまとめる				2
					計 30
	自学自習			•	
	目標				時間
	あらかじめ与えられた課題に対して各自調査を行う。 英語のデータシートの内容を読み内容をまとめる)			30
	決められた条件で動作するセンサ回路の設計を行う。)			20
	各自与えられた内容のプレゼンを準備する。				
					計 60
	講義 + 自学自習				計 90
		ペートお	よび課題	題提出を 4	0%、定
		医用機器	₹Ⅰ」田 [;]	村俊世、山	越憲一、
	世を対象に原理 講義 講義とは、2 科書を行 1. セ 計) と 対 と 対 に 機 器 に な と 対 が と 対 に 機 器 に な と 対 が と 関	市田祐佳 (非常勤) 市田祐佳 (非常勤) 本講義では、医療・福祉分野で用いられる、圧力、加速度、温度、力を対象に原理や実際の使用方法を学習する。	部田祐佳 (非常勤) 1・2 本講義では、医療・福祉分野で用いられる、圧力、加速度、温度、光、生化サを対象に原理や実際の使用方法を学習する。 講義 講義は教科書および配布する資料にそってすすめ、単元ごとに課題もしくに予習、復習を行い自学自習の習慣を身につける。 1. センサの原理を理解する 2. 計測に必要なセンサの選択、回路の設計を行える 3. 医療機器における応用方法を理解する なし D (基礎力)総合的実践的技術者として、数学・自然科学・自らの専門とす。	田前田祐佳 (非常勤) 1・2 2 2 本講義では、医療・福祉分野で用いられる、圧力、加速度、温度、光、生体電位な	正の頭にでいす 前田祐佳 (非常勤)

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	センサの原理について理解し、他のセンサとの特徴の違いや利点・欠点などを対比させて述べることができる。	解し、測定の特徴や注意点 について説明する事がで	個別のセンサについて基本的な原理を説明する事ができる。	個別のセンサについて基本的な原理を説明する事ができない。				
2	測定したい対象や入手し たいデータに対して適切 なセンサを選択する事が できる。センサの基本回 路について理解し、センサ と処理を行いたい事象に 合った回路を自ら考 案する事ができる。	センサの特徴と基本回路 について理解し、センサご とに標準的な回路を理由 も含めて説明する事がで きる。	個別のセンサについて、特 徴と基本的な回路につい て説明する事ができる。	個別のセンサについて、特 徴と基本的な回路につい て説明する事ができない。				
3	医療用に用いられている センサの問題点を理解し、 測定の際に注意するべき 点や、測定範囲、測定限 界などを説明する事がで きる。	医療用に利用されている センサが採用されている 理由を原理や特徴を踏ま えたうえで説明する事が できる。	個々のセンサが医療用に どのように応用されてい るかを説明する事ができ る。	個々のセンサが医療用に どのように応用されてい るかを説明する事ができ ない。				

		216 0 1 × 3 ×11 2 2				
科目名	担当教員			種別		
ディジタル電子回路 (Advanced Digita sign)	各特論 al Circuit De-	髙﨑和之 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	基本とした回路	やメモリ機能を有したディジタル回路の設計には、 各構成法を学ぶ必要がある。本講義では論理回路まで と深める。また、実際の回路で問題となりやすい雑音 。	の基本権	構造を実	運現する方	法につい
授業の形態	講義					
授業の進め方 講義により基礎知識の解説を行い、ディジタル回路設計の基礎を学び、演習によって理解度の 行うことでディジタル回路設計の基礎技術を習得する。 予習、復習を行い自学自習の習慣を身につける。						の確認を
到達目標	1. 基礎的な D'	FL によるディジタル回路の製作ができる。				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基
<u> </u>		講義の内容				
項目		目標				時間
ガイダンス		授業全般についてのガイダンスを行う. ディジタル 講義を行う.	回路設計	∤の導入	について	2
DTL の基礎		DTL 設計の基礎について学ぶ.				4
DTL と TTL の違		TTL 設計の流れを学ぶ.				2
論理回路設計の基础	楚	課題に従い論理回路を作成し、回路の動作を確認す				4 2
バス構造		コンピュータに用いられるバス構造とその仕組みを電子回路の観点から 学ぶ.				
応答速度の向上		トランジスタの応答速度を向上させる方法のひとつであるスピードアップコンデンサについて学ぶ.				
高速ディジタル信号	号の取り扱い	高速ディジタル信号の位相ズレについてその原因と対策を学ぶ.				
多値伝送と雑音		近年増加しつつある多値伝送と雑音の影響について学ぶ.				
保護回路		電子回路が故障した場合でも悪影響を及ぼさないた学ぶ.	めの回路	各の工夫	について	2
故障と対策		電子回路が故障する原因とその対策について学ぶ.				2
信号の互換性		ディジタル信号の規格と互換性について学ぶ.				2
反射と終端		高速ディジタル信号を伝送する際に発生する反射に	ついて賞	生ぶ.		2
まとめ		講義のまとめとして,電子回路技術の今後の展望に	ついて解	解説する		2
						計 30
		自学自習				
項目		目標				時間
ディジタル回路設	計の基礎	ディジタル回路設計の基礎知識を整理する.				4
DLTとTTLによ	る設計の基礎	DTL と TTL の違いやそれぞれの特徴を理解し,i ができるようになる.	没計に活	かすこ	とがこと	12
順序回路の復習と約	組み合わせ回路	順序回路や組合せ回路を復習し、ALU やレジスタの動作を理解する.				
総合学習時間		講義 + 自学自習				計 60 計 90
学業成績の評価方 法	授業時間中に第	民施する小テストの結果に基づき、総合的に評価する)			
関連科目	電気回路特論・	電子工学特論				
	対科書・副読本 その他: 必要に応じてプリント等の資料を配付する。					

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	基礎的なディジタル回路 を設計して製作できる。	基礎的なディジタル回路 を製作できる。	基礎的なディジタル回路 を動作させられる。	基礎的なディジタル回路 を動作させることができ ない。				

科目名		担当教員	学年	単位	開講時数	種別
超音波工学特論 (Advanced Ultras ing)	onic Engineer-	長井裕 (非常勤/実務)	1 • 2	2	半期2時間	選択
授業の概要	また、超音波っの先端分野を始しての性質と始について学習で	その波動としての性質を利用し、医用超音波診断等 ニータ・洗浄・加熱・破壊等の超音波エネルギー応用 台め、工業界全般で広く活用されている。本講義では 某質中の伝搬を学習する。次に、空間時間的な観点か する。また、各種超音波モータの動作原理、超音波洗 として、超音波エネルギーの応用技術について学習す	技術とし 、 お お る い い い い い い い い い い い い い い い い い	ンて、医 超音波 せによる	療、航空、 仮空間的 計測の基礎	、宇宙等 な波動と 礎と応用
授業の形態	講義					
授業の進め方	に(英語)と記 変形、課題の準	と中心に、必要により配布プリントにより進め、課題 日載されている部分は英文プリントにより一部英語で 基備、原理と演習の内容を結びつける等の予習・復習 行い自学自習の習慣を身につける。	授業を進	進める。	!解を深め 英文の翻!	る。項目 訳、式の
到達目標	表示により波動2. 空間計測手	助方程式を導出でき、波動の境界での伝搬(入射波、 かの空間的、時間的伝搬状態を振動と減衰の形で説明 法の原理および空間分解能と時間分解能について説明 タ等、超音波の工業応用例を説明できる。	できる。		() や、速	度の複素
実務経験と授業内 容との関連	あり					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 関する知識をもち、工学的諸問題にそれらを応用する				技術と基
		講義の内容				
項目		目標				時間
1. ガイダンス		授業のガイダンスと超音波について。				2
2. 超音波応用技	術の歴史	実例として日本での超音波診断装置の開発された過	程を学習	引する。		2
3. 波動としての	超音波(英語)	超音波の振る舞いを理解するため、非定常擾乱の扱 を行う。	い方、波	數方程	式の導出	2
4. 波動の理解(英語)	例により波動方程式の理解を深める。				2
5. 波動の減衰と		減衰と分散について学習する。				2
6. 群速度と境界		伝搬特性として群速度と境界条件を学習する。				2
7. エコーロケー		パルスエコー法等の空間計測手法の原理について学				2 2
8. 超音波の実用						
9. パルスエコー	法	送受信をモデル化し、マッチドフィルタリング等の処理手法と距離分解能について学習する。				
10. ビームフォ	ーミング	超音波の音場解析手法、空間分解能の概念と超音波する。	ビーム走	査につ	いて学習	2
11. ドプラフロ	ーメトリ	ドプラによる流速計測手法の原理を学習する。				2
12. 超音波の生の応用	体への影響とそ	超音波の生体への影響と、それの結石破壊や腫瘍加する。	熱治療等	うへの応	用を学習	2
13. 超音波パワ	ーの応用	超音波洗浄や超音波モータへの応用について学習す	る。			2
14. プレゼンテ	ーション	超音波応用に関するプレゼンテーションを行う。				2
15. まとめ		授業全体の総括を行う。				2
						計 30
		自学自習				
項目		目標				時間
予習、復習		英文プリントの翻訳、式の途中変形の確認等、予習に各自の翻訳内容や式の変形の確認を行う。	復習を行	うこと	。授業時	30
課題		授業中に提出する課題を行う。				5 20
プレゼンテーショ	ンの準備	技術調査を行い、プレゼンテーションを作成する。また、発表練習、質疑応 答の準備を行う。				
テストの準備		テストのための学習を行う。				5 ≇+ 60
₩△₩╗╗+□		= # 关				計60
総合学習時間		講義 + 自学自習				計 90

学業成績の評価方 法	課題(開発過程に関する課題 1 回: 10 %、プレゼンテーション課題 1 回: 30 %)とテスト 1 回により成績評価する。なお、テストと課題の比率は 6 : 4 とする。
関連科目	
教科書・副読本	その他: 波動に関する英文プリント

教科書・	副読本 その他: 波動に関	する英文プリント		
		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	1次元の波動方程式を導界での波動方程式を境の変勢方程式を境のを、異なるな異なる。また、異のある。また、変動できる。に説明素数、時間の形成で変動の空振動では、一次を記り、大変をは、一次を記り、大変をは、一次をは、一次をは、一次をは、一次をは、一次をは、一次をは、一次をは、一次	出できる。また、異なる媒質の境界での波動の振る 舞いの概略を説明できる。 更に、速度の複素数表示 による波動の空間的、時間 的伝搬状態の概要を振動 と減衰の形で説明できる。	ヒントを与えれば、1次での の波動方に、1世質以 の波動方に、 関本での境 のでのでは を を を を を を を を を を を を を を を を を を を	1次元の波動方程式が導出できない。また、異なる媒質の境界での波動の振る舞いが全く説明できない。更に、速度の複素数表示による波動の空間的、時間的伝搬状態を振動と減衰の形で全く説明できない。
2	空間的計測手法の原理および空間分解能と時間分 解能について正確に説明 できる。		ヒントを与えれば、空間的 計測手法の原理または空 間分解能と時間分解能の 一部について説明できる。	空間的計測手法の原理および空間分解能と時間分解能について説明できない。
3	プレゼン課題において、超 音波モータ等、超音波の工 学的応用例を分かり易く 説明でき、質問にも全て正 確に答える事ができる。	プレゼン課題において、超 音波モータ等、超音波の工 学的応用例を説明でき、必 ずしも正確ではないが質 問にも全て答える事がで きる。	プレゼン課題において、超 音波モータ等、超音波の工 学的応用例を説明でき、質 問にも一部答える事がで きる。	プレゼン課題において、超音波モータ等、超音波の工学的応用例を説明しきない。あるいは、説明したが、自分での取り組みと取れないほど質問に全く答える事ができない。

科目名	目名 担当教員 学年 単位 開講時数				種別	
画像工学 (Image Engineerin	ng)	吉田嵩 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	授業の概要 ディジタル画像を処理,解析,理解するための基本的なアルゴリズムや計算手法について学習する。 また,基本的な処理に対して簡易的なプログラムで実現する手段を学ぶ.更には画像処理の根幹となっている線形代数について講義を行い,包括的な画像処理工学における技術の展開について学習する.					
授業の形態	講義					
授業の進め方	各アルゴリズム	. 予習は,事前に配布する資料を読み概要をまとめ についてその流れを体験的に学ぶと同時に,理解の い自学自習の習慣を身につける.	る. 復習 ための詩	習は, F 関題学習	PC 上で画(を行う.	象処理の
到達目標	 基本要素が持 基本要素の分 	する基本要素を理解できる 寺つ物理的特徴量を理解できる 分離・抽出を線形代数を用いて実行できる 処理手法を計算機を用いて実行できる				
容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
ガイダンス		講義内容,評価方法を説明するとともに,画像表現	の基礎を	学ぶ.		2
画像形成(オプト クス)	・エレクトロニ	眼,カメラモデル,射影,歪等の画像形成要素を学	習する.			2
画像形成(反射特性	性と色)	反射モデル, 色について学習する.				2
画像の階調変換		ガンマ特性、ヒストグラムを用いた変換手法について学習する				
画像の形状変換		回転・移動,形態処理について学ぶと共に,行列計算での解法についても学 習する.				
画像処理と線形代数	数	画像の変換や処理を行列として表現するとともに,正則な行列による処理を 学ぶ.				
画像の特徴量抽出		エッジ,コーナー,モーメント,LOG など特徴量抽出を学ぶ.				
画像の特徴解析		固有値,主成分などの不変特徴量の抽出とその分別手法について学ぶ.				
画像データ処理		特異値分解から最小二乗法や方程式解法を学び、最適パラメータ計算について学習する.				
画像処理の最新動同	句	最新の解析手法や応用事例を学ぶ.				
まとめ		画像処理変遷の背景を理解しながら、授業のまとめる	を行う.			2
						計 30
		自学自習				
項目		目標				時間
予習課題		次回の講義内容について事前に目を通してくるべき ジを提示し,その内容の理解を行う.	書籍,	論文,「	Veb ペー	30
復習実習 より深い理解のため、簡易的なプログラミングを用い、授業内容で学んだ手 法を実行する.					30	
						計 60
総合学習時間	3muz + % 0 -	講義+自学自習	2. \ 2	.0	am	計 90
学業成績の評価方 法 	課題及びプロク テスト/レポー	ブラム演習を 6 回以上行う.また,期末にはテストまト 60 %で成績を算出する.	たはレス	ドートを	:課す. 課!	退 40 %,
関連科目						
教科書・副読本	教科書: 「ディ する	ジタル画像処理 [改訂第二版]」奥富正敏 (CG -ART	S 協会)	,その作	也: 資料を	適宜配布
	1					

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	画素, 階調, 空間分布等の 画像構成要素を説明でき るとともに, その定量的な 評価をプログラムで実現 できる.	画素, 階調, 空間分布等の 画像構成要素を説明でき るとともに, その定量的な 評価方法を説明できる.	画素,階調,空間分布等 の画像構成要素を説明で きる.	画像構成要素を説明できない,もしくは理解が間違っている.(確認テストで60%未満)				
2	画像構成要素で成り立つ エッジ,コーナー,グラ デーションが起こる物理 的特徴を説明できるとと もに,その定量的な評価を プログラムで実現できる.	画像構成要素で成り立つ エッジ,コーナー,グラ デーションが起こる物理 的特徴を説明できるとと もに定量的な評価方法を 説明できる.	エッジ, コーナー, グラ デーション等の画像構成 要素を説明できる.	エッジ, コーナー, グラ デーション等の画像構成 要素を説明できない, もし くは理解が間違っている. (確認テストで 60 %未満)				
3	画像構成要素が織りなす物理的特徴を分離抽出できるとともに、その線形代数的手法をプログラムで実現できる.	物理的特徴を分離抽出できるとともに、その線形代	画像構成要素が織りなす 物理的特徴を分離抽出す る手法を説明できる.	画像構成要素が織りなす物理的特徴を分離抽出する手法を説明できない,もしくは理解が間違っている.(確認テストで60%未満)				
4	学会論文等を読みながら 学んだ画像処理手法を一 つ以上,計算機を用いて実 行できる.	学会論文等を読みながら 学んだ画像処理手法を一 つ以上,計算機を用いて実 行できる.	教科書等を読みながら学んだ画像処理手法を一つ 以上,計算機を用いて実行できる.	画像処理手法を計算機を 用いて実行できない. (課 題提出が6割未満)				

科目名 担当教員 学年 単位 開講時数					種別	
レーザー物性特論 (Special Topics in Laser Physics) 山口尚紀 (非常勤) 1・2 2 半期 2 時間						選択
授業の概要	りではなく、物	技術の新しい分野を開き、急速に発展している。レ 『質構造の人為的、化学的制御にも革新をもたらして その上に立脚し先端技術を幅広く理解し、自由に駆倒	いる。し	ノーザー	- の原理を	物理的に
授業の形態	講義					
授業の進め方	自学自習の習慣	いに進めるが学生の発表も交え、相互に議論しながら 資を身に着ける。 い自学自習の習慣を身につける。	理解を済	深める。	予習、復	習を行い
到達目標	 2. レーザーと特別 	光波が説明できる 勿質との相互作用について理解している。 発振原理が説明できる。				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用する飼				技術と基
		講義の内容				
項目		目標				時間
電磁波と光		波動現象の一般的性質を復習し、光波の特徴を学ぶ				2
干渉計		光の干渉効果と干渉計について学ぶ				2
光共振器		光の放出吸収により電子のエネルギー準位が変化する	ることを	学ぶ		2
原子とエネルギー	原子とエネルギー準位 原子に束縛されている電子の性質を理解する				2	
光の放出と吸収		自然放出と誘導放出の違いを学ぶ				2
		光と媒質中の電子との相互作用を学ぶ				2
レーザー原理	マーザー原理 3 準位のレーザー反転分布を理解する レート方程式を理解し、反転分布密度を計算できるようになる				2	
色々な種類のレー	ザー	気体レーザー、固体レーザー、パルスレーザーについ	ハて学る	D		2
		半導体レーザーの原理とレート方程式について学ぶ				2
レーザーの応用		レーザーによる光通信、センシング等を学ぶ				2
光の偏光		光の偏光とその表現方法について学ぶ				2
光ファイバ		光ファイバの原理について学ぶ				2
非線形光学		非線形現象とその応用を理解する				2
		光ファイバ中で発生する散乱光の性質を理解する				2
光検出装置		光を検出するフォトダイオードの原理を理解する				2
						計 30
		自学自習				
項目		目標				時間
原子分子の物理		前期量子力学を理解し、波動方程式を自らの力で解し	けるよう	i にする	0	20
レーザーの発振 レーザーの出力特性、レート方程式を計算できるようにする。			20			
レーザーの応用		社会の様々な場面で利用されているレーザーについて調べ、まとめる。				
		計 60				
総合学習時間 講義 + 自学自習 計 90					計 90	
学業成績の評価方 法	授業中の取り組	flみ (50 %)、課題の達成度 (50 %) を基に判断する。				
関連科目						
教科書・副読本	教科書: 「光エ		成の講	<u>美</u> ノー	<u></u>	
から 田川八千	SATTE: 702	・/ 1 //ハ」 HJ物(A - 4 圧), ての他, 鉄貝(・バヘマノ畔	コスノ	•	

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	波動現象の一般的性質と 光波の特徴を説明できる	マクスウェル方程式と電 磁波の関係を理解できる	光と電波、電磁波の関係を 理解している	電磁波と光について理解 が不足し説明ができない			
2	様々な物質中のレーザー 光の伝搬が説明できる	レーザー光の伝搬を説明 できる	電磁波とマックスウェル 方程式が説明できる	レーザー光とはどのよう な特性を持つか説明でき ない			
3	光共振器を用いたレー ザー発振が説明できる	反転分布と光の増幅が説 明できる	光の放出と吸収が説明で きる	原子、分子のエネルギー準 位が説明できない			

科目名		担当教員	学年	単位	開講時数	種別
電磁波工学特論 (Advanced Topic magnetic Wave E		北原直人 (非常勤/実務)	1 • 2	2	半期 2 時間	選択
授業の概要						
授業の形態	講義					
授業の進め方	を行い、高周波	Éめる。理解を深めるため、マイクロストリップライ Z線路の数値解析を経験する。 fい自学自習の習慣を身につける。	ンを中心	心に数値	[シミュレ	ーション
到達目標	1. 電磁界シミ:	ュレーション手法の理解と高周波回路設計の基礎知識	を習得で	できる。		
実務経験と授業内 容との関連	あり					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
1. 伝送線路の取扱	V	平行2線をはじめとした2導体タイプの伝送線路のIを理解する。	取扱いと	電磁界	の取扱い	8
2. 回路基板まわり	の電磁界	回路基板まわりの電磁界の様子を理解する。				2
3. Sパラメータ	ペラメータ マイクロ波回路で取扱うSパラメータの表示形式を理解する。					2
	4. 数値シミュレーション例 マイクロストリップラインを例として、電磁界シミュレーションを行い、実習を通して、直感的な把握と数値的な把握を結びつける。				8	
	5. 不要反射について 回路基板上の線路まわりの不要な反射点の見当の付け方を理解する。			0	2	
	6. EMCの基礎知識 漏れ電磁波に対する知識を習得する。				2	
7. アンテナの解析		平面アンテナの解析例を通して、アンテナのシミューする。				2
8. 電磁界解析ソフ	トの活用	種々の電磁界ソフトと解析手法の知識を学習し、自然 整理する。	分で応用	する際	の知識を	2
9. まとめ		まとめ				2
		() () () () ()				計 30
		自学自習			Т	
項目		目標				時間
予習、復習及び定算	期試験の準備	輪読内容の確認、解析手順や式展開の確認等の予 準備。	習復習、	及び定	期試験の	20
シミュレーション		ソフトウェアのインストール、動作確認。				5
数値シミュレーシ	ョン課題	授業で電磁界シミュレーションの手順を習得した後、 いて数値解析し、その成果をレポートのまとめる。	具体的	な回路	課題につ	35
					計 60	
総合学習時間		講義+自学自習			No. 1	計 90
学業成績の評価方 法 		気(60%)、数値シミュレーション実習レポート成果 追加課題)を実施することがある。	(40	%) から	決定する。	。状況に
関連科目						
教科書・副読本 教科書: 「[改訂] 電磁界シミュレータで学ぶ高周波の世界高速ディジタル時代に対応した回路設計 の基礎知識」小暮 裕明、小暮 芳江共著 (CQ 出版社), 副読本: 「電子情報通信レクチャーシリ・ ズ C-15 光・電磁波工学」鹿子嶋 憲一 (コロナ社)						
	,, 0 10 /6					

	評価 (ルーブリック)						
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)			
1	回路基板上の線路 まれ電磁上の線路 大原 大原 大原 大原 大原 大原 大原 大原 大原 大原	Sパラメータの表示形式 を理解する。 各種伝送線 路の形式を説明できる。 その上で、マイクロスト リップラインを例として、 電磁界シミュレーション	高周波回路で分布定数で 市で扱う理由が理解式電性 大型でといる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型できる。 大型でいる。 大型できる。 大型できる。 大型できる。 大型できる。 大型でいる。 大型できる。 大型でいる。 大型できる。 大型できる。 大型できる。 大型でいる。 大型でいる。 大型でいる。 大型できる。 大型でいる。 大型で、 大型で、 大型で、 大型で、 大型で、 大型で、 、	身近な電気に変している。高も損でないの扱いののでは、大射なののでは、大射ないがでは、大射ないがである。ののでは、大射ないがである。ののでは、大射ないがである。ののでは、大射ないがである。というでは、大力がでは、大力がでは、大力がでは、大力がでは、大力がでは、大力がでは、大力がでは、大力ができる。			

科目名	担当教員 学年 単位 開講時数					種別	
マイクロ波工学 (Microwave Engir	neering)	宮田尚起 (常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要	受業の概要 携帯電話や無線 LAN などの無線通信機器を構成する重要な回路部品の一つにマイクロ波帯で用いれる各種高周波回路がある。本講義では特に平面回路構造を有する高周波回路に着目し、各種高い回路の基礎理論と設計技術を学習する。						
授業の形態	講義						
授業の進め方		きめ、理解を深めるために適宜演習および課題を行う。 fい自学自習の習慣を身につける。)				
到達目標	2. 電信方程式	各と分布定数回路の違いを説明できる を解き、解の物理的な意味を説明できる D特性をSパラメータやスミスチャートを用いて評価 造を説明できる	iできる				
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				支術と基	
		講義の内容					
項目		目標				時間	
高周波回路の導入		高周波になると無視できない現象を理解し、高周波 習する。	回路の必	必要性に	ついて学	2	
高周波回路の基礎		分布定数線路の特性について、電信方程式より導かに ついて説明する。	れる重要	見なパラ	メータに	6	
右手/左手系複合伝	送線路	右手/左手系複合伝送線路について説明し、メタマテリアルが有する特異な 性質について説明する。					
回路構造		マイクロストリップ線路などの平面回路構造につい	て説明す	ける。		2	
解析方法		高周波回路で用いられる特性解析方法である S パラメータとスミスチャートについて学習する。					
整合回路		インピーダンス整合の重要性を説明し、スミスチャートを用いた整合回路の 設計方法の学習を行う。					
方向性結合器		結合線路の諸特性を説明し、結合線路を用いて構成 習する。				2	
結合線路を用いない	ハ結合器	ブランチラインカプラ、ラットレースカプラ、ウィルキンソンパワーデバイ ダについて説明する。					
スタブ		開放スタブおよび短絡スタブの入力アドミタンス特性を学習し、共振周波数と減衰極周波数を導出する。					
共振器		両端開放共振器、両端短絡共振器、一端短絡共振器 振周波数の導出を行う。	について	こ、それ	ぞれの共	2	
						計 30	
		自学自習			T		
項目		目標				時間	
予習、復習		諸式の導出過程の確認など予習および復習。授業 行う。	時に導	出過程	の確認を	30	
課題	課題 授業に関連した課題を課す。				30 計 60		
総合学習時間 講義 + 自学自習			計 90				
学業成績の評価方 法	課題・レポート	、により評価する。			L.		
関連科目	応用電磁気学・電磁波工学特論						
教科書・副読本	平田仁 (日本理	クロ波工学 基礎と原理」中島 将光 (森北出版), 工出版会),補助教材: 「マイクロ波回路とスミスチ その他: 補足資料を配布する					

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	同軸線路の特性インピー ダンスと位相定数を計算 できる	分布定数回路の回路図が 描ける	集中定数回路と分布定数 回路の違いを、波長や周波 数等の物理量を用いて定 量的に説明できる	集中定数回路と分布定数 回路の違いを、波長や周波 数等の物理量を用いて定 性的に説明できる				
2	電信方程式の解から、進行 波・後退波を説明できる	電信方程式を解ける	電信方程式を書ける	電信方程式を書けない				
3	スミスチャートを用いて 整合回路が設計できる	スミスチャートに反射係 数と規格化インピーダン スをプロットできる	スミスチャートの軸の物 理量を説明できる	スミスチャートの目盛が 読めない				
4	導波管の伝搬モードを説 明できる	ストリップ線路、マイクロ ストリップ線路、コプレー ナ導波路の伝搬モードを 説明できる。	同軸ケーブル、平行 2 線の 伝搬モードを説明できる。	伝送線路構造を説明でき ない。				

科目名	担当教員					
ディジタル信号処理 (Advanced Digita cessing)	里特論 d Signal Pro-	髙田拓 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要		を支えるディジタル信号処理の特長は,アナログ回 る.本講義においては,その基本的性質と代表的な処				
授業の形態	講義					
授業の進め方	を設定している	科書または配布資料を使って進め、適宜,課題演習 い自学自習の習慣を身につける。	やテス	トを行う	。また、	実習課題
到達目標	2. ディジタル	言号処理の概要を理解できる 言号処理の基礎(離散フーリエ,Z 変換)を理解でき 言号処理技術を様々な実習,研究に応用できる	る			
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 する知識をもち、工学的諸問題にそれらを応用する[技術と基
		講義の内容				
項目		目標				時間
1. ディジタル信号	処理の概要	ディジタル信号処理の概要について理解する				2
2. フーリエ変換と	ラプラス変換	フーリエ級数とフーリエ変換、ラプラス変換について理解する				
3. Ζ変換と離散フ	ーリエ変換	Z変換と離散フーリエ変換について理解する				
4. 離散時間システ	ム	離散時間システムについて理解する				
5. 高速フーリエ変	換	高速フーリエ変換について理解する				2
6. フィルタとディ タ	ィジタルフィル	フィルタについて理解する				6
7. 線形予測と適応	信号処理	相関関数と線形予測、適応信号処理について理解する	る			4
8. まとめ						2
						計 30
		自学自習				
項目		目標				時間
プログラムによる演習 離散波形処理,連続フーリエ・逆フーリエ変換,離散時間フーリエ変換,離 散フーリエ変換のプログラミング,畳みこみ演算の可視化,音声処理,画像 処理				60		
						計60
					計 90	
学業成績の評価方 法	成績はレポート	と課題の結果から総合的に判断する.				
関連科目						
教科書・副読本	教科書: 「ディ	ジタル信号処理 第2版・新装版」萩原将文 (森北出	3版)			

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	目的に応じた信号処理の フローを考えることがで きる。	各種信号処理の概要を理解し、その原理を説明で きる。	Octave、Matlab 等の数値 演算ソフトウェアを用い て目的とする処理を実現 するプログラムが書ける。	Octave、Matlab 等の数値 演算ソフトウェアを用い て目的とする処理を実現 するプログラムが書けな い。(課題が提出できな い。)				
2	ディジタル信号処理の基 礎を十分に理解し、所望の 特性のフィルタを効率を 考慮して実現することが できる。	所望の特性から、適切な処 理方法を選択し、フィルタ を設計することができる。	フィルタの種類等の指示 を受ければ所望の特性の フィルタを設計すること ができる。	所望の特性のフィルタを 実現できない。				
3	自ら設計したフィルタを 実習や研究に利用し、その 効果について評価・検討を 行うことができる。	自ら設計したフィルタを 実験や研究に利用できる。	教員の指示を受ければフィルタを設計して実験や 研究に利用できる。	実験や研究に利用できる フィルタを実現できない。				

科目名		担当教員					
通信システム (Telecommunicati	on System)	若林良二 (常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要	無線通信におけ ロ波用送・受信 として活躍する	ける増幅・発振、変・復調、一般用送・受信システム、 ミシステム、衛星通信用送・受信システム、電波航法 らめに必要な知識と技術について学習する。	放送用、無線液	送・受信制定につ	言システム、 いて、無約	マイク 泉従事者	
授業の形態	講義	夏					
授業の進め方	電波法規など <i>の</i> める。	通信工学に関する基礎事項を説明し無線通信システム)事項も適宜補足する。後半は実際の国家試験問題を 行い自学自習の習慣を身につける。					
到達目標	1. 各種無線通位 2. 基礎的な送	言システムの構成を理解できる。 受信機特性の計測方法を理解できる。					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[支術と基	
		講義の内容					
項目		目標				時間	
ガイダンス		授業のガイダンスと無線従事者国家資格について。				2	
増幅・発振器		通信機器に使用される増幅器、発信器の基本動作を	学習する	5 。		2	
変・復調器		AM,FM,PSK,PCM などの変・復調方式の基礎おる らびに変調指数、占有周波数帯域幅などの各種定数				4	
一般用送信システ、	Д	AM,FM,PSK,PCM の各種方式を用いた送信機の内部構成と動作・特徴を 学習する。					
一般用受信システム AM,FM,PSK,PCM の各種方式を用いた受信機の内部構成と動作・特徴を 学習する。				・特徴を	4		
放送用送・受信シス	ステム	テレビジョン放送の変調方式や送受信機の映像・音声に関する諸特性を学習 する。					
マイクロ波用送・	受信システム	マイクロ波多重通信の中継装置の内部構成と中継回	線特徴を	と学習す	·る。	2	
衛星通信用送・受付	信システム	衛星通信の伝送方式、回線設計や FDMA,TDMA st て学習する。	等の多元	注接続方	式につい	2	
電波航法		航空機用の各種レーダーの等動作原理およびその特性を学習する。					
無線測定		実際の無線通信システムを運用・保守する上で必要な無線通信システムの各 種測定法を理解する。					
						計 30	
		自学自習					
項目		目標				時間	
予習		教科書を下読みして不明点(専門用語、数式の変形 時に質問する。	 等)を	≦げてお	き、講義	20	
復習		講義時間内に扱わなかった問題を自分で解き、翌週 問する。	に確認し	.、不明	な点は質	30	
電波法規		関連する電波法規の学習。				10 計 60	
総合学習時間		 講義 + 自学自習				計 90	
学業成績の評価方 法		D取り組み度および内容の理解度ならびに定期試験の 食と課題の評価比率は8:2とする。	結果に	よって	総合的に判		
関連科目	ディジタル電子	子回路特論					
教科書・副読本		i技 国家試験問題解答集 第一級陸上無線技術士 参考書: 「一陸技 無線工学A 【無線機器】完全マ					

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	各種無線通信システムの 内部構成と動作・特徴を把 握しており、用途に応じて 適切な通信システムを選 択できる。(第二級陸上無 線技術士の無線工学 A の 満点レベル)	各種無線通信システムの 内部構成と動作・特徴を説 明することができる。(第 二級陸上無線技術士の無 線工学 A の合格基準レベ ル)	各種無線通信システムの ブロックダイアグラムが 与えられれば、その動作原 理を説明できる。	各種無線通信システムの 内部構成と動作・特徴が理 解できていない。
2	要求された送受信機諸特 性の計測に対して適切に 計測器を選択し、実際に計 測することができる。	種々の送受信機諸特性の 計測方法を把握しており、 計測器が与えられれば概 ねの測定方法が分かる。	基礎的な送受信機特性の 計測方法を説明できる。	基礎的な送受信機特性の 計測方法が理解できてい ない。

科目名		担当教員	学年	単位	開講時数	種別
通信システム (Telecommunicat	ion System)	稲毛契 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	口波用送・受信	ける増幅・発振、変・復調、一般用送・受信システム、 ミシステム、衛星通信用送・受信システム、電波航法 らめに必要な知識と技術について学習する。	放送用法	送・受信制定につ	ーーーー 言システム、 いいて、無約	、マイク 線従事者
授業の形態	講義					
授業の進め方	高周波計測工学	とに関する基礎事項を説明し無線通信システムの理解とを中心に展開し、電波法規などの事項も適宜補足す 近い自学自習の習慣を身につける。		電波伝	搬、アンテ	・ナ工学、
到達目標	2. 基礎的な送	言システムの構成を理解できる。 受信機特性の計測方法を理解できる。 - の動作を理解できる。				
実務経験と授業内容との関連			· HH 1 2	2 /\ WZ a	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する				文術と基
		講義の内容				
項目		目標				時間
ガイダンス		授業のガイダンスと無線従事者国家資格について。				2
増幅・発振器		通信機器に使用される増幅器、発信器の基本動作を	学習する	5 。		2
変・復調器		AM,FM,PSK,PCM などの変・復調方式の基礎およびそれらの基本回路ならびに変調指数、占有周波数帯域幅などの各種定数について学習する。				4
一般用送信システ		AM,FM,PSK,PCM の各種方式を用いた送信機の 学習する。				4
一般用受信システ		AM,FM,PSK,PCM の各種方式を用いた受信機の内部構成と動作・特徴を 学習する。				4
放送用送・受信シ		テレビジョン放送の変調方式や送受信機の映像・音する。				2
マイクロ波用送・		マイクロ波多重通信の中継装置の内部構成と中継回線特徴を学習する。				
衛星通信用送・受	信システム	衛星通信の伝送方式、回線設計や FDMA,TDMA で学習する。			式につい	2
電波航法		航空機用の各種レーダーの等動作原理およびその特				2
無線測定		実際の無線通信システムを運用・保守する上で必要 種測定法を理解する。 	な無線通	10倍シス	テムの各	4. 20
		 				計 30
						 時間
予習		教科書を下読みして不明点(専門用語、数式の変形時に質問する。	等)を挙	 挙げてお	き、講義	20
復習		講義時間内に扱わなかった問題を自分で解き、翌週 問する。	に確認し	.、不明	な点は質	30
電波法規 関連する電波法規の学習。			10			
						計 60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	演習および課題	夏を課し、提出された演習および課題をもとに総合的	に評価す	する。		
関連科目	アナログ電子回 統計 I	国路 I・アナログ電子回路 II・アナログ電子回路 III	通信工	学 II・	通信工学 I	II・確率
教科書・副読本	教科書: 「一陸	技 無線工学A 【無線機器】完全マスター 第 5 k	版」一之	瀬優	(情報通信	振興会)

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	無線通信システムにおける基本的な構成要素を相互関係を含めて説明でき、アナログ方式とデジタル方式の違いについても説明できる。	アナログ方式あるいはデジタル方式無線通信システムのどちらか一方における基本的な構成要素を相互関係を含めて説明できる。	無線通信システムにおける基本的な構成要素を説明することができる。	無線通信システムにおける基本的な構成要素を一部説明することができない。						
2	送信機、受信機の特性計測 方法について、3つ以上の 計測すべき特性およびそ の計測方法を説明するこ とができる。	送信機、受信機の特性計測 方法について、2つずつ計 測すべき特性およびその 計測方法を説明すること ができる。	送信機、受信機の特性計測 方法について、1 つずつ計 測すべき特性およびその 計測方法を説明すること ができる。	送信機、受信機の特性計測 方法について、片方のみの 計測すべき特性およびそ の計測方法を説明するこ とができる。						
3	パルスレーダ、CW レーダ に加え、パルス圧縮レーダ の 3 つについて動作原理 を説明することができる。	パルスレーダ、CW レー ダ、パルス圧縮レーダのう ち 2 つについて動作原理 を説明することができる。	パルスレーダ、CW レーダ、パルス圧縮レーダのうち1つについて動作原理を説明することができる。	パルスレーダ、CW レーダ、パルス圧縮レーダのうち 1 つも動作原理を説明することができない。						

科目名	担当教員					
音響工学特論 (Advanced Acousing)	stic Engineer-	原佳史 (非常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	する物理学をは	こよるコミュニケーションにかかわる科学 (コミュニケーション音響学) の基礎理論を学ぶ。 る物理学をはじめ、心理・空間的側面、音声に関する学習を通して、現代の音コミュニケー ついて議論する。				
授業の形態	講義					
授業の進め方		♪に進める。必要に応じて課題を出す。予習,復習を行い自学自習の習慣を身につける。	すい自学	自習の	習慣を身に	着ける。
到達目標	2. 音の心理・3	の基礎理論について説明できる. 空間性について説明できる. 過程について説明できる.				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	\ /	合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				支術と基
		講義の内容				
項目		目標				時間
ガイダンス		情報化社会の発展に伴う音響工学の歴史とその役割について理解する。				
音の物理学 (1)		振動と共鳴現象に関する基礎知識を理解する。				
音の物理学 (2)		球面波の伝搬に関する基礎知識を理解する。	球面波の伝搬に関する基礎知識を理解する。			
音の物理学 (3)		室内音場の特徴と、音場評価方法を理解する。				4
音と心理		聴覚の仕組みと音の高さ・大きさ・音色を知覚する。 を理解する。	寺徴と物	物理量の	対応関係	4
音の空間性		両耳聴の特徴、拡がり感の知覚とその指標について	理解する	3 。		4
音声		音声の生成過程を理解する。				4
社会における音ニョン	1ミュニケーシ	環境における音、テクノロジー、音楽等を通して、 ケーションについて理解する。	人の音	による	コミュニ	4
まとめ		これまでの授業のまとめを行う。				2
						計 30
		自学自習				
項目		目標				時間
予習		授業の予習として、各自で文献調査を行う。				15
復習		各自で授業内容を振り返り、課題に取り組む準備を [、]	する。			15
課題		授業中に出された課題に取り組む。				30
						計 60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法		がにプログラミングを含むレポートを80%文献調査表) 20%の割合で実施する。	課題に	関するフ	プレゼンテ	ーション
関連科目						
教科書・副読本	副読本: 「音の (丸善出版株式))物理 (音響入門シリーズ)」東山三樹夫 (コロナ社)・	「信号的	解析と音	「響学」東	山三樹夫

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	語が説明できる。室内音 場を表すパラメータを計	音響工学に関する専門用 語が説明できる。室内音 場を表すパラメータを計 算できる。	音響工学に関する専門用 語が説明できる。	音響工学に関する専門用語が説明できない。成績が60未満である。						
2	でき、音の特徴を表す評価	聴覚のメカニズムを説明できる。音の特徴を表す評価指標を計算できる。	聴覚のメカニズムを説明 できる。	聴覚のメカニズムを説明 できない。成績が 60 未満 である。						
3	音声に関する専門用語が 説明できる。Matlab 等に より簡単な音声合成・分析 が出来る。	音声に関する専門用語が 説明できる。Matlab 等に より簡単な音声分析が出 来る。	音声に関する専門用語が 説明できる。	音声に関する専門用語が 説明できない。成績が 60 未満である						

科目名		担当教員	学年	単位	開講時数	種別	
データ構造 (Data Structures)		大西建輔 (非常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要		コでも基本的かつ重要なデータ構造について学習し、 ズムを利用・設計するための基本的知識を習得する。		問題に対	して適切	なデータ	
授業の形態	講義						
授業の進め方		に講義形式で進める。必要に応じてプログラミング演習を実施する。 習,復習を行い自学自習の習慣を身につける。					
到達目標	 パトリシア サフィック グラフ表現 与えられた 	1. トライが構築できる 2. パトリシアが構築できる 3. サフィックス木が構築できる 4. グラフ表現ができる 5. 与えられたグラフの探索ができる 6. 赤黒木が構築できる					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基	
		講義の内容					
項目		目標				時間	
1. ガイダンスおよ	び背景と歴史	講義の進め方,成績評価について説明を行う,また背景と歴史について学習を行う. シラバス説明・シラバス説明実施調査を行う.				2	
 2.平衡 2 分探索木	; (1)	赤黒木、スプレー木について学習する				2	
3. グラフの表現と		グラフの表現法について学習する.				2	
4. グラフの表現と		深さ優先について学習する.				2	
5. グラフの表現と		横優先探索について学習する.				2	
6. 最小木		最小木について学習する.				2	
7. 最短路		最短路経路問題について学習する.				2	
8. 最大フローと最	小カット	最大フローと最小カットについて学習する.				2	
9. 離散探索 (1)		トライについて学習する.				4	
10. 離散探索 (2)		 サフィックス木について学習する.				4	
11. 二分探索木の	幾何的応用	 二分探索木の幾何的応用について学習する.				4	
12. 部分文字列検索		 部分文字列の検索について学習する.				2	
						計 30	
		自学自習					
		目標				時間	
事前学習		英語資料を予習する.				45	
課題		レポートをまとめる.				15	
						計 60	
総合学習時間						計 90	
学業成績の評価方 法	期末テスト 50 み成績を評価で		レポー	トをす^	に提出し		
関連科目	データベース						
教科書・副読本		ウィック: アルゴリズム C 第 5 部 グラフアルゴリ 場代・高澤兼二郎 (翻訳) (近代科学社), その他: 特に		バート	セジウィッ	ク (著)、	

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1		トライにデータを挿入で きる	トライを説明できる	トライを説明できない					
2		パトリシアにデータを挿 入できる	パトリシアを説明できる	パトリシアを説明できな い					
3		サフィックス木にデータ を挿入できる	サフィック木を説明でき る	サフィックス木を説明で きない					
4			与えられたグラフを隣接 行列表現、隣接リスト表現 できる						
5			与えられたグラフの幅優 先探索、深さ優先探索がで きる	与えられたグラフの幅優 先探索、深さ優先探索がで きない					
6		赤黒木にデータを挿入で きる	赤黒木を説明できる	赤黒木を説明できない					

科目名						種別
言語処理とオートで	マトン	田中覚 (常勤)	1 • 2	2	半期	選択
(Language Theor and Automaton)		ы 1 26 (111 <i>291)</i>			2 時間	٧١/١
授業の概要		段科学一般において最も中心的な概念であり、現在の さるオートマトンと、言語理論を中心に学習する。	計算機の	の原理を	:論理的に3	理解する
授業の形態	講義					
授業の進め方	業の進め方 基礎となる理論の講義を習得しつつ、実際の例題を解きながら理解を深める。また、理解度に ために単元ごとにレポート課題を設定する。 予習、復習を行い自学自習の習慣を身につける。				を深める	
到達目標	 プッシュダワ チューリンク 	マトンの内容と動作を説明できる ウンオートマトンの内容と動作を説明できる グ機械の内容と動作を説明できる ンと形式文法との関係を説明できる				
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する				技術と基
		講義の内容				
項目		目標				時間
ガイダンス		講義の内容、進め方、評価方法について説明する				2
集合、写像、順序標	幾械	集合、集合演算、写像、順序機械について学習する				2
有限オートマトン		言語の識別機械としての有限オートマトンについて 性有限オートマトンの動作を学習する	学習し、	決定性	、非決定	2
有限オートマトンの	の書き換え	有限オートマトンの書き換えアルゴリズムについて学習する				
最簡形、等価性		有限オートマトンの最簡形の導出アルゴリズムと、等価性の確認方法につい て学習する				
有限オートマトンの	のまとめ	有限オートマトンのまとめを行う				
プッシュダウンオー	ートマトン	決定性プッシュダウンオートマトンについて学習する				
非決定性プッシュ? トン	ダウンオートマ	非決定性プッシュダウンオートマトンについて学習	する			2
チューリング機械		計算機構のモデルとなるチューリング機械について	学習する	3		2
非決定性チューリン	ング機械	非決定性チューリング機械と線形拘束オートマトンについて学習する				
計算機械としての 機械	チューリング	簡単な計算を行うチューリング機械を学習する				2
形式文法と形式言語		形式文法・形式言語の概要を学習する				2
形式文法と形式言語	語のクラス	形式文法・形式言語の 4 つの型について学習する				2
オートマトンと形式	式文法の関係 1	正規文法と有限オートマトンの関係について学習す	る			2
オートマトンと形式	式文法の関係 2	文脈自由文法とプッシュダウンオートマトンの関係	について	で学習す	`る	2
		스 202 수 113				計 30
		自学自習			Т	
項目		目標				時間
予習、復習		書籍やWeb等を利用して、種々のオートマトンに習する	ついてそ	一の動作	を予習復	30
レポート課題		修学状況は、講義時に各自のノートを確認する レポート課題に取り組む				30
レか・口味度						計 60
総合学習時間						計 90
※ロチョ 時間 学業成績の評価方法 法		両我 〒 日子日日 2 5 回とし、各レポートの評価割合は 20 %として計 昼が未提出の場合は不合格判定とする。	100 %	で成績を	を評価する	
_ <u></u>	O V A LINE	2~ ハルビロ *ン/参口 tの 口 1日 11月 11月 C 9 '00'0				
教科書・副読本		-トマトン・形式言語理論」広瀬 貞樹 (コロナ社),	その他:	授業中	に適宜資	 料を配付
	する。					

	評価 (ルーブリック)									
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	有限オートマトンを計算 機のモデルと関連付けて 説明できる。	有限オートマトンの内容 と動作を例題を用いて説 明できる。	有限オートマトンの内容 と動作の概要を説明でき る。	有限オートマトンの内容 と動作を説明できない。						
2	プッシュダウンオートマ トンを計算機のモデルと 関連付けて説明できる。	プッシュダウンオートマ トンの内容と動作を例題 を用いて説明できる。	プッシュダウンオートマ トンの内容と動作の概要 を説明できる。	プッシュダウンオートマ トンの内容と動作を説明 できない。						
3	チューリング機械を計算 機のモデルと関連付けて 説明できる。	チューリング機械の内容 と動作を例題を用いて説 明できる。	チューリング機械の内容と動作の概要を説明できる。	チューリング機械の内容 と動作を説明できない。						
4	形式文法の 4 つのクラス に対応するオートマトン を説明できる。	形式文法の 4 つのクラス を説明できる。	オートマトンと形式文法 の違いを言語の受理・生成 という観点で説明できる。	オートマトンと形式文法 との関係を説明できない。						

科目名		担当教員		学年	単位	開講時数	種別		
情報理論 (Information T	, , , , , , , , , , , , , , , , , , ,	岩本貢 (非常勤)		1 • 2		半期 2 時間	選択		
授業の概要 本講義では、情報理論の概念と情報を記録・保存するための情報源符号化理論(データ圧縮) て学ぶ。)につい		
授業の形態	講義	講義							
授業の進め方	復習を行い自学	で授業を進めていく。ただし 自習の習慣を身につける。 い自学自習の習慣を身につける		明して	もらうこ	ことがある	。予習、		
到達目標	2. 情報源符号(3. データ圧縮)	- 、情報量、相互情報量などの 比定理の意味を説明できる アルゴリズムを説明できる 安全性について説明できる	基本概念を説明できる						
実務経験と授業で容との関連	りなし								
学校教育目標との 関係		合的実践的技術者として、数学 する知識をもち、工学的諸問題					技術と基		
		講義の内容	ş						
項目		目標					時間		
ガイダンス		講義の内容と進め方、成績評価シラバス説明・シラバス説明・					2		
確率論		確率論の復習、情報源のモデル	レについて学ぶ				4		
情報量		各種のエントロピーについて	え く				6		
情報源符号化(注	データ圧縮)	情報源符号化アルゴリズム、情報源符号化定理について学ぶ					10		
通信路符号化(記	呉り訂正符号)	通信路符号化定理、誤り訂正符	路符号化定理、誤り訂正符号について学ぶ				2		
情報理論的暗号		情報理論的安全性について学。	\$``				6		
							計 30		
		自学自習							
項目		目標					時間		
予習		配布資料を読み、事前学習を行う					40		
課題		課せられた課題に取り組む					20		
							計 60		
総合学習時間		講義 + 自学自習					計 90		
学業成績の評価法 法	ち レポート 100%	6で評価する。ただし、すべて	のレポートを提出した。	学生の	みを評価	iする。			
関連科目	確率統計 I·確	率統計 II							
教科書・副読本		理論 -基礎と広がり-」Thomas 本 貢訳 (共立出版)	M.Cover • Joy A.Th	omas	著・山本	博資・古	賀 弘樹・		
		評価 (ルーブリ	ック)						
到達目標 理想的	かな到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	! (可)	未到達	レベルの目安	(不可)		
1		エントロピー、情報量、相 互情報量を数式を用いて 説明できる	エントロピー、情報量 互情報量などの基本 を説明できる		互情報	コピー、情 量などの基 ごきない			
2 情報》	原符号化の証明を る	説 情報源符号化定理の意味 を数式を用いて説明でき る	情報源符号化定理の を説明できる	概要	情報源符号化定理の概要 を説明できない				
	マ圧縮アルゴリズ もして実際の問題 きる		データ圧縮アルゴリ を説明できる	ズム	ム データ圧縮アルゴリズム を説明できない				
			使い捨て暗号 (One- pad) を説明できる			て暗号(C :説明でき			

11 ロカ		10 V/ HL D	学年	י / אבע		1= n.1
科目名		担当教員		単位	開講時数	種別
グラフ理論 (graph theory)		中山健 (非常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	本講義では情報	社工学を学ぶ上で重要なグラフ理論に焦点をあてて学	習する。			
授業の形態	講義					
授業の進め方	授業の進め方 講義は独自のテキストを使って進める。各単元ごとに PC を用いて演習を行い講義内容の理させる。講義の半ばで中間試験を実施する場合がある。 予習,復習を行い自学自習の習慣を身につける。				長内容の理解	解を深め
到達目標	2. 有向グラフロ	こ関わる様々なグラフの性質や定理及び適用例につい こ特有なグラフの性質や定理及び適用例について理解 D応用例について理解できる.				
実務経験と授業内 容との関連	なし	L				
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基
		講義の内容				
項目		目標				時間
ガイダンス		授業で学ぶ内容について理解する. シラバス説明・シラバス説明実施調査を行う.				2
無向グラフの基礎		グラフの定義,様々なグラフの特性,最短険路問題,	隣接行	列につい	いて学ぶ.	4
グラフの距離		グラフに関わる様々な距離について学ぶ.				
有向グラフと隣接行	行列	有向グラフと隣接行列との関係性について学ぶ.				2
隣接行列と固有値		隣接行列の性質と固有値の関係性について学ぶ.				2
隣接行列と応用例		隣接行列を用いた応用例(ページランク)について学ぶ.				
マルコフチェーン		マルコフチェーンについて学ぶ.				
有向グラフとマル	コフチェーン	有向グラフとマルコフチェーンの関係性について学	ぶ.			2
マルコフチェーン	の応用例	マルコフチェーンの応用例について学ぶ.				
マッチング		マッチングに関わる諸性質・諸定理について輪講形式で各学生が発表し、単元を学ぶ.				4
ネットワークフロ・	_	ネットワークフローに関わる諸性質・諸定理につい 表し、単元を学ぶ.	て輪講用	/式で各	学生が発	4
						計 30
		自学自習				
項目		目標				時間
復習		毎回の講義で配布するプリントの復習				25
予習		講義での理論に関わる数理関係項目の事前調査及び	理解			15
課題		課題の学習				10
定期試験の準備		定期試験のための学習時間				10
						計 60
総合学習時間 講義 + 自学自習			計 90			
学業成績の評価方 法	レポートの課題 する。	夏 2 テーマ 60 点分 (30 点× 2) と、担当するテーマ	発表の	内容 40	点分を併	せて評価
関連科目	データ構造					
教科書・副読本		ウィック: アルゴリズム C 第 5 部 グラフアルゴリ 場代・高澤兼二郎 (翻訳) (近代科学社), その他: 独自			セジウィッ	ク (著)、
ı		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1997	, • 1		

評価 (ルーブリック)				
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	無向グラフに関わる様々なグラフの性質や定理及び適用例について理解できる.	無向グラフに関わる様々なグラフの性質及び適用 例について理解できる.	無向グラフの代表的なグラフ性質や一部のグラフに対する適用例を理解できる.	無向グラフの基本的なグラフ性質や適量例を理解できない.
2	有向グラフに特有なグラフの性質や定理及び適用例について理解できる.	有向グラフの基本的なグラフの性質や定理及び適用例について理解できる.	有向グラフの基本的なグラフの性質及び適量例について理解できる.	有向グラフの基本的なグラフ野性質や適用例を理解できない.
3	有向グラフの応用例に関 わる法則, 定理及び適用法 について理解できる.	有向グラフの応用例に関わる基本的な法則や定理, 及び適用法について理解できる.	有向グラフの基本的な応用例についての意味を理解し、適用させることができる.	有向グラフの基本的応用 例を理解することができ ない.

科目名		ヤ州 O 平度 等攻将 クラハス 担当教員	学年	単位	日日≡誰n± ¥Ы	 種別	
	≎Д т				開講時数		
プログラミング特記 (Programming I)	編 I	渋木英潔 (非常勤)	1 • 2	2	半期 2 時間	選択	
授業の概要	JAVA 言語によるプログラミングを通じてオブジェクト指向プログラミングについて学習する。						
授業の形態	講義	講義					
授業の進め方	主に講義形式で 予習,復習を行	『進める.必要に応じて,プログラミング演習を実施』 『い自学自習の習慣を身につける.	する.				
到達目標	 2. 継承につい 3. ポリモーフ 	化について理解できる。 いて理解できる。 フィズムについて理解できる。 プリケーションを実装できる。					
実務経験と授業内 容との関連	なし						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス		授業の内容と進め方,成績評価について説明をする. 定を行う.	その後	6,開発	環境の設	2	
クラス		クラスについて学習する.				4	
継承	継承について学ぶ.					4	
ポリモーフィズム		ポリモーフィズムについて学ぶ.				4	
抽象クタズとイン	ターフェイス	抽象クラスとインターフェイスについて学ぶ.				4	
ソケットの基礎		TCP ソケット,UDP ソケットの基礎について学ぶ	•			2	
UDP サーバ・クラ	ライアント	UDP サーバ,UDP クライアントについて学ぶ				2	
メッセージ		入出力ストリーム,フレーム解析について学ぶ				2	
マルチタスク		JAVA スレッドについて学ぶ.				2	
課題発表		課題に対してプレゼンテーションを行う.				2	
ナルル		講義のまとめを行う				2	
まとめ						計 30	
		 自学自習				н 30	
 項目		目標				時間	
プログラミング		課題のプログラミングを実装する.				30	
レポート作成		課題に対するレポート作成を行う.				15	
プレゼンテーショ	ンの準備	プレゼンテーション資料の作成、レジュメの作成、	東習を行	ŕð		15	
	/ 	ファーロック マコマ 東州・フェバの FP IX 、 I	∾□С	, , ·		計 60	
総合学習時間		 講義 + 自学自習				計 90	
学業成績の評価方 法	レポートを課し み成績評価を行		べての1	ノポート	・を提出し		
関連科目	プログラミング	ブ特論 II					
教科書・副読本		こめて学ぶプログラム設計」林 雄二 (森北出版)・「ゴ 、キュメント」梅田弘之 (インプレス),その他: 適宜,				きたい シ	
	. · / = · IXH1 C 1		95/11 C		<u> </u>		

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1			オブジェクト指向におけ るカプセル化を説明でき る。	オブジェクト指向におけ るカプセル化を説明でき ない。				
2			オブジェクト指向における継承の概念を説明できる。	オブジェクト指向における継承の概念を説明できない。				
3			オブジェクト指向におけ るポリモーフィズムにつ いて説明できる。	オブジェクト指向におけ るポリモーフィズムにつ いて説明できない。				
4	設計に基づいてアプリケーションをオブジェク ト指向で作成できる。	設計に基づいてアプリケーションの部品をオブ ジェクト指向で作成でき る。	オブジェクト指向に基づ いたアプリケーションの 設計ができる。	オブジェクト指向に基づ いたアプリケーションの 設計ができない。				

科目名		担当教員	学年	単位	開講時数	種別	
プログラミング特詞 (Programming II)		岩田満 (常勤/実務)・飛松弦 (非常勤) 1・2 2 半期 2 時間					
授業の概要	を担保しようと	ールは、ソフトウェアの設計バグ・実装バグからな するならば、セキュアプログラミングが必須となる。 得することを目的とする。					
授業の形態	講義						
授業の進め方	講義と演習によ 予習,復習を行	、り実施する。 行い自学自習の習慣を身につける。					
到達目標	2. 【セキュア: スを習得する。 3. 【セキュア: 因を特定・理解	識別・分類】攻撃技術を文書にもとづいて識別分類でコーディング I コーディング標準】特に多い脆弱性のコーディング II 構造設計】構造設計の不良による脆深する。 こおけるセキュリティ】設計工程のセキュリティ対策の	攻撃を(弱性の(多正文書	言を読み脆!	弱性の原	
実務経験と授業内容との関連	あり						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス・【脆弱類】 攻撃技術	陽性の識別・分	シラバス説明・シラバス説明実施調査を行う 攻撃技術の歴史を知る				2	
	【脆弱性の識別・分類】 セキュア セキュアプログラミングの概要を知る プログラミングガイド					2	
【I コーディング模	票準】 CSRF	CSRF 問題を行う				2	
【I コーディング 計】 模擬プロジェ		FuelPHP でアプリケーションを作成する				4	
【I コーディング橋 デーション	票準】 入力バリ	模擬プロジュエクトで構築したシステムに対してプ い、バグ修正案を議論する	(力バリ	デーシ	ョンを行	4	
【I コーディング模	票準】 認証機能					4	
【I コーディング 計】 パスワード・・		認証機能の問題点を議論し、改修案を作成する				4	
【脆弱性の識別・分 コーディング実践・		セキュアコーディング実践チェックリストを理解す	る			2	
【設計工程における セキュリティポリ:		セキュリティポリシーの作成、作成したセキュリテ を行う	ィポリシ	ノーに沿	った設計	4	
【設計工程における 脅威モデリング	。セキュリティ 】	演習を通じ脅威モデリングについて理解する				2	
						計 30	
		自学自習			-		
項目		目標				時間	
セキュアコーディ		認証機能、パスワード管理、セッション管理の実装				40	
セキュリティポリン	シー	セキュリティポリシの作成および設計 				20 計 60	
総合学習時間		講義 + 自学自習				計 90	
学業成績の評価方 法	課題 100 %で記	平価する。					
関連科目	プログラミング	が特論 I					
教科書・副読本	その他: 特にな	· L				1	

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	攻撃技術の識別分類に必要な文書を知っている。 また適切に活用すること で網羅性をもった判断が できる。	攻撃技術を文書にもとづ いて識別分類できる。	攻撃技術を分類する文書を確認することができる。	攻撃技術を分類する文書 を知らない。
2	特に多い脆弱性の攻撃を体験し、修正のモデルケースについて何が優れているのかを理解し適宜使える。	特に多い脆弱性の攻撃を 体験し、修正のモデルケー スを習得できる。	特に多い脆弱性の攻撃を 体験し、場当たり的ではあ るが修正できる。	特に多い脆弱性の攻撃を 体験・修正できない。
3		文書化された脆弱性の修 正を読み脆弱性の原因を 特定・理解できる。	文書化された脆弱性の修正を読んだことがある。	文書化された脆弱性の修 正を読んだことがない。
4	設計工程のセキュリティ 対策のモデルケースを トレースできる。かつフ レームワークを自ら考え て使用できる。	設計工程のセキュリティ 対策のモデルケースを経 験・理解できる。	設計工程のセキュリティ 対策のモデルケースを経 験し理解しようと努める。	設計工程のセキュリティ 対策のモデルケースを知 らない。

科目名		担当教員		 学年	単位	開講時数	種別
オペレーティン (Operating Sy	グシステム stems)	佐藤喬 (常勤)		1 • 2	2	半期 2 時間	選択
授業の概要		ングシステムは、コンピュータ <i>/</i> 共する。本授業では、このオペレ				アにとっ、	て使いや
授業の形態	講義						
授業の進め方	習する。	ングシステムについて、実際に動 うい自学自習の習慣を身につける		ことで	で、その	役割と仕	組みを学
到達目標	2. メモリ管理	理を説明できる。 を説明できる。 ステムを説明できる。					
実務経験と授業 容との関連	内 なし						
学校教育目標と 関係		合的実践的技術者として、数学 関する知識をもち、工学的諸問題					技術と基
		講義の内容	}				
項目		目標					時間
ガイダンス		シラバス説明・シラバス説明気	実施調査を行う。				2
プロセス		処理の実体であるプロセスにつ	ついて学ぶ。				4
スケジューリン	グ	スケジューリングについて学び	び、複数のプロセスの動	作を制	削御する	0	6
プログラムファ	イル	ファイルに格納されたコードを	と実行する。				6
仮想メモリ		仮想メモリの意義とその仕組み	みを学ぶ。				6
ファイルシステム ファイルシステムがどのように構築されているかを学ぶ。							6
							計 30
		自学自習					
項目		目標					時間
環境構築		演習環境の構築をする。					10
プロセス		プロセスの状態遷移を確認する	5 °				10
スケジューリン	グ	優先度順スケジューリングの重					10
メモリ管理		キャッシュメモリと仮想メモリ					20
ファイルシステ	- A	ファイルシステムの動作を確認	忍する。				10
							計 60
総合学習時間		講義 + 自学自習					計 90
学業成績の評価 法	5方 小テスト・課題 	題の成績で評価とする。課題の抗	是出は必須とする。				
関連科目							
教科書・副読本		学基礎シリーズ オペレーティン 治、吉田 久 (オーム社),副読 ^え					
		評価 (ルーブリ	ック)				
到達目標理想	関的な到達レベルの目安 (個	優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 ((可)	未到達	レベルの目安	(不可)
ング		- リ プロセスの状態とコンテ F法 クスト切替を説明できる。	プロセスの役割を説明さる。		プロセ きない。	スの役割を	を説明で
えに	記憶のページ置き ついて、複数の手泡 できる。	を換 仮想記憶を説明できる。 法が	メモリ管理の必要性を明できる。		メモリ ^々 明できた	管理の必要ない。	要性を説
		新速 ファイルシステムにおけ ごき るファイル構造を説明で きる。				ルに対する 月できない	

科目名			担当教員	:	学年	単位	開講時数	種別
ネットワ (Network	ーク工学特 k Enginee	寺論 I ring I)	知念賢一 (常勤) 1 · 2 2 半期 2 時間					
授業の概	要	ネットワーク関	連の性能の概念やその指標、そ	して負荷などを学ぶ。				
授業の形態	態	講義						
授業の進	め方	資料を中心に講 予習,復習を行	義を行う。小テストや受講者間 い自学自習の習慣を身につける	引での議論を実施する。 。				
到達目標		 性能を理解する 性能の指標を 負荷を理解する 	と理解する					
実務経験 容との関		なし						
学校教育 関係	目標との		合的実践的技術者として、数学 する知識をもち、工学的諸問題					技術と基
			講義の内容	3				
項目			目標					時間
ガイダン	ス		シラバス説明・シラバス説明ま 科目内容を説明する。	実施調査を行う。				2
性能の基	礎		身の回りの性能を紹介する					4
性能指標			性能の議論に不可欠な性能指標	票を紹介する				4
性能体験			性能を計算する					4
性能考察			各種の性能の例を踏まえて、性	性能を考察する				4
負荷			負荷を紹介する					4
負荷分散 負荷分散、そしてその種類を紹介する						4		
分散アル	ゴリズム		RoundRobin、応答時間やコネ介する	ネクション、そして重み	などの約	組み合	わせを紹	4
								計 30
			自学自習					
項目			目標					時間
性能の基	礎調査		性能の基礎知識について文献調	間査する				8
社会にお	ける性能の	D調査	各種サービスや製品における性	性能やその指標を調査する	る			16
性能計測	の調査		性能を計測する手法や装置、サ	ナービスなどを調査する				16
A 44 1 14	の調査		各種負荷分散サービスや装置を	× ⇒ □ -)				16
負荷分散			それらに搭載された負荷分散製		で評価	する		10
負荷分散・レポート	作成			支置をシミュレーション	で評価、	する		4
	作成		それらに搭載された負荷分散装	支置をシミュレーション	で評価	する		
			それらに搭載された負荷分散装	支置をシミュレーション	で評価、	する		4
レポート	時間	レポートを中心	それらに搭載された負荷分散を 調査内容をレポートにまとめる 講義 + 自学自習	支置をシミュレーション	で評価	する		4 計 60
レポート 総合学習 学業成績	時間 の評価方		それらに搭載された負荷分散を 調査内容をレポートにまとめる 講義 + 自学自習	表置をシミュレーション [、]	で評価	する		4 計 60
レポート/ 総合学習 学業成績 法	時間 の評価方		それらに搭載された負荷分散を 調査内容をレポートにまとめる 講義 + 自学自習 かに評価する。 ほ し コンピュータネットワーク	表置をシミュレーション [、]	で評価	する		4 計 60
レポート 総合学習 学業成績 法 関連科目	時間 の評価方	ネットワーク基	それらに搭載された負荷分散を 調査内容をレポートにまとめる 講義 + 自学自習 かに評価する。 ほ し コンピュータネットワーク	表置をシミュレーション [*]	で評価	する 		4 計 60
レポート 総合学習 学業成績 法 関連科目	時間 の評価方 副読本	ネットワーク基	それらに搭載された負荷分散装調査内容をレポートにまとめる 講義 + 自学自習 いに評価する。 - 礎・コンピュータネットワークを使用しない - 評価 (ルーブリ	表置をシミュレーション [*]			レベルの目安	4 計 60 計 90
レポート [・] 総合学習 学業成績 関連科目 教科書・	時間 の評価方 副読本 ネ能に加えないに	ネットワーク基 その他: 教科書 到達レベルの目安 (優	それらに搭載された負荷分散を調査内容をレポートにまとめる 講義 + 自学自習 かに評価する。 一ででは、ロンピュータネットワークを使用しない ででは、ロンピュータネットワークを使用しない ででは、ロンピュータネットワークを使用しない できる。	表置をシミュレーション* 5 7 ック)	可)	未到達	レベルの目安に	4 計 60 計 90 (不可)
レポート 総合学習 学業 関連科目 教科書・	時間 の評価方 副読本 ネ能ジき 複数 ネルにこる 数の !!	ネットワーク基 その他: 教科書 到達レベルの目安(優 フークに関する 、演算やストレ	それらに搭載された負荷分散装調査内容をレポートにまとめる 講義 + 自学自習いに評価する。 一で 一で でれるに搭載された負荷分散装 調査内容をレポートにまとめる でれることでする に評価 (ルーブリークに関する性能を説明できる。	を置をシミュレーション う ック) ぎりぎりの到達レベルの目安 (可) 性	未到達能を訪		4 計 60 計 90

科目名		担当教員	学年	単位	開講時数	種別		
データマイニング (Data Mining)		横井健 (常勤)	1 • 2	2	半期 2 時間	選択		
授業の概要	は、多変量解析	グとは大量のデータを分析し、価値ある情報を発見 fを中心とした様々な分析手法についてその理論なら を読み取れるようになる。						
授業の形態	講義							
授業の進め方	また、必要に応	な科書を軸とした講義を中心に、適宜理解を深めるための演習課題を自宅学習として課す。 に応じて予習を課し、その内容を発表する。 そ行い自学自習の習慣を身につける。						
到達目標	2. 重回帰分析は 3. 判別分析に 4. 主成分分析は	最分析について説明できる。 最分析について説明できる。 分析について説明できる。 分分析について説明できる。 と手法について説明できる。						
実務経験と授業内 容との関連	なし							
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基		
		講義の内容						
項目		目標				時間		
データマイニング	の概要	データマイニングの概要について理解する。				2		
数学的準備		多変量解析を学習する上で必要な統計と線形代数に			認する。	4		
回帰分析		単回帰分析、重回帰分析ならびに数量化 I 類につい゛	て理解す	⁻ る。		8		
判別分析		判別分析と数量化 II 類について理解する。				4		
多変量解析		主成分分析、数量化 III 類ならびに多次元尺度構成活		て理解	する。	8		
クラスター分析		デンドログラムを中心にクラスター分析について理	解する。			4		
						計 30		
		自学自習						
項目		目標				時間		
数学的準備		多変量解析を学習する上で必要な統計と線形代数に 問題を通じて確認を行う。	関する知	識につ	いて演習	8		
多変量解析の理論の	の理解	多変量解析の各種手法における理論的背景について 深める。	寅習問題	色を通じ	て理解を	24		
多変量解析の利用		多変量解析の各種手法を用いて実際のデータに対す。 の利用方法について理解を深める。なお、分析した 施する。				28		
						計 60		
総合学習時間		講義 + 自学自習				計 90		
学業成績の評価方 法	授業における乳	ễ表状況 4 割、10 回程度のレポート 6 割で評価する。						
関連科目	人工知能・パタ	マーン認識						
教科書・副読本	データマイニン 山 将・井手 剛 文・兼村 厚範	量解析法入門」永田 靖、棟近 雅彦 (サイエンス社 グ・推論・予測一」Trevor Hastie ・Robert Tibsh ・神嶌 敏弘・栗田 多喜夫・前田 英作監訳・井尻 善 ・烏山 昌幸・河原 吉伸・木村 昭悟・小西 嘉典・酒井 輔・冨岡 亮太・波部 斉・前田 新一・持橋 大地・山	irani 久・井 辞弥・	Jerome 手 剛・結 鈴木 大	e Friedma 岩田 具治 慈・竹内	n 著・杉 ・金森 敬		

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	単回帰分析を数式を用い て説明できる。		単回帰分析を実際のデータに適用できる。	単回帰分析を利用できない。				
2	重回帰分析を数式を用い て説明できる。		重回帰分析を実際のデータに適用できる。	重回帰分析を利用できない。				
3	判別分析を数式を用いて 説明できる。		判別分析を実際のデータ に適用できる。	判別分析を利用できない。				
4	主成分分析を数式を用い て説明できる。		主成分分析を実際のデータに適用できる。	主成分分析を利用できない。				
5	数量化手法を数式を用い て説明できる。		数量化手法を実際のデータに適用できる。	数量化手法を利用できない。				

科目名 担当教員 学年 単位 開講時数						種別
マルチメディア処理 (Multimedia Prod	理 cessing)	小林弘幸 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	本科や専攻科で について学習す	で学習した信号処理を基に、マルチメディア信号に対 つる。	する表現	見法やさ	まざまな	処理技術
授業の形態	講義					
授業の進め方	出を行う。	ーキストを使って進め、適宜課題演習を行う。moodl fい自学自習の習慣を身につける。	e を使い	、テキ	·スト配布 [、]	や課題提
到達目標 1. レートの異なる信号に対する信号処理が理解できる 2. フィルタバンク・直交変換などの基礎技術を理解できる 3. マルチメディア信号に対するさまざまな処理技術について理解できる						
実務経験と授業内 容との関連	なし					
学校教育目標との 関係	\ /	合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基
		講義の内容				
項目		目標				時間
ガイダンス		授業のガイダンスと信号処理について学ぶ				2
ディジタル信号処ヨ	理の基礎	フーリエ変換、サンプリング定理、フィルタリング	などを覚	送ぶ		2
マルチレート信号	処理 (1)	ダウン・アップサンプリング、デシメータ、インタ	ーボレー	-タにつ	いて学ぶ	2
マルチレート信号を	処理 (2)	 デシメータ・インターボレータの等価変換 (ポリフェ	ーズ構	成) につ	いて学ぶ	2
2 チャネルフィルク	タバンク	フィルタバンクと完全再構成条件について学ぶ		,		2
2 チャネルフィル? 的な構成	タバンクの効果	フィルタバンクのリフティング構成について学ぶ				
離 散 ウェーブレ JPEG2000 符号化		離散ウェーブレット変換とその応用技術である JPI 学ぶ	EG2000	符号化	について	2
直交変換		DFT、DCT、WHT など直交変換について学ぶ				2
JPEG 符号化のア	ルゴリズム	実装の画像に対して直交変換と量子化を実行するこ リズムを学ぶ	とで、	JPEG	のアルゴ	2
画像マッチング処理	里	動画像符号化で用いられる動き補償について学なぶ				2
MPEG 符号化のフ	アルゴリズム	MPEG 等の動画像符号化について学なぶ				2
色の表現法		RGB, YCbCr, HSV, CIELAB 等の色空間について	学ぶ			2
ハイダイナミック	レンジ画像	ダイナミックレンジが高い画像に対する符号化につ	いて学え	D '''		2
画像応用技術		電子透かし技術、画像同定技術などマルチメディア ついて学ぶ	画像のさ	きざま	な処理に	2
テスト返却および	解説	期末試験を返却し、解説を行う				2
						計 30
		自学自習				
項目		目標				時間
予習、復習		授業の予習・復習を行う				20
課題 (レポート作成		授業中に提示される課題を moodle に提出する				30
定期試験の準備		定期試験準備のための学習時間				10
						計60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法	授業中に適宜行 5:5 とする。	fう課題の解答と定期試験によって総合的に判断する	。なお、	定期記	ぱ験と課題	
関連科目						
教科書・副読本		・ ィジタル信号処理のエッセンス」貴家仁志 (オームを oodle 等で掲示する。	t), その	D他: 教	科書は使用	しない。

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	時間・z・周波数の関係性 を理解できる	z 領域でも理解できる	時間信号では理解できる	レートが異なる信号の処 理ができない				
2	フィルタバンク・直交変換 の応用技術を理解できる	それぞれの仕組みを理解 できる	それぞれの役割は理解で きる	フィルタバンクや直交変 換について理解できない				
3	いくつかの処理技術を実 装し、動作確認ができる	処理技術の仕組みまで理 解できる	一つは知っている	一つも理解できない				

科目名		担当教員	学年	単位	開講時数	種別
ヒューマンコンピ: クション	ュータインタラ	岩田満 (常勤/実務)	1 • 2	2	半期 2 時間	選択
(Human-Compute	er Interaction)				₹ 四十月	
授業の概要		を誰でも使える道具とする技術である、ヒューマン て学習する。コンピュータと人とのインタフェース)				
授業の形態	講義					
授業の進め方		受業を進める。理解を深めるために、適宜レポート課績 fい自学自習の習慣を身につける。	題を設定	ごする。		
到達目標	2. 使いにくい	コンピュータインタラクションの代表的な設計・開発 ヒューマンインタフェースの例を挙げ、改善方法を説 -マンインタフェースに関する文献を調査・理解し、	明できん	3	说明できる	
実務経験と授業内 容との関連	あり					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
ガイダンス		講義の内容、進め方、評価方法について説明する シラバス説明・シラバス説明実施調査を行う				2
概論		ヒューマンインタフェースの概要と歴史を学習する				2
コンピュータとヒ: フェース	ューマンインタ	コンピュータと人間研究、CUI と GUI などについ	て学習す	-る		2
人間の情報処理モデ	デル	人間の感覚、行為の7段階モデルなどについて学習する				2
ヒューマンエラー		ヒューマンエラーの種類と原因、対策について学習する				2
人間サイドからの記	役計	人間中心の設計について学習する				2
情報入力系		キーボードやマウスなどの入力デバイスについて学				2
情報出力系		ディスプレイや HMD などの出力デバイスについて		3		2
インタラクション	系	わかりやすいメニューや GUI 設計などについて学習	する			2
ユーザのアシスト		ヘルプ機能、エージェントなどについて学習する				2
ユーザビリティ評価		使い心地の評価方法や評価尺度について学習する				2
インタラクション		VR、AR、ノンバーバルインタフェースなどの技術				2
コミュニケーション		グループウェア、ソーシャルインタフェースなどに	-			2
次世代ヒューマンク	インタフェース	ヒューマンインタフェースの新しい動きと課題につ	いて学習	引する		2
まとめ		ヒューマンインタフェースに関する文献を調査した	内容を名	各自発表	する	2
						計 30
		自学自習				
項目		目標				時間
予習、復習		図書館の本や論文、Web などを活用して、ヒューマして予習復習する 授業時に各自のノートを確認する	マンイン	⁄タフェ	ースに関	30
レポート課題		レポート課題に取り組む 発表資料を作成する				30
						計 60
総合学習時間		講義 + 自学自習				計 90
学業成績の評価方 法		課題と 1 回のプレゼンテーション課題により成績を 。ただし、未提出の課題がある場合は不合格とする。	評価す	る。各回	回の課題の	評価割合
関連科目						
教科書・副読本	参考書: 「IT '	Text ヒューマンコンピュータインタラクション 改訂	2版」	青報処理	1学会編集	岡田謙

	評価 (ルーブリック)							
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)				
1	代表的な設計・開発・評価 手法から適切なものを選 択し、その適用の仕方を説 明できる。	手法の利点と欠点をもと	代表的な設計・開発・評価 手法の概要を説明できる。	代表的な設計・開発・評価 手法を知らない。				
2	インタフェースの改善方 法をプロトタイプを作成 して説明できる。		インタフェースの改善方 法を既存の手法をそのま ま用いて説明できる。	使いにくいヒューマンイ ンタフェースの例を挙げ ることができない。				
3	文献で説明されている手 法を自ら実装・追試して考 察できる。		文献を調査し、内容をスライドにまとめることができる。	文献の調査ができない。				

科目名		担当教員	学年	単位	開講時数	種別	
情報セキュリティ特 ()	寺別演習 I	岩田満 (常勤/実務)・竹迫良範 (非常勤/実務)	1 • 2	1	半期 2 時間	選択	
授業の概要		キュリティのための様々なモノづくりの実習を通して、コンピュータや通信の動作原理を実際 動かしながら理解し、脆弱性の動作原理と防御手法について学習する。					
授業の形態	実験・実習						
授業の進め方	実習形式で実施 予習,復習を行	重する。 fい自学自習の習慣を身につける。					
到達目標	2. USB 組込機 3. 任意の Bad 4. やられサー 5. 攻撃を防御	スコープによる通信波形観測ができる 器プログラムを作成することができる USB のコマンドの作成ができる バに対して Web 脆弱性診断ができる する WAF を作ることができる できる Linux カーネルを開発できる					
実務経験と授業内 容との関連	あり						
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する				技術と基	
		講義の内容					
項目		目標				時間	
ガイダンス		シラバス説明・シラバス説明実施調査を行う 演習に必要な VM 環境と機材を準備しセットアップ	プするこ	とができ	きる	2	
BadUSB プログラ	ミング入門	BadUSB の動作原理を理解し、機器を構築できる					
USB オシロスコー	プ自作演習	USB オシロスコープによる通信波形観測ができる				4	
USB マウス・キー	・ボード自作	USB 組込機器プログラムを作成することができる				4	
BadUSB プログラ	ミング応用	任意の BadUSB のコマンドの作成ができる				4	
BadStore による斯	危弱性診断	やられサーバに対して Web 脆弱性診断ができる				4	
攻撃を防御する W	AF を作る	攻撃を防御する WAF を作ることができる				4	
Linux カーネルで	攻撃検知	攻撃検知ができる Linux カーネルを開発できる				4	
						計 30	
		自学自習					
項目		目標				時間	
プログラミング		USB 組込機器プログラミング				5	
WAF 構築		WAF シグネチャの作成				10	
						計 15	
総合学習時間		講義 + 自学自習				計 45	
学業成績の評価方 法	実習で作成した	とソースコードの内容で評価する。独創性がある場合	は加点。				
関連科目	情報セキュリラ	ティ特別演習 II・情報セキュリティ特別演習Ⅲ					
教科書・副読本 その他: 特になし							

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	USB ロジックアナライ ザーでプロトコル解析し、 通信内容をデコードする ことができた	USB オシロスコープで波 形表示することができ、ロ ジックアナライザーを起 動することができた	USB オシロスコープで波 形表示することができた	USB オシロスコープの環 境構築ができなかった					
2	これまでにない USB 組込 機器のプログラムを作成 できた	USB 組込機器のプログラムを作成でき、改造することができた	サンプル通りの USB 組込 機器のプログラムを作成 できた	USB 組込機器のプログラ ムが作成できなかった					
3	これまでにない BadUSB を組み立てることができ た	BadUSB を組み立てるこ とができ、改造することが できた	サンプル通りの BadUSB を組み立てることができ た	BadUSB を組み立てるこ とができなかった					
4	やられサーバの脆弱性を 3 つ以上発見できた	やられサーバの脆弱性を 2 つ以上発見できた	やられサーバの脆弱性を 1 つ発見できた	やられサーバの脆弱性を 1つも発見できなかった					
5	WAF シグネチャを作成す ることができ、検知精度を 向上することができた	WAF シグネチャを作成す ることができ、改造するこ とができた	サンプル通りの WAF シ グネチャを作成すること ができた	WAF シグネチャを作成す ることができなかった					
6		Linux カーネルでの攻撃 検知することができ、動作 原理を理解することがで きた	Linux カーネルでの攻撃 検知することができた	Linux カーネルでの攻撃 検知することができなか った					

		11位 0 千皮 守权符			_		
科目名		担当教員		学年	単位	開講時数	種別
情報セキュリラ ()	ィ特別演習 II	小早川倫広 (常勤)・川崎隆哉 ((非常勤)	1 • 2	1	半期 2 時間	選択
授業の概要	受業の概要 内部不正調査およびサイバーセキュリティに対するフォレンジックを修得し、フォレンジッシステムを構築する。						ク CTF
授業の形態	実験・実習						
授業の進め方	フォレンジッチ習、復習を	クの概要を説明後、演習を行う 行い自学自習の習慣を身につける	· .				
到達目標	1. 内部不正調 2. 攻撃目標の 3. フォレンジ		S .				
実務経験と授業 容との関連	なし なし						
学校教育目標と 関係		合的実践的技術者として、数学 関する知識をもち、工学的諸問題					技術と基
		講義の内容					
項目		目標					時間
ガイダンス		デジタル・フォレンジックの概	既要を理解する				4
不正調査フォレ	·ンジック 1	不正調査フォレンジックの概要 リング (調査に役立つ前情報を		事案に対	すしてプ	ロファイ	4
不正調査フォレ		証拠隠滅の痕跡調査を行う					4
フォレンジック		5 タイムライン解析・メモリフォレンジックを行う				4	
マルウェア探索	\$	アンチウィルスが見つけられた	ないマルウェアを探す				4
攻擊目標調査		攻撃者の攻撃目的を調査する					6
	CTF 構築設計	フォレンジック CTF システムの設計する					2
フォレンジック	クCTF 報告	構築したフォレンジック CTF	システムの概要を報告	言する			2
		4 1/4 4 777					計 30
-F.D		自学自習					n+ 00
項目	· COD oft	目標	- 7				時間
フォレンジック	7 UIF の美装	フォレンジック CTF を構築す	ే ఏ				15 計 15
総合学習時間		講義 + 自学自習					計 45
学業成績の評価 法	五方 演習の進捗状	况 100 %で評価する。					
関連科目	情報セキュリ	ティ特別演習 I・情報セキュリテ	ィ特別演習III				
教科書・副読本	x その他: 特に知	無し					
		評価 (ルーブリ	ック)				
到達目標理想	関的な到達レベルの目安 (値	優) 標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達	レベルの目安	(不可)
1 内部 きる	不正の概要を報告	ちで 内部不正の隠蔽	内部不正プロファイ グができる		内部不〕 ない	E調査が含	全くでき
2 攻撃 でき	者の攻撃目的を記る	間査 マルウェアを探すことが できる	タイムライン解析・メ フォレンジックができ	きる		ーセキュ! ジックが≦	
	3 フォレンジック CTF シス フォレンジック CTF シス フォレンジック CTF シス フォレンジック C テムを報告できる テムを実装できる テムを企画・設計できる テムを企画できな				(TD 2/2		

科目名			担当教員		学年	単位	開講時数	種別	
情報セキュリティ特別演習III (Information security exercise III)			小早川倫広 (常勤)・時田剛 (非	常勤)	2	1	半期 2 時間	選択	
授業の概	要	Mac フォレン:	ジック演習を実施する						
授業の形	態	実験・実習							
授業の進	め方	演習を中心に授 予習,復習を行	業を展開する fい自学自習の習慣を身につける	· ·					
到達目標		1. Intel 版 N	Iac に対するフォレンジック技術	析を修得する					
実務経験 容との関	と授業内 連	なし							
学校教育 関係	学校教育目標との 関係 D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な技術と基 礎的な理論に関する知識をもち、工学的諸問題にそれらを応用する能力を育成する。								
			講義の内容	3					
項目			目標					時間	
	・レンジッ		Intel 版 Mac に対するフォレン		する			30	
Mac フォ	- レンジッ	ク演習	与えられた環境から証跡を見つ	つけ出す				15	
			, %, , ==					計 45	
			自学自習						
項目			目標					時間	
総合学習		+	講義 + 自学自習					計 45	
学業成績法	の評価方	最終のフォレン	/ジック演習の達成度により評価	新する					
関連科目		情報セキュリラ	・ィ特別演習 I・情報セキュリテ	ィ特別演習 II					
教科書・	副読本	その他: 特に無	l						
			評価 (ルーブリ	ック)					
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安(良)	ぎりぎりの到達レベルの目安	そ(可)	未到達	レベルの目安	(不可)	
1 フォレンジックツールを フォレン 使用できない 用いて、i			を フォレンジックツールを 用いて、証跡のあたりをつ けることができる	フォレンジックツー 用いて証跡を発見で?			Mac の 見できる。	新たな証	

				1		
科目名		担当教員	学年	単位	開講時数	種別
粘性流体の力学 (Dynamics on Vis	scous Flow)	小出輝明 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	工学的な適用例	と関連付けながら、粘性流れの基礎理論を学習する。)			
授業の形態	講義					
授業の進め方	践し、さらに実 を取り入れて授	っら流れの解析手法を理解するとともに、理論から導 ミ際的な流れの適用について理解できるようにする。 受業を進める。 近い自学自習の習慣を身につける。				
到達目標		見象を理論的に理解でき、工学上重要な基礎流れや境 な流動現象と、応用例などとの関連を理解できる	界層に	関する計	算ができ	る
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する[技術と基
		講義の内容				
項目		目標				時間
1. 乱流境界層のヨ	理論 (1)	プラントルの混合長理論から、乱流の速度分布の式 課題として、グラフ用紙に、壁面近くの乱流境界層 底層の式と二クラーゼの対数法則の式を描き、流れ	速度分布	方につい		4
2. 乱流境界層のヨ	理論 (2)	平板の摩擦抵抗係数についてブラジウスによる層流 ントルの式および、シュリヒティングの式をグラフ レイノルズ数と流れの状態による算出式の選択を、	化する	課題を急	実施して、	4
3. 乱流境界層の	速度分布	プラントルの混合長理論の導入と、対数法則および指数法則を用いた乱流境 界層速度分布の誘導と、その構造の理解。				2
5. 物体まわり流 流境界層の違い	れでの層流-乱	層流-乱流境界層の性質の違いを、円柱まわり流れに関して学習する。				
6. 粘性流体の理語	論解の例	Navier-Stokes の運動方程式の理論解として、クエッ て理解する。	ハト-ポラ	アズイユ	流につい	2
7. 運動量理論		管内流れ、曲面板および平板にあたる墳流の例で、運動量理論を学ぶ				
8. 層流境界層の現	理論	層流の基礎的流れを理論的あるいは数値的に解き、解析および計算手法や、 層流境界層の速度分布などを理解する。				4
9. 流れの運動方程 る数学理論との関係		流れの運動方程式や連続の式で適用される、テーラーの関係を学ぶ。	一展開な	ょどの数	学理論と	4
10. 粘性流の演	習問題	粘性流の演習問題				4
						計 30
		自学自習				
項目		目標				時間
予習、復習		式の途中変形の確認等、予習復習。				30
課題・レポート		グラフ上での流れ分布の課題の作成など。				
定期試験の準備		定期試験準備のための学習時間。				5
						計 60
総合学習時間 講義 + 自学自習			計 90			
学業成績の評価方 法	レポート、課題	題および定期試験等の結果から判断する。				
関連科目	本科で学んだ、	流体力学に関する座学・実験科目全般				
教科書・副読本	その他: 本科名	コースで使用した流体力学の教科書を使用する				

	評価 (ルーブリック)								
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)					
1	粘性流の厳密解が得られ る各種流れにおいて、境界 条件を変えた問題などを 解くことができる。	密解が得られる各種流れ	粘性流の運動方程式の厳密解が得られる、各種流れの速度分布の式を把握している。	粘性流の運動方程式や、その厳密解が得られる各種 流れなどを、定性的にも把握していない。					
2	対数法則や、層流底層など の式を、レイノルズ応力な ど乱流理論に基づく誘導 過程から理解している。		対数法則や指数法則の式、 層流底層などの、乱流境界 層の構造を表わす速度分 布を把握している。	物体まわりの乱流および 層流境界層はく離現象に よる、圧力抵抗への影響 を、定性的にも理解してい ない。					

NDA		つれ 0 年度 等以件 ンフハス	744 /T	pp=#+-+ *//	1 4 Ind	
科目名		担当教員	単位	開講時数	種別	
推進工学特論 (Special Lecture Propulsion)	on Aerospace	中野正勝 (常勤) 1 • 2	2	半期 2 時間	選択	
授業の概要 航空機や宇宙機の推進装置(エンジン)に関する講義を通じて、エンジンの形状の根拠、構成などを理論的に学び、エンジンに対する要求をどのように実現しているのかを理解し、エンジ 念設計を出来るようになる。						
授業の形態	講義					
授業の進め方	キストに基づい いては要求諸元	、理解度を中間・期末試験により評価する。講義は教科書 いて実施するため、事前の準備学習と事後の復習が必要であ を課した上で設計書を作成する。 近い自学自習の習慣を身につける。				
到達目標	2. エンジンの	宙用エンジンの推進原理、特徴ならびにエンジンの形状や構 基礎的な性能評価を行うことができる 設計方針と設計方法の概要を理解できる	成の根拠	[を理解で	きる	
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専門とす 引する知識をもち、工学的諸問題にそれらを応用する能力を背			技術と基	
		講義の内容				
項目		目標			時間	
航空機とエンジン		航空機のエンジンの種類や発展の歴史について学ぶ。			2	
エンジン構成要素		実機のエンジンを観察して情報収集ならびに分析し、エンミをどのように実現しているのかを実例を通して学ぶ。その私とで発表能力の向上も図る。			4	
レシプロエンジン、 スクラムジェット ³		レシプロエンジンの構造や性能指標について学ぶと同時に、 ルや圧縮点火サイクルの性能を理論的に理解する。ラムジジェットについてその構造、原理を理解し、亜音速から超 体現象も学ぶ。	ェットと	スクラム	2	
ジェットエンジン、 クル	エンジンサイ	ジェットエンジンについて構成要素を学び、ブレイトンサー性能評価を行えるようになる。ジェットエンジンを例にサーび、エンジンの基本的な設計方針を習得する。			2	
試験と解説		航空機エンジンに求められる要件、性能指標について理解 明らかにし、解説により理解度の不足部分を補う。	度を試験	を通じて	2	
ロケットの歴史と	分類	ロケットとロケット推進の歴史について学ぶ。ロケット推進の分類とその推 進原理について学ぶ。				
ロケット方程式、打	打ち上げ性能	ロケット方程式の導出と性能計算法を理解する。単段、多度 をロケット方程式に基づき理解する。			2	
ノズル理論		ラバールノズルの構造と特性について理解する。圧力比と の関係を理解する。	出口速度	、膨張比	4	
エンジンサイクル		各種ロケットエンジンサイクルについて学ぶ。			2	
サイクル計算		ガスジェネレータサイクルまたはエクスパンダーサイクルを ル計算について学ぶ。		てサイク	4	
先端的ロケット		原子力推進、電気推進など最新のロケット技術について学。	۶.°		4. 20	
		 自学自習			計 30	
		目標			 時間	
予習、復習		教科書、配布テキストの予習復習をする。授業時に各自の現行う。	里解内容	の確認を	15	
課題		ジェットエンジンまたはロケットエンジンのサイクル計算	を課題と	して行う	35	
定期試験の準備と行	复習	定期試験の準備と復習を行う。			10	
~ パルトルグ・シー・中口 C IX 日					計 60	
		<u> </u>				

学業成績の評価方 法	講義内容に対する理解度を、中間・期末試験とレポートから評価する。成績は、試験 85 %(中間試験 42.5% 、期末試験 42.5%)、レポート 15% として評価する。 100 点満点で 60 点以上を合格とする。
関連科目	人工衛星工学・宇宙工学概論
教科書・副読本	教科書: 「ロケットエンジン」鈴木 弘一 (著), 中村 佳朗 (監修) (森北出版), 副読本: 「電気推進ロケット入門」栗木 恭一 (編集), 荒川 義博 (編集) (東京大学出版会)

i	ı	する。					
関連科目	関連科目 人工衛星工学・宇宙工学概論						
教科書・副読本 教科書: 「ロケットエンジン」鈴木 弘一 (著), 中村 佳朗 (監修) (森北出版), 副読本: 「電気推進ロケット入門」栗木 恭一 (編集), 荒川 義博 (編集) (東京大学出版会)							
			評価 (ルーブリ	ック)			
到達目標	理想的な	到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)		
1	推進の原 エンジン			各種航空宇宙用エンジン のいずれについても推進 原理の説明ができる。	各種航空宇宙用エンジン の中のどれか一つについ ても、推進原理の説明がで きない		
2	評価を自	ンの基礎的な性能 自らの手で定量的 ことができる	エンジンの基礎的な性能 評価を教員の指導や資料 等を用いて行うことがで きる	要な項目について説明で			
3	計方法の	な計算に基づいた	計方法の概要が説明でき	エンジンの設計に求めら れる項目が何かを説明で きる	エンジン設計に求められ る項目を説明できない		

1) 다섯		一	~ ~	자 /ㅗ	日日二世の上 ツノ	ÆDI		
科目名		担当教員	学年	単位	開講時数	種別		
航空宇宙機器概論 (Introduction to A		宮野智行 (常勤/実務)	1 • 2	2	半期2時間	選択		
授業の概要	行システムにつ も含めて学習す 位システム、オ	要本講義では、近年の電子機器や通信システムの進歩を取り入れ、航空機・宇宙機に搭載さ システムについて、目的、動作原理から、システムの構成、各機器の機能・性能とその運用方 含めて学習する。具体的には、アンテナ、電波、無線通信の基本原理から、レーダ、慣性航 システム、オートパイロット等の応用システムまで、搭載機器と地上施設を一体とした全体 について学習し理解を深める。						
授業の形態	講義							
授業の進め方	いる。	文科書を使ってすすめ、単元ごとに問題演習や小テス fい自学自習の習慣を身につける。	トを行う	う。また	、課題も	設定して		
到達目標	2. 回線設計、1 3. 姿勢制御、4	ステム、送受信機、変調システムについて理解できる ノーダシステム、衛星通信について理解できる。 衛星軌道、惑星間飛行について理解できる。 ム、航法機器、オートパイロットについて理解できる						
実務経験と授業内 容との関連	あり							
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用する飼				技術と基		
		講義の内容						
項目		目標				時間		
ガイダンス		授業のガイダンスとアビオニクスについて				2		
電波通信		電波,送信機,受信機,変調について学習する				2		
レーダ		一次レーダ,2次レーダのシステムを学習する				2		
回線計算		通信回線,回線計算を習得する(課題)				2		
衛星航法システム		GPS / GALILEO について学習する				2		
RVD		宇宙ステーションのランデブードッキングについて	学習する	(課題	<u> </u>	2		
惑星間飛行		軌道変更、惑星間飛行について学習する.				2		
姿勢制御 I		人工衛星の姿勢制御 I スピン衛星				2		
姿勢制御 II		人工衛星の姿勢制御 II				2		
宇宙ロボット		ロボットマニピュレータ,探査機				2		
着陸航法システム		ILS/MLS のシステムについて学習する				2		
航法補助装置 I		高度計、昇降計、電波高度計、気象レーダについて	学習する			2		
航法補助装置 II		地上接近警報装置、航空機衝突防止装置について学				2		
オートパイロット		オートパイロットシステムについて学習する				2		
						計 28		
		自学自習						
		目標				 時間		
予習,復習課題 プレゼンテーション	ンの準備	講義プリントの理解,式の途中変形の確認等,予習行 習内容や式の変形の確認を行う.	复習. 哲	援業時に	各自の学	92		
定期試験の準備		課題の学習 技術調査とプレゼンテーション作成,発表練習,質 定期試験準備のための学習時間.	疑応答対	対策準備		-31 -		
, , , , , , , , , , , , , , , , , , ,						計 92		
総合学習時間	新压片口 感业。	講義+自学自習	<i>h</i> h 1. —	a 1 \= '		計 120		
学業成績の評価方 法)終わりに復習の問題や課題を出すので、それらの解 fする。なお、テストと課題の比率は6:4とする。	台とアン	ベトによ	いて放績	評価結果		
関連科目								
教科書・副読本	その他: フリー	\mathcal{F} + \mathcal{A} + \mathcal{A} , http://www2.metro-cit.ac.jp:8080/~	miyan	o/S1/S	1Avio.htn	nl		

		評価 (ルーブリ	ック)	
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)
1	電波通信システム、送受 信機、変調システムについ て、原理図と数式を用いて 説明でき、具体的な応用方 法について説明すること ができる。	信機、変調システムについて、原理図と数式を用いて		電波通信について理解できない。
2	ム、衛星通信について、原	·		回線設計について理解できない。
3	間飛行について、原理図と	数式を用いて説明するこ	姿勢制御について理解で きる。	姿勢制御について理解で きない。
4	飛行システム、航法機器、 オートパイロットについ て、原理図と数式を用いて 説明でき、具体的な応用方 法について説明すること ができる。	オートパイロットについ て、原理図と数式を用いて	飛行システムについて理 解できる。	飛行システムについて理 解できない。

科目名		担当教員	学年	単位	開講時数	種別
宇宙工学概論 (Introduction to S sign)	Spacecraft De-	真志取秀人 (常勤)	1 • 2	2	半期 2 時間	選択
授業の概要	宇宙開発の経緯	まや現状,および宇宙環境の特殊性などを学び,宇宙	L学に関	する知	見を深める	
授業の形態	講義					
授業の進め方	レポート課題を	て進める.講義内容に応じた関連資料を適宜配布す 課す. fい自学自習の習慣を身につける.	る.まか	た講義内	容にあわ	せて随時
到達目標	1. 宇宙工学の約 2. 宇宙利用に対 3. 宇宙機に求め	登緯について,技術的な立場から理解し説明すること 必要となる宇宙環境に関する知識を学び,説明するこ められるバス機器や全体システムについて把握し説明	ができるとかできること	る きる とができ	る	
実務経験と授業内 容との関連	なし					
学校教育目標との 関係		合的実践的技術者として、数学・自然科学・自らの専 引する知識をもち、工学的諸問題にそれらを応用するf				技術と基
		講義の内容				
項目		目標				時間
1. ガイダンス		講義の概要や進め方、関連科目とのつながりを理解	する			2
2. 宇宙工学の経緯		これまで行われてきた宇宙開発の経緯と現状をふまた に取り組んでいるのかを学修する.	,	Eどのよ	うな課題	2
3. ロケット開発の		論文等を元に,最新のロケット開発現状について把				2
4. ロケット推進の		ツィオルコフスキーの式や各種推進性能計算法につい ル形状について学修する.				2
5. ロケット推進の		液体ロケットや固体ロケットなど、各種ロケット推進について学ぶ.				
6. ロケット燃料と		化学ロケット推進の元となる燃焼反応について学修する.				2
7. 宇宙機を用いた	宇宙利用例	リモートセンシングや有人ミッションなど、様々な宇宙機ミッションについて学修し、実際の宇宙利用に関する知見を深める.				2
8. 宇宙推進		化学推進機や非化学推進機など,各種宇宙推進について理解し,論文等を通して開発動向を把握する.				2
9. 軌道		宇宙機のミッションとその軌道の関係について理解する.				
10. 高層大気が宇 影響		高層大気の構造と,それらが宇宙機に与える影響に [・] 				2
11. 宇宙プラズマ・	・宇宙放射線	宇宙機の帯電・放電事象など,宇宙プラズマや放射線を、過去の故障事例などを通して学修する.				2
12. メテオロイド ブリ		メテオロイドとスペースデブリについて, 現在の宇 学ぶ.				2
13. 宇宙機システム	4	これまでの講義内容を元に、宇宙機に求められるシ			学ぶ.	2
14. 衛星試験		宇宙機の打ち上げ前に行なわれる各種地上試験につい	ハて学修	をする.		2
15. 総括		本講義内容の総括を行う.				2 = 1.00
		() V () 777				計 30
		自学自習			Т	
項目		目標				時間
予習・復習		講義の参考資料として適宜配布する英語論文の要約- など、講義中にこれらの確認を行う。	や,式の)途中変	形の確認	30
レポート		講義内容に関する調査レポートを行う.				20
定期試験の準備		定期試験準備のための学習時間				10
/// A N/===:						計 60
総合学習時間	***	講義+自学自習	\ 1 = P m A	2.0.21		計 90
学業成績の評価方 法 	講義内容に対す して評価し, 1 する.	「る理解度を,試験とレポートにより評価する.成績 00点満点中60点以上を合格とする.ただし未提	は試験 8 出のレ ⁷	8 0 %, ポートカ 	レポート ぶある場合	20%と は不可と
関連科目	推進工学特論・	人工衛星工学・航空宇宙機器概論				
教科書・副読本	その他: 適宜資	料を配布する.				

評価 (ルーブリック)										
到達目標	理想的な到達レベルの目安 (優)	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安 (可)	未到達レベルの目安 (不可)						
1	宇宙工学の経緯について 理解していて、教員の手助 け無しに、相手にわかるよ うに説明ができる。	宇宙工学の経緯について 理解していて、教員の手助 け無しに説明できる。	宇宙工学の経緯について 理解していて、教員の手助 けにより説明できる。	宇宙工学の経緯について 理解していなく、教員の手 助けがあっても説明がで きない。						
2	宇宙機を取り巻く環境の 特徴について理解してい て、教員の手助け無しに、 相手にわかるように説明 ができる。	宇宙機を取り巻く環境の特徴について理解していて、教員の手助け無しに説明できる。	宇宙機を取り巻く環境の特徴について理解していて、教員の手助けにより説明できる。	宇宙機を取り巻く環境の特徴について理解していなく、教員の手助けがあっても説明ができない。						
3	宇宙機に求められるバス 機器や全体システムにつ いて理解していて、教員の 手助け無しに、相手にわか るように説明ができる。	宇宙機に求められるバス 機器や全体システムにつ いて理解していて、教員の 手助け無しに説明できる。	宇宙機に求められるバス 機器や全体システムにつ いて理解していて、教員の 手助けにより説明できる。	宇宙機に求められるバス 機器や全体システムにつ いて理解していなく、教員 の手助けがあっても説明 ができない。						

			市和 0 年度 等以科	2 2/12/							
科目名			担当教員	Į.	学年	単位	開講時数	種別			
飛行制御特論 (Flight Control Technology)			草谷大郎 (常勤/実務)			2	半期 2 時間	選択			
授業の概要	要	航空機を制御対象とし、航空機の飛行方法と、その飛行制御方法についての概要を理解する。									
授業の形態	態	講義									
授業の進め	め方	講義が中心である。予習や復習の小テストを実施する。 予習,復習を行い自学自習の習慣を身につける。									
到達目標 1. 航空機の飛行について、航空工学の基礎に基づいて理解できる。 2. 航空機の運動の制御について原理にさかのぼって理解できる 3. 3次元空間でにおける力学の基本について理解できる。											
	実務経験と授業内容との関連										
学校教育目 関係	学校教育目標との D (基礎力) 総合的実践的技術者として、数学・自然科学・自らの専門とする分野の基本的な打										
			講義の内容	\$							
項目			目標								
1. 概論			ガイダンス、航空工学の概要、	航空機の歴史について	て学習っ	する。		2			
2. 航空機	各論		航空機の種類、種類毎の構成界	要素、構造等について	学習する	5.		6			
3. 飛行机			飛行機の原理について学習する。								
4. 飛行機			飛行機の性能について学習する。								
5. 運動の)基礎		3次元に拡張した空間における力学の基礎について学ぶ					14			
								計 30			
			自学自習				T				
項目			目標					<u>時間</u> 20			
予習、復習			配布資料の式や変数の定義や式の変形の確認等の予習復習								
演習手順			演習手順内容の理解と習熟学習					30			
課題や小テストの準備			課題や小テストに向けた準備					10 計 60			
総合学習			講義十自学自習								
学業成績(法	の評価方	演習課題(6()%)、および授業への取り組み	.状況(40%)から総 	活的に 	判断する	る。 				
関連科目											
教科書・副	副読本	教科書: 「使用	しない」 (使用しない)								
			評価 (ルーブリ	ック)							
到達目標	理想的な	到達レベルの目安 (優	標準的な到達レベルの目安 (良)	ぎりぎりの到達レベルの目安	(可)	未到達レベルの目安 (不可)					
1	空機が発	学の基礎数式と、 飛行を行う仕組 この関係を、連携 目できる。	みると機能の関係を連携さ	飛行機が飛行を行う みと機能の関係を連 せて説明できる。	携さ		可う仕組 €連携さ 。				
2	いて航空	の運動の制御に 空工学の基礎式 原理にさかのほ ごきる。	を いて原理にさかのぼって いて技術的に説明できる。 いて技術的に説								
3		空間における力 こついて具体的 らた。			でき	の基本は	空間におり について理 らできない	里解でき			